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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

Summary

Using single-cell RNA sequencing (scRNAseq) and bioinformatics analyses of passage 3 human
mesenchymal stem/stromal cells (MSCs), the authors proposed to demonstrate that the 2 adult and 2
perinatal sources—adult sources being from adipose tissue (AD) and bone marrow (BM), and
perinatal sources being from placental chorionic membrane (PM) and umbilical cord (UC)—can model
the senescent process and allow for identification of ‘stemness’ factors, which the authors identified
as GATA2 and PD-L1. Perinatal MSCs were less able to differentiate than adult MSCs, which the
authors interpreted as having higher stemness.

While the human scRNAseq profiles are very useful and the bioinformatics analyses is quite
compelling, the study ignores well-demonstrated tissue-specific functional differences in human
MSCs, especially the fact that perinatal MSCs are more immunomodulatory than adult MSCs and that
BMMSCs differentiate more readily into 2 of the 3 required lineages than other sources (i.e. see
recent review Yen et al, FEBS J 2022), and thus confusing tissue-specific differences as senescence-
related changes.

Major

1. Very similar information has been published in Reinisch et al, Blood 2015, and the interpretation in
that study was opposite from this study. In the Blood paper, the “lower differentiation capacity” of non-
BM MSCs was interpreted as less MSC-like, i.e. less stemness (which is in line with ISCT Minimal
Criteria) and not MORE stemness as the authors here strangely concluded. Moreover, in the same
Blood paper, several animal models were used to demonstrate in vivo trilineage differentiation
capacity + hematopoiesis, which are highly compelling evidence.

2. If the authors wish to demonstrate chronological senescence w/o the confounding issue of tissue-
specific functional differences in differentiation and immunomodulation, the authors could have easily
used BM and/or AD MSCs from donors of different ages to focus on this, since immunomodulation is
well-reported with both these sources and thus can be evaluated in progressively older donor
samples. Please see Park et al, Mech Ageing Dev 2005 & Zhou et al, Aging Cell 2008.

3. General consensus in the field is that both chronological as well as replicative MSC senescence
decreases osteogenesis and increases adipogenesis, or even decreases all 3 trilineage capacity. So
why in this paper is less differentiation capacity considered more youthful/better “stemness™? More
functional evidence is needed to overturn the overwhelming volume of publications to the contrary.

4. It is unclear why passage 3 cells are already senescent/b-gal+. There is much information in the
literature that human MSCs usually need to be passaged at least 3 or more passages before a more
homogenous population—without WBC/non-MSC contamination—could be even seen, much less
utilized, i.e. please see flow cytometry marker Table 5 in Mitchell et al, Stem Cells 2005, and also
Brooke et al, Br J Hematol 2008 for clinical use.

5. MSC stemness is a quite controversial issue even to this day (please see numerous
commentaries/reviews on this in Cell Stem Cell—latest is Soliman et al 2021, Nature series journals),
so rigorous proof-of-concept evidence (at least in vitro, if not in vivo) is necessary, i.e. Hong et al,
Science 2005.

6. The inclusion of pluripotency factors to stand for MSC stemness is especially controversial, i.e.
Lengner et al, Cell Stem Cell 2007 & Piazzolla et al, Nat Commun 2014, and so functional relevance
should be demonstrated.

7. Key references relevant to tissue-specific functions, senescence, MSC PD-L1 research, etc. are
not cited.

Specific comments:

1. Itis unclear by what criteria PD-L1 was selected to be the gene of interest: a) no PD-L1 at the
protein level was seen on when in the same cluster (C7), a number of related and also well-published
MSC-immunomodulation genes—TGFb1, HGF, and HMOX1—are also increased; b) expression
profiles of PD-L1 in all seven clusters (Figure 4b) did not correlate well with their gene set scores for



immunosuppressive functon(Figure 4a)

2. PD-L1 at the protein/surface level is constitutively expressed on human BMMSCs, i.e. please see
Davies et al (Le Blanc lab), Stem Cells 2017 which focuses specifically on this topic.

3. This same paper also reports that PD-L1 can be secreted by BMMSCs, so this should be assayed.
4. The link between GATA2 and PD-L1 required functional validation, i.e. promoter assay, at the very
least.

5. Along the same lines, in vitro overexpression of GATA?2 in adult MSCs or knockdown of GATAZ2 in
perinatal MSCs is necessary for the conclusions the authors are trying to make. In vivo evidence is
strongly advised whenever stemness is being hypothesized.

6. Reference #16 (Turinetto et al) is not appropriately cited: it does not mention a tendency of aged
MSCs to undergo spontaneous differentiation. Rather, the review paper states that generally
osteogenesis is compromised while adipogenesis is not affected or increased.

7. BM-3 appears to have significantly lower cell counts—why is this, and does this have any effect on
the bioinformatics analyses?

8. Differentiation functional data is not well correlated to the microarray data, i.e. adipogenesis-related
genes are upregulated in aged MSCs/C7.

9. The UMAP in Figure S1i is in the opposite direction as all other similar UMAPs.

10. In Table S2, genes in the the list of distinct expression signatures for C7 cluster are duplicated.

Reviewer #2 (Remarks to the Author):

In their manuscript, “Multi-omics analysis of human mesenchymal stem cell reveals cell aging
determining their immunomodulatory activity through the downregulation of PD-L1,” Gao et al. use
single cell RNA sequencing (scRNA-Seq) along with mass spectrometry proteomics to characterize
mesenchymal stromal cells (MSC) from different tissue sources (adipose tissue (AD), the bone
marrow (BM), the placental chorionic membrane (PM) and the umbilical cord (UC). The authors report
that MSCs from different tissue sources (and correspondingly different ages) exhibit different degrees
of cellular senescence, with MSCs from “younger” tissue sources exhibiting less senescence than
MSCs from “older” tissue sources. Moreover, the authors report that these differences correspond to
differences in PD-L1 expression by MSC, which in turn affects the immunosuppressive potential of the
MSCs. Finally, they report that expression of PD-L1 in this context is mediated through GATA2
activity.

MSCs have shown great potential in a variety of clinical applications, but, as noted by the authors,
there are many incongruous molecular, cellular and functional definitions of MSCs across studies,
species, protocols, and tissue sources. There is an unmet need for carefully and thoroughly
characterizing MSC resources, making the present study potentially significant. The application of
cutting-edge technologies, such as scRNA-Seq and mass spec proteomics, to carefully defined MSC
specimens from a variety of tissue sources is a scientifically valuable undertaking, and likely to
uncover important MSC biology. Moreover, support of these characterizations with functional
experiments evaluating PD-L1 expression, immunosuppressive activity, and GATA2-mediated
regulation are important components that extend the studies beyond general “profiling”
characterizations. Despite the potential impact of the study, there are significant concerns regarding
analysis strategies and corresponding results interpretations, particularly with regard to SCRNA-Seq
analyses. Issues in these analyses makes it somewhat difficult to evaluate the biological explanations
and conclusions drawn from these experiments, which in turn formed the basis for many of the
functional follow up experiments. Beyond specific analysis issues, although acknowledged and
discussed by the authors, an experimental design in which MSC tissue source is (necessarily)
confounded with age presents challenges in determining if potential differences in senescence are
due to tissue source, age, or both. Specific comments and suggestions are listed below:

MAJOR POINTS



1. Many aspects of the sScCRNA-Seq experiment and analysis workflow were well-suited to the goals of
characterizing MSC from different sources. For example, balanced sample batching, implementation
of data integration through Seurat, cell cycle scoring, etc. were appropriately applied. However, there
are several stages of the analysis that raise concerns about and/or could improve the ultimate results
and biological interpretations - these are summarized below.

Differential gene expression testing: Throughout the study, a variety of inter-cluster and inter-condition
differential gene expression analyses are performed. As helpfully reported by the authors, the
samples examined were balanced across three batches (reported in Sup Table 1). To account for
potential inter-batch variation, along with inter-source variation, Seurat integration was appropriately
applied to ‘harmonize’ the 12 datasets under study. The authors note that “The other analyses (like
differential expression analysis and gene set enrichment) were based on the normalized data from the
‘RNA’ assay of Seurat object.” This is the correct approach. However, in the subsequent differential
gene expression testing, gene set testing, etc. there are no steps taken to manage potential technical
effects across batches. While this may not necessarily affect results (it represents an additional
source of variation across replicates), differential expression results would likely be more robust when
accounting for this source of variation.

For differential gene expression testing at the single cell level, the authors implement the
FindAlIMarkers() and FindMarkers() Seurat functions with Wilcoxon Rank-Sum Test or Student’s T-
test for statistics. First, with an integrated dataset, the FindConservedMarkers() functon(multiple
contrasts across each dataset), would likely be more robust. Furthermore, all of these functions can
be called with different statistical framewaorks, including those that implement linear modeling (e.g.
DESeq2, MAST, etc.), in which batch (and other) factors can be included in model testing.

Perhaps a better strategy, given that the authors implemented a strong experimental design with true
biological replicates (n = 3 for each tissue source), they might consider a ‘pseudobulk’ strategy for
differential expression testing that models variation across biological rather than single cell
“replicates.” As presently applied, while sometimes necessary, single cell differential expression
testing has been shown to be prone to high false positive rates (Squair JW, et al. Confronting false
discoveries in single-cell differential expression. Nat Commun. 2021 Sep 28;12(1):5692). Given the
fully replicated design here, differential gene expression with pseudobulk biological replicates would
likely provide more robust results.

An improvement in differential gene expression results would also be expected to improve results in
downstream analyses that used these results as input (e.g. Metascape, etc.).

Cell cycle phase assignments and interpretations: Cell cycle scores were assigned per cell using the
associated functionality in Seurat. This approach predicts a likely cell cycle phase (output as G1, S, or
G2M) for each cell based on expression patterns of associated gene sets. While a useful tool, there
are some concerns as to these data are interpreted in the text. For example, the authors note that
(line 132), “MSCs from C1 were predicted to be in S phase, MSCs from C2 and C3 were assigned to
G2/M phase, and cell cycle arrest occurred in, MSCs from C5 to C7, as nearly all cells were predicted
to be in G1 phase.” A “G1” assignment does not indicate “cell cycle arrest.” Indeed, in our experience,
this is a typical observation in sScRNA-Seq data for cells that are not actively in the S/G2M proliferating
process; in the Seurat classification function, there are no other options (e.g. “G0”, etc.), so the G1
label often acts as a “catch all” for non-S, non-G2M. We tend to observe large numbers of “G1”
classified cells even in scRNA-Seq datasets of universally proliferating cell lines.

Related observations such as (line 142) “phenotype space between nonproliferative (C5, C6, C7) and
proliferative clusters (C1, C2, C3) is relatively weak compared to the connectivity within either
proliferative or nonproliferative subpopulations (Fig. 1f)” may not be fully explanatory, as the S/IG2M
gene expression patterns result in considerable variation across cells that can “drive” the PCA and
consequent clustering and UMAP, without necessarily indicating distinct underlying phenotypes of the
cells.



By extension, it is somewhat unclear how much of the gene expression differences in the
“proliferative” vs “non-proliferative” clusters are driven simply by differences in cell cycle phase versus
differences in senescence. While many of the genes highlighted by the authors are associated with
senescence, alternatively, these differences in expression could be associated with cell cycle phases.
It would be most helpful to have a “ground truth” scRNA-Seq dataset that included definitive
senescent cells for direct comparison. These and related observed gene expression differences in
“proliferative” vs. “non-proliferative” clusters may overinterpret the biological significance of these
patterns, and do not necessarily support definitive statements such as “These results collectively
indicate that the attenuated MSC proliferation can be ascribed to cellular senescence” (Line 152), and
“Thus, our data at single-cell resolution indicate that the loss of proteostasis plays an important role in
driving the cellular senescence of C5.” (Line 227), and “The abundant expression of genes such as
EGR1, TP53, CDKN1A, CDKN2A and FOXO3 provided solid evidence that senescence of C6 and C7
is linked to genomic stress (Fig. 2a, b, Supplementary Fig. 2a) (Line 191).”

Gene set scoring by GSVA: GSVA, a widely used tool for gene set scoring and enrichment analysis in
“bulk” RNA-Seq studies, was used to assign per cell gene set scores, which in some cases were
subsequently used to test for differential set enrichment across samples. Unlike standard “bulk” RNA-
Seq data, scRNA-Seq datasets are extremely sparse and have many different characteristics than
bulk datasets. Is there any indication that GSVA has been tested and found to be appropriate/robust
for single cell RNA-Seq data? There appears to be a github package under development
(https://github.com/guokai8/scGSVA), but there do not seem to be any peer reviewed indications that
this tool performs appropriately for sScRNA-Seq data, raising concerns about these results. If the
authors wish to use the GSVA tool for scRNA-Seq data, they must demonstrate its robust
performance with appropriate controls and ground truth benchmarking, and/or cite such a
demonstration.

Trajectory analysis: Trajectory analysis was performed using Monocle v2. These types of analyses
can present potential pitfalls for integrated multisample data. However, there are no details provided
on how the trajectory analysis was implemented for the integrated datasets. Furthermore, while most
of the analysis code is helpfully available via the provided github link, it appears that this repository
does not contain the code for the Monocle trajectory analyses, which made it challenging to evaluate
this aspect of the study. In particular, Monocle analysis allows for specifying several parameters
regarding the expected number of roots/branches, etc. from trajectory data. Without knowing how
these parameters were set, the interpretation that “mesenchymal clusters occurred on a onefold
trajectory, starting from cells in the active 139 proliferating phase (C1, C2 and C3) and ending with C7
(Fig. 1e)” may not be appropriate.

RNA velocity: RNA velocity analysis can also present potential pitfalls for integrated multisample data,
especially when attempting to compare velocity results across different conditions (as in Fig 3). Itis
not clear how the different samples (and different batches) were managed in RNA velocity analysis
which makes it challenging to evaluate the results.

2. The inclusion of functional assays for cell proliferation, immunosuppression by MSCs via PD-L1,
and GATA2 regulation of PD-L1 expression are a strength of the paper, following up on hypotheses
generated by the scRNA-Seq and proteomics data. However, while significant, the differences in
immunosuppressive effects via PD-L1 appear to be somewhat modest — would this difference be
sufficient to explain some of the differences observed in vivo?

ADDITIONAL MINOR POINTS

The text notes that genes associated with dissociation-induced artifact were removed to test for such



effects. Were these genes removed for the final analysis? While it's good that they were checked for
dissociation gene expression patterns, removing these genes is not appropriate — the genes could
also be involved in the MSC biological pathways under study.

The text references “Supplemental Table 10", but this table does not appear in the supplied Excel
workbook.

In the Methods section, there are no details provided as to how the number of principal components
were selected for scRNA-Seq dimensionality reduction or how the cluster resolution was determined.

Reviewer #3 (Remarks to the Author):

The authors have performed an exhaustive gene and protein expression analysis of mesenchymal
sroma cells (MSC). The goal of the single cell based analysis was to describe the cellular phenotype
variation in MSC and compare MSC from bone marrow, adipose tissue, placenta and cord blood. The
data confirmed that MSC are not homogenous in culture, and that the charachteristics of the different
sources organs are maintained. Fewer proliferative and stem like cells are present in adult MSC than
in perinatal MSC, while more senescence marktrers and in general G1/2 phase markers are
receiprocally present. This is not new, except for the now very thorough analysis showing the shift in
senescence and the cell source specific relative proportions of senescence and non-senescent cells.
The data alsoe confirm many of the previous findings on factors influencing or accompanying
proliferation, senescence, immuesuppressive function or differentiation. It remains unclear whether
the comparison is biologically sound as the MSC from different tissue sources may as well represent
different cell types, which are compared here. The transcriptomic analysis hints in this direction. The
finding that PD-L1 is associated with senescence and immunesuppression was confirmed, but is not
new (e.g. non referenced paper by Davies, 2017). New is the finding that GATA2, by regulating for
example PD-L1, is important for maintaining a rather non-senescent phenotype and maintaining a
better immune suppression in the used biolgical assays. It would be of interest whether this function
can be shown in long-term cultures after multiple passageing of cells in vitro - and not only in peroxide
induced senescence. The authors claim that knowing the transcriptomic profiles and factors can be
used to influence senescence and thus maintain a homogenous and strong immunosuppressive
phenotype in clinical products.

This is a well written manuscript. However, the complex methodological procedure and amount of
figures (6 Figures and 61 panels) are not needed to get the information out and should be reduced
and focused on the main new findings.The specific points raised are:

- elucidate the point that the MCS from different source organs are intrinsically different and cannot be
compared as potentially identical cell types. Can the data be analysed under this aspect? Are 'tissue
origin related differences among subpopulations...' also found between populations?

- is it possible that the cell clusters just reflect different cell cycle stages, which could be
misinterpreted as senecscent vs. proliferative?

-donor age should be reorted (AD and BM MSC

- reduce complexity of text and figues and focus on main novel findings. For example, most
transcriptomic and proteomics data confirm what has been known, but novelty is limited (although the
provided cell atlas is valuable).

- it should be discussed whether the detected functional differences are potentially clinically relevant
(how predictive are the used suppression assays to predict clinical efficacy)?

Recommend to accept with major revision.



Point by point response to reviewers

We appreciate the encouraging and constructive comments from all reviewers.
Following the suggestions by the reviewers, we have performed additional
experiments and provided a substantial amount of new information in the revised
manuscript. Among the highlights of the new results, we have improved the analysis
of our single cell RNA sequencing data by adopting more rigorous strategies, which
further enhanced the credibility of our analysis results. Besides, a single-cell
transcriptomic analysis of bone marrow mesenchymal stem cells (BM-MSCs) from
aged and young donors was complemented and verified by exhaustive functional
experiments, which provided further evidence without confounding by tissue-specific
functional differences that senescence is a key determinant of the PD-L1-mediated
immunosuppressive activity of MSCs. We have also provided new data to reveal that
PD-L1 can be detected in extracellular vesicles (EVs) of MSCs, and cellular
senescence attenuates the ability of MSCs to secrete PD-L1. Furthermore, we
elucidated the mechanism by which GATA2 drives the expression of PD-L1,
and by further complemented the GATAZ2-overexpression and -knockdown
system, we provided better functional evidence for GATA2 as a critical
regulating factor in restraining senescence and maintaining immunomodulatory
capacity of MSCs. Finally, we reported here a clinical trial (NCT04014166) of the
use of umbilical cord MSCs (UC-MSCs) in treating refractory immune
thrombocytopenia (ITP). The new data are highlighted in a blue font in the revised
manuscript, including the legends and labels of figures and supplementary tables. With
the new results, we believe we have addressed all of the reviewers’ concerns,
substantially improved the quality and mechanistic insight of our work, and
broadened the impacts of our study.

A Dbrief summary of the major new results is listed below, which are divided into five
categories.

A. Adoption of more rigorous strategies to calculate DEGs, single-cell gene set score

and pseudotime trajectory.
1. The DEG analysis between different “pseudobulk” replicates was performed

using the R package DESeq2 (Fig. 1h; Supplementary Fig. 1f; Fig. 2b, e;
Supplementary Fig. 2e; Supplementary Table 2).

2. The result of DEGs calculated by “pseudobulk” strategy were used to improve
results in downstream GO enrichment analyses (Fig. 2d; Supplementary Fig.
2a, b).



3.

The activity of gene sets in single cells was calculated using R package AUCEell.
The ‘pseudobulk’ strategy were also used to assess differential activities of
pathway scored per cell by AUCell (Fig. 1c; Supplementary Table 4).
Pseudotime trajectory analysis of adult and perinatal MSCs was improved
using updated new version of Monocle v2.26.0 package (Supplementary Fig.
le; Fig. 2f).

B. Extensive analysis of BM-MSCs derived from young and aged donors provided

further evidence that senescence is a key determinant of the PD-L1-mediated

immunosuppressive activity of MSCs

1.

SA-B-gal staining, trilineage differentiation and cell proliferation assay of BM-
MSCs derived from aged donors (Fig. 5b; Supplementary Fig.5a, b).

Single cell analysis of young and aged BM-MSCs dataset revealed 6 clusters
of different senescent status (Fig. Sc-f; Supplementary Fig. 5d-g).

RNA velocity analysis indicated aged BM-MSCs have a stronger tendency to
progress to senescent state during in vitro expansion and result in a
significantly increased frequency of aging cells (Fig. 5g, h).

Gene set scoring analysis identified reduced immunomodulatory capacity in
aging BM-MSCs, the decline in PD-L1 has also been observed during
senescent progress (Fig. 5i, j; Supplementary Fig. Sh-i).

FACS analysis and western blots of PD-L1 expression in BM-MSCs from
young and aged donors (Fig. Sk; Supplementary Fig. 5j).

Cell counts and relative proliferation rate of CD4+ T cells cocultured with
young and aged BM-MSCs for 72 h in the presence of isotype or PD-L1
blocking antibody (Fig. 51; Supplementary Fig. 51, m).

ELISA analysis of TNF-a and IFN-y levels in the cell culture supernatant
secreted by T cells after 72 h of coculture with young and aged BM-MSCs in
the presence of isotype or PD-L1 blocking antibody (Supplementary Fig. So,
p).

Average expression level of GATA2 in MSC from adult and perinatal tissue;
and the gradually reduced expression of GATA2 during aging process is
showed in BM-MSCs derived from young and aged donors (Supplementary
Fig. 6d)

C. Analysis of soluble PD-L1 in culture medium of in vitro expanded MSCs reveals

that PD-L1 secretion was significantly suppressed in senescent MSCs.

1.

Analysis of PD-L1 expression level in proteomic data of UC- and BM-MSCs



2.

secreted EVs (Fig. 4j; Supplementary Fig. 4m).
ELISA analysis of PD-L1 level in the cell culture supernatant secreted by BM-
MSCs from young and aged donors (Supplementary Fig. 5k)

D. Experimental evidence elucidated the mechanism by which GATA2 drives the
expression of PD-L1, and by further complemented the GATA2-overexpression and -
knockdown system, we provided better functional evidence for GATAZ2 to manipulate

senescence progress and immunomodulatory capacity of MSCs.

1.

10.

11.

12.

Real-time PCR analysis of GATA2 expression in EV or GATA-OE BM-MSCs
(Fig. 7a).

SA-B-gal staining in EV or GATA2-OE BM-MSCs at passage 3 or passage 15
(Fig. 7b, ¢; Supplementary Fig. 7b).

Relative luciferase activity of 293 T cells co-transfected with dual-luciferase
reporter constructs containing PD-L1 promotor regions, as well as EV or
GATAZ2 (Fig. 7e, f)

ChIP-gPCR analysis of GATA2 enrichment at PD-L1 promotor region (Fig.
79).

Western blot and FACS analysis of PD-L1 protein in EV and GATA2-OE BM-
MSCs (Fig. 7h; Supplementary Fig. 7c).

Cell counts and relative proliferation rate of CD4+ T cells cocultured with EV
or GATA2-OE BM-MSCs for 72 h in the presence of isotype or PD-L1
blocking antibody (Fig. 7i; Supplementary Fig. 7d-f).

ELISA analysis of TNF-a and IFN-y levels in the cell culture supernatant
secreted by T cells after 72 h of coculture with EV or GATA2-OE BM-MSCs
in the presence of isotype or PD-L1 blocking antibody (Supplementary Fig.
7g, h).

Real-time qPCR analysis of GATA2 expression in human UC-MSCs after
transfection with scramble- or GATA2-shRNA (Fig. 7j; Supplementary Fig.
7i).

SA-B-gal staining in CT or GATA2-KD UC-MSCs (Fig. 7k).

Western blot and FACS analysis of PD-L1 protein in CT and GATA2-KD UC-
MSCs (Fig. 71; Supplementary Fig. 7j).

Cell counts and relative proliferation rate of CD4+ T cells cocultured with EV
or GATA2-OE BM-MSCs for 72 h in the presence of isotype or PD-L1
blocking antibody (Fig. 7m; Supplementary Fig. 7k-m).

ELISA analysis of TNF-a and IFN-y levels in the cell culture supernatant
secreted by T cells after 72 h of coculture with EV or GATA2-OE BM-MSCs



in the presence of isotype or PD-L1 blocking antibody (Supplementary Fig.
7n, o).

E. A registered clinical trial (NCT04014166) was conducted to use the UC-MSCs in
treating refractory ITP. The results of six participants who had no response to
splenectomy were showed in the revised manuscript to demonstrated the safety and
high efficacy of UC-derived perinatal MSC therapy.

1. Clinical trial design and baseline characteristics of the 6 immune
thrombocytopenic  purpura patients reported in the clinical trial
(Supplementary Fig. 8a, b).

2. Study enrollment, UC-MSC administration, participant follow-up and data
analysis are shown for the three study groups with escalated therapeutic dose
(Supplementary Fig. 8c).

3. The longitudinal changes in platelet counts in the participants receiving UC-
MSC treatment for 28 weeks (Supplementary Fig. 8d).

4. Summary of best responses in efficacy-evaluable patients (Supplementary
Fig. 8e).

Apart from these, we have complemented in Supplementary Table 1 the biological age
information of each MSC sample used for sequencing and functional experiments in
this manuscript. According to the suggestion of reviewer #3, we have reduced the
complexity of figures by transferring redundant panels to corresponding supplemental
figures, which made manuscript more conducive to presenting the main new findings,
besides, the complex methodological procedure descriptions were simplified in the

result section.

We also present additional results to the reviewers as appendix figures at the end of our
response letter (Appendix Fig. 1-6). We prefer not to include these data in the
manuscript due to space limitations and the scope of our study, but we will be happy to
include them if the reviewers or the editors think this necessary. Unless otherwise noted,
all figure callouts below correspond to figures in the revised manuscript.

Reviewers' comments:

Reviewer #1 (Remarks to the Author):

Summary



Using single-cell RNA sequencing (scRNAseq) and bioinformatics analyses of passage
3 human mesenchymal stem/stromal cells (MSCs), the authors proposed to demonstrate
that the 2 adult and 2 perinatal sources—adult sources being from adipose tissue (AD)
and bone marrow (BM), and perinatal sources being from placental chorionic
membrane (PM) and umbilical cord (UC)—can model the senescent process and allow
for identification of ‘stemness’ factors, which the authors identified as GATA2 and PD-
L1. Perinatal MSCs were less able to differentiate than adult MSCs, which the authors

interpreted as having higher stemness.

While the human scRNAseq profiles are very useful and the bioinformatics analyses is
quite compelling, the study ignores well-demonstrated tissue-specific functional
differences in human MSCs, especially the fact that perinatal MSCs are more
immunomodulatory than adult MSCs and that BMMSCs differentiate more readily into
2 of the 3 required lineages than other sources (i.e. see recent review Yen et al, FEBS J

2022), and thus confusing tissue-specific differences as senescence-related changes.
We thank the reviewer for the insightful comments.

Major

1. Very similar information has been published in Reinisch et al, Blood 2015, and the
interpretation in that study was opposite from this study. In the Blood paper, the “lower
differentiation capacity” of non-BM MSCs was interpreted as less MSC-like, i.e. less
stemness (which is in line with ISCT Minimal Criteria) and not MORE stemness as the
authors here strangely concluded. Moreover, in the same Blood paper, several animal
models were used to demonstrate in vivo trilineage differentiation capacity +

hematopoiesis, which are highly compelling evidence.

We thank the reviewer for raising this question. We learned from the published articles
that a tightly balanced core set of specific transcription factors are the major driving
forces in stem cell maintenance, which are able to promote self-renewal by repressing
transcription factors that initiate differentiation programs!#, and aging of stem cells are
known to affects their function, leading to the loss of self-renewal capacity?®, this is why
we interpreted MSCs with lower differentiation capacity as being more stemness and
less senescent in the first draft. However, following the suggestion of reviewer, we have
recognized that MSC stemness is a quite controversial issue even to this day. We
admitted if MSCs cannot be proved to be pluripotent stem cells with self-renewal ability,
it is inappropriate to use differentiation ability to illustrate their senescence status, as



stronger differentiation capacity of MSCs was interpreted as ‘more stemness’ in many
published studies. In this work, our core content and main innovations are to highlight
the effect of cell senescence on the expression of PD-L1 in MSCs, and to prove the
regulatory effect of GATAZ on the aging process and PD-L1 expression of MSCs. The
stemness and differentiation function of MSCs are not the focus of our research, but the
evidence we used to verify the aging status of cells. In addition, we have provided a
large amount of evidence to prove cellular senescence, such as SA-B-gal staining (Fig.
3e), CCK8 proliferation assay (Fig. 3c), immunofluorescence staining for y-H2AX
(Supplementary Fig. 3e) and Western blot analysis (Supplementary Fig. 4k). We
believe that removing differentiation-related content will not affect the quality and
innovation of our work. Therefore, we have removed all content in the manuscript using
MSC stemness and differentiation ability to verify its senescence status.

2. If the authors wish to demonstrate chronological senescence w/o the confounding
issue of tissue-specific functional differences in differentiation and immunomodulation,
the authors could have easily used BM and/or AD MSCs from donors of different ages
to focus on this, since immunomodulation is well-reported with both these sources and
thus can be evaluated in progressively older donor samples. Please see Park et al, Mech
Ageing Dev 2005 & Zhou et al, Aging Cell 2008.

We thank the reviewer for the suggestions to provide further evidence to demonstrate
our findings without confounding by tissue-specific functional differences that
senescence is a key determinant of the PD-L1-mediated immunosuppressive activity of
MSCs. We have followed the reviewer’s suggestion and performed another single cell
RNA sequencing of BM-MSCs from young (n=4; age<20) and aged (n=4; age>45)
donors. Our analysis revealed that BM-MSCs can be divided into five clusters (Fig. 5¢),
BM5 and BM6 are identified as senescent cluster, while cells from BM1-3 are non-
relatively non-senescent MSCs (Fig. 5d; Supplementary Fig. 5d-f). Furthermore, by
comparing single cell data from young and aged BM-MSCs, we found that BM-MSCs
from aged donors were more senescent, which resulted in a decrease in their
immunosuppressive capacity and PD-L1 expression (Fig. 5i-k; Supplementary Fig.
5h-j). At last, we have also co-cultured CFSE labeled activated CD4+ T cell with young
and aged BM-MSCs (Supplementary Fig. 5I). Compared to aged BM-MSCs, MSCs
derived from young donors showed a stronger capacity to suppress T cells activation,
while this gap was significantly reversed after treated with anti-PD-L1 Fab (Fig. 5I;
Supplementary Fig. Sn-p), which indicates that upregulated PD-L1 mediates the
enhanced immunosuppressive capacity of young BM-MSCs. Collectively, by



comparing BM-MSCs from donors of different ages, we have provided further evidence
that cellular senescence is the key determinant of downregulated PD-L1 in MSCs from

aged donors, which leads to a decrease in their immunomodulatory capacity.

3. General consensus in the field is that both chronological as well as replicative MSC
senescence decreases osteogenesis and increases adipogenesis, or even decreases all 3
trilineage capacity. So why in this paper is less differentiation capacity considered more
youthful/better “stemness”? More functional evidence is needed to overturn the

overwhelming volume of publications to the contrary.

We thank the reviewer for the suggestion. As we replied in reviewer question Major 1,
MSC stemness is a quite controversial issue, and we shouldn’t have regarded enhanced
MSC differentiation ability as a sign of reduced self-renewal ability due to aging. In
addition, the differentiation ability of MSCs is affected by various aspects, including
the tissue origin of MSCs®. Therefore, we have removed all content in the manuscript
using MSC stemness and differentiation ability to verify its senescence status.

In addition, we have followed the reviewer suggestion and compared the trilineage
differentiation ability of BM-MSCs derived from young and aged donors. Consistent
with previous reports, BM-MSCs from aged donors showed decreased osteogenesis and
increased adipogenesis potential (Supplementary Fig. 5a), which indicates a more

senescent status of MSCs derived from aged donors.

4.1t is unclear why passage 3 cells are already senescent/b-gal+. There is much
information in the literature that human MSCs usually need to be passaged at least 3 or
more passages before a more homogenous population—without WBC/non-MSC
contamination—could be even seen, much less utilized, i.e. please see flow cytometry
marker Table 5 in Mitchell et al, Stem Cells 2005, and also Brooke et al, Br ] Hematol

2008 for clinical use.

We thank the reviewer for raising this question and we hope to explain this question
through two points. Firstly, all passage 3 MSC lines we used for sequencing and
functional experiments in this work have been strictly quality controlled according to
ISCT criteria, all samples are subject to FACS analysis to ensure no blood cell
contamination and tested for trilineage differentiation potential (Supplementary Fig.
la, b; Supplementary Fig. 5a, c). Therefore, the appearance of senescent phenotype
at passage 3 does not mean that our MSC samples are contaminated or not



homogeneous under the ISCT criteria. Secondly, the AD-MSCs and BM-MSCs we
used for SA-B-gal staining in Fig. 3e were donated by 45-year-old and 51-year-old
donors, respectively, which are relatively older donors. We have also complemented
the comparation of the SA-B-gal staining of BM-MSCs derived from young and aged
donors (Fig. 5b), the result revealed that young BM-MSCs (age=18) were rarely stained,
while aged BM-MSCs showed a senescent phenotype. Altogether, these results indicate
MSCs from aged donors may have undergone senescent in vivo, so the higher

proportion of senescent cells makes SA-B-gal staining positive in the third passage.

Also, we apologize for not specifying the biological age of each sample in our first draft
and we have complemented in Supplementary Table 1 the biological age information

of each MSC sample used for sequencing and functional experiments in this manuscript.

5. MSC stemness is a quite controversial issue even to this day (please see numerous
commentaries/reviews on this in Cell Stem Cell—Ilatest is Soliman et al 2021, Nature
series journals), so rigorous proof-of-concept evidence (at least in vitro, if not in vivo)

is necessary, i.e. Hong et al, Science 2005.

We thank the reviewer for raising this question. As detailed response to the reviewer’s
question above, the innovation of our work is that cellular senescence affects the
immunomodulatory ability of MSC cell therapy products, and the stemness of MSC is
not the focus of this research. Therefore, without affecting the innovation and main
content of the article, we decided to remove all content related to MSC stemness in the
article.

6. The inclusion of pluripotency factors to stand for MSC stemness is especially
controversial, i.e. Lengner et al, Cell Stem Cell 2007 & Piazzolla et al, Nat Commun

2014, and so functional relevance should be demonstrated.

Following the reviewer’s suggestion, the results of NANOG, SOX4 and OCT4 have

been removed from Supplementary Fig. 3d.

7. Key references relevant to tissue-specific functions, senescence, MSC PD-LI

research, etc. are not cited.

We thank the reviewer for the suggestion.



(1) We have supplemented reference relevant to MSCs senescent research: reference 15
(Wang D et al, Cancer Res. 2009); reference 16 (Ko E et al, Stem Cells Dev. 2012);
reference 17 (Sepulveda JC et al, Stem Cells. 2014); reference 18 (Zhou et al, Aging
Cell. 2008.).

(2) We have supplemented cited article study MSC PD-L1: reference 63 (Sheng, H., et
al. Cell Res); reference 64 (Davies et al, Stem Cells); reference 65 (Li M et al, J
Extracell Vesicles. 2021)

(3) We have also supplemented cited article study MSC tissue-specific functions:
reference 72 (Reinisch et al, Blood 2015); reference 73 (Yen BL et al, FEBS J. 2022);
reference 74 (Collins E et al, J Immunol. 2014).

Specific comments:

1. It is unclear by what criteria PD-L1 was selected to be the gene of interest: a) no PD-
L1 at the protein level was seen on when in the same cluster (C7), a number of related
and also well-published MSC-immunomodulation genes—TGFbl, HGF, and
HMOX1—are also increased; b) expression profiles of PD-L1 in all seven clusters
(Figure 4b) did not correlate well with their gene set scores for immunosuppressive

function (Figure 4a)

We thank the reviewer for the suggestions to better explain the reason why PD-L1 was
selected to be the gene of interest. We have performed analysis to identify key
modulators of immunomodulatory function during MSC senescence. We applied two
criteria to narrow down our candidates: candidate genes should be among the highly
variable genes, which determine the PCA results and clustering of single cells, and have
a positive correlation with gene set scores for immunosuppressive function, and
candidates should be upregulated in perinatal MSCs and have a positive correlation
with gene set scores for immunosuppressive function (Appendix Fig. 1). Overlaying
two sets of genes revealed 69 candidates, only 4 genes have been reported to be
associated with MSC immunosuppressive function, including PD-L1 (CD274), which
revealed that: (a) PD-L1 is among the highly variable genes, demonstrating a marked
expression change of PD-L1 during dynamic aging progress; (b) PD-L1 is not only
downregulated in senescent cell cluster but also downregulated in adult MSC on
pseudobulk level; (c) PD-L1 expression is positively correlated with scores for
immunosuppressive function. Furthermore, the accuracy of our data screening was

proved again in another single cell dataset of young and aged BM-MSC:s (Fig. 5j) and



repeatedly verified by functional experiments and. We performed multiple sets of FACS
analysis and western blots, demonstrating the phenotype of significantly decreased
expression of PD-L1 in senescent MSCs. This downregulation was proved to be
functional related not only by detecting the inhibition of T cell proliferation, but also

by detecting the inhibition of T cell secretion of inflammatory factors.

2. PD-L1 at the protein/surface level is constitutively expressed on human BMMSCs,
i.e. please see Davies et al (Le Blanc lab), Stem Cells 2017 which focuses specifically

on this topic.

We thank the reviewer for raising this question. Although the expression level was
lower than that of perinatal-derived MSCs, we did find PD-L1 expression on BM-MSCs
through FACS analysis (Supplementary Fig. 4i, j; Supplementary Fig. 5j) and
western blots (Supplementary Fig. 4k; Fig. 5k).

3. This same paper also reports that PD-L1 can be secreted by BMMSC:s, so this should

be assayed.

We thank the reviewer for these helpful suggestions to detect secreted PD-L1, which is
potentially important in modulating contact-independent mechanisms of
immunosuppression. Firstly, we have supplemented with the protein sequencing data
of extracellular vesicles (EVs) derived from UC- and BM- MSCs (Fig. 4j;
Supplementary Fig. 4m). The PD-L1 expression was detected in proteomic data of
EVs, while the EVs derived from UC-MSCs possessed a significantly higher expression
of PD-L1 as compared to BM-MSC EVs. Furthermore, the secreted PD-L1 in culturing
medium of young and aged BM-MSCs were also analyzed by ELISA (Supplementary
Fig. 5k). Consistently, the levels of PD-L1 protein secreted by senescent BM-MSCs
were also reduced. These results collectively indicate that senescence also reduced the
ability of MSCs to secrete PD-L1.

4. The link between GATA2 and PD-L1 required functional validation, i.e. promoter

assay, at the very least.

We thank the reviewer for the valuable suggestion to explore the mechanisms by which
GATA2 promote the PD-L1 expression. We have followed the suggestions and

performed the following new experiments as detailed below.



(1) We first explored the publicly available GATA2 CHIP-seq data and found that
GATA2 peaks mapped to the promoter region of PD-L1 at about +500 bp around the
TSS region (Fig. 7d). Thereafter, GATA2 factor binding sites around 500bp of the TSS
region of the PD-L1 gene was located, and three promotor sequences were designed,
which were named as regionl (-534bp to Obp), region2 (Obp to 593bp) and region3 (-
207bp to 134bp). These three promotor regions all contained GATA2 binding sites
inside the sequences (Fig. 7e). We then transiently cotransfected the empty vector or
GATAZ2-expressing plasmids with the regionl to region5 reporter into HEK293T cells
and found that the luciferase activity was upregulated only by co-transfected GATA2-
plasmid with vector containing promotor region 1 or region 3 (Fig. 7f), which indicates
that the binding sites enable GATAZ2 to drive PD-L1 expression are likely to located at
the overlap sequence of regionl and region3.

(2) We next analyzed GATAZ2 enrichment at PDL1 promoter by ChIP-PCR. We
designed primers to detect GATAZ binding fragments at -153bp (primer 1) and 93bp
(primer 2) of PD-L1 (Supplementary table 13). The ChIP-PCR results confirmed the
predictive binding of GATAZ2 at the above two genomic loci (Fig. 7g). In addition,
compared with BM-MSCs, young UC-MSCs detected more GATAZ2 recruitment at the
PD-L1 promotor region, which provided a mechanistic explanation for higher PD-L1
expression in younger MSCs.

5. Along the same lines, in vitro overexpression of GATA2 in adult MSCs or
knockdown of GATA?2 in perinatal MSCs is necessary for the conclusions the authors
are trying to make. In vivo evidence is strongly advised whenever stemness is being

hypothesized.

We thank the reviewer for this important suggestion. According to the detailed response
to this reviewer’s question above, the stemness of MSC is not the focus of this research.
Therefore, without affecting the innovation and main content of the article, we have
removed all content related to MSC stemness in the article. In addition, we have
followed the reviewer’s suggestion and further complemented the GATAZ2-
overexpression and -knockdown system, we provided better functional evidence for
GATAZ2 to manipulate senescence progress and immunomodulatory capacity of MSCs.
Specifically, we found:

(1) We first overexpressed GATA2 in adult BM-MSCs. Compared to MSCs infected
with empty vector (EV), GATA2 overexpressed (GATA2-OE) BM-MSCs have weaker



B-glucosidase expression at low (Fig. 7b) and high culture passage (Fig. 7c;
Supplementary Fig. 7b), which indicates the enhanced anti-senescence function of
these cells. Through the FACS analysis and western blots, we have also proved that the
overexpression of GATA?2 upregulated the PD-L1 expression on adult MSCs (Fig. 7h;
Supplementary Fig. 7c¢). This upregulation of PD-L1 was proved to be functional
significant, as GATA2-OE BM-MSCs showed an increased suppressive effect when co-
culturing with activated CD4+ T cells as compared to EV-BMMSCs, while this gap was
significantly reversed after treated with anti-PD-L1 Fab (Fig. 7i; Supplementary Fig.
7e-h).

(2) Furthermore, we used lentivirus vectors (Supplemental Figure 7i) to knockdown
GATA?2 in perinatal UC-MSCs (Fig. 7j). UC-MSCs after GATA2 knockdown (KD)
showed senescence phenotypes as compared to counterpart infected with shRNA
scramble control (CT). The downregulations of PD-L1 at protein level of GATA2-KD
UC-MSCs were also verified by FACS and western blots (Fig. 71; Supplementary Fig.
7j). The GATA2-KD MSCs showed a decline in their capacity to suppress CD4+ T cells
activation, besides, the GATA2-KD MSC/T cultures treated with anti-PD-LL1 Fab
showed almost none increase in T-cell proliferation and TNF-a/IFN-y production
compared with that of control group UC-MSC/T-treated cultures (Figure. 7m,
Supplementary Fig. 7k-0), which indicates GATA2 as an important modulator of PD-
L1 mediated immunosuppressive effect of UC-MSCs.

6. Reference #16 (Turinetto et al) is not appropriately cited: it does not mention a
tendency of aged MSCs to undergo spontaneous differentiation. Rather, the review
paper states that generally osteogenesis is compromised while adipogenesis is not

affected or increased.

We thank the reviewer for the suggestion. We have followed the suggestion and

reference #16 have been removed.

7. BM-3 appears to have significantly lower cell counts—why is this, and does this

have any effect on the bioinformatics analyses?

We thank the reviewer for raising this question. Due to the difference in cell viability
of each sample and batches of 10X cell capture reagents, single-cell sequencing on the
10X platform inevitably encounters batch effects and differences in the sequencing

depth of single-cell data nowadays. We carried out strict sample data quality control for



each sample to remove the low-quality cells with low UMI counts and high
mitochondrial gene ratio. In BM3, the 2,740 single cells with a total UMI count similar
to that of other samples were included for downstream analysis. We appropriately
applied the widely published Seurat integration method to remove batch differences
between samples. Besides, the Seurat ‘NormalizeData’ function can further eliminated
the influence of different sequencing depths in each sample. The results showed that
each cell of BM3 is evenly distributed in the same 7 subpopulations as the rest of the
samples (Appendix Fig .2a), and the marker genes of each subpopulation are the same
as in the overall analysis (Appendix Fig .2b). This suggests that although our strict
quality control may result in a lower cell counts in BM3, this was necessary and would

not have a significant impact on our bioinformatics analysis.

8. Differentiation functional data is not well correlated to the microarray data, i.e.

adipogenesis-related genes are upregulated in aged MSCs/C7.

We thank the reviewer for the suggestion. As detailed in our response to this reviewer’s
question above, we have removed all the content using MSC differentiation ability to

assess their senescent status.

9. The UMAP in Figure S1i is in the opposite direction as all other similar UMAPs.10.
In Table S2, genes in the list of distinct expression signatures for C7 cluster are

duplicated.

We apologize for the confusion. In order to make the article more concise, we removed
the information related to quality control from the supplementary figure 1 and
transferred it to the Appendix Figure 3. During the quality control of our single cell data,
we tried to explore whether dissociation has an effect on cell clustering. After removing
dissociation-related genes, we re-performed the data normalization, and the new results
affected the calculation of PCA dimensionality reduction analysis, resulting in different
UMAP shapes and direction (Appendix Fig. 3d). After confirming that the
dissociation-related genes do not affect our MSC clustering, the dissociation-related
genes were kept in the dataset and were not removed from formal analysis, so the

UMAP direction in the manuscript figures does not match the figure Appendix 3d.

Besides, we apologize for our mistake that genes in the list of distinct expression
signatures for C7 cluster are duplicated. We have performed the ‘“pseudobulk”

differential gene analysis and updated the results in Supplementary Table 2.



Reviewer #2 (Remarks to the Author):

In their manuscript, “Multi-omics analysis of human mesenchymal stem cell reveals
cell aging determining their immunomodulatory activity through the downregulation of
PD-L1,” Gao et al. use single cell RNA sequencing (scRNA-Seq) along with mass
spectrometry proteomics to characterize mesenchymal stromal cells (MSC) from
different tissue sources (adipose tissue (AD), the bone marrow (BM), the placental
chorionic membrane (PM) and the umbilical cord (UC). The authors report that MSCs
from different tissue sources (and correspondingly different ages) exhibit different
degrees of cellular senescence, with MSCs from “younger” tissue sources exhibiting
less senescence than MSCs from “older” tissue sources. Moreover, the authors report
that these differences correspond to differences in PD-L1 expression by MSC, which
in turn affects the immunosuppressive potential of the MSCs. Finally, they report that
expression of PD-L1 in this context is mediated through GATA2 activity.

MSCs have shown great potential in a variety of clinical applications, but, as noted by
the authors, there are many incongruous molecular, cellular and functional definitions
of MSCs across studies, species, protocols, and tissue sources. There is an unmet need
for carefully and thoroughly characterizing MSC resources, making the present study
potentially significant. The application of cutting-edge technologies, such as scRNA-
Seq and mass spec proteomics, to carefully defined MSC specimens from a variety of
tissue sources is a scientifically valuable undertaking, and likely to uncover important
MSC biology. Moreover, support of these characterizations with functional experiments
evaluating PD-L1 expression, immunosuppressive activity, and GATA2-mediated
regulation are important components that extend the studies beyond general “profiling”
characterizations. Despite the potential impact of the study, there are significant
concerns regarding analysis strategies and corresponding results interpretations,
particularly with regard to scRNA-Seq analyses. Issues in these analyses makes it
somewhat difficult to evaluate the biological explanations and conclusions drawn from
these experiments, which in turn formed the basis for many of the functional follow up
experiments. Beyond specific analysis issues, although acknowledged and discussed by
the authors, an experimental design in which MSC tissue source is (necessarily)
confounded with age presents challenges in determining if potential differences in
senescence are due to tissue source, age, or both. Specific comments and suggestions

are listed below:



We thank the reviewer for the encouraging comments and pointing out the existing
problems. In order to prove that decreased immunomodulatory ability of MSCs is
caused by senescence without confounded by tissue resource, we have followed the
reviewer’s suggestion and performed another single cell RNA sequencing of BM-
MSCs from young (n=4; age<20) and aged (n=4; age>45) donors (Fig. 5a). Our
analysis revealed that BM-MSCs from aged donors were more senescent as compared
to young BM-MSCs (Fig. 5g, h). The immunosuppressive function score of senescent
BM-MSCs was also decreased and PD-L1 expression was also found to be significantly
downregulated in BM-MSCs from aged donors (Fig. 5i, j; Supplementary Fig. 5h, 1).
we have also co-cultured CFSE labeled activated CD4+ T cell with young and aged
BM-MSCs (Supplementary Fig. 51). BM-MSCs derived from young donors showed a
stronger capacity to suppress T cells activation, while inhibitory effect was significantly
weakened after treated with anti-PD-L1 Fab (Fig. 51; Supplementary Fig. 5n-p),
which indicates that upregulated PD-L1 mediates the enhanced immunosuppressive
capacity of young BM-MSCs. Collectively, by comparing BM-MSCs from donors of
different ages, we have provided further evidence that cellular senescence is the key
determinant of downregulated PD-L1 in MSCs from aged donors, which leads to a

decrease in their immunomodulatory capacity.

MAJOR POINTS

1. Many aspects of the scRNA-Seq experiment and analysis workflow were well-suited
to the goals of characterizing MSC from different sources. For example, balanced
sample batching, implementation of data integration through Seurat, cell cycle scoring,
etc. were appropriately applied. However, there are several stages of the analysis that
raise concerns about and/or could improve the ultimate results and biological

interpretations - these are summarized below.

Differential gene expression testing: Throughout the study, a variety of inter-cluster and
inter-condition differential gene expression analyses are performed. As helpfully
reported by the authors, the samples examined were balanced across three batches
(reported in Sup Table 1). To account for potential inter-batch variation, along with
inter-source variation, Seurat integration was appropriately applied to ‘harmonize’ the
12 datasets under study. The authors note that “The other analyses (like differential
expression analysis and gene set enrichment) were based on the normalized data from
the ‘RNA’ assay of Seurat object.” This is the correct approach. However, in the

subsequent differential gene expression testing, gene set testing, etc. there are no steps



taken to manage potential technical effects across batches. While this may not
necessarily affect results (it represents an additional source of variation across
replicates), differential expression results would likely be more robust when accounting

for this source of variation.

For differential gene expression testing at the single cell level, the authors implement
the FindAllMarkers() and FindMarkers() Seurat functions with Wilcoxon Rank-Sum
Test or Student’s T-test for statistics. First, with an integrated dataset, the
FindConservedMarkers() functon(multiple contrasts across each dataset), would likely
be more robust. Furthermore, all of these functions can be called with different
statistical frameworks, including those that implement linear modeling (e.g. DESeq2,
MAST, etc.), in which batch (and other) factors can be included in model testing.

Perhaps a better strategy, given that the authors implemented a strong experimental
design with true biological replicates (n = 3 for each tissue source), they might consider
a ‘pseudobulk’ strategy for differential expression testing that models variation across
biological rather than single cell “replicates.” As presently applied, while sometimes
necessary, single cell differential expression testing has been shown to be prone to high
false positive rates (Squair JW, et al. Confronting false discoveries in single-cell
differential expression. Nat Commun. 2021 Sep 28;12(1):5692). Given the fully
replicated design here, differential gene expression with pseudobulk biological

replicates would likely provide more robust results.

An improvement in differential gene expression results would also be expected to
improve results in downstream analyses that used these results as input (e.g. Metascape,
etc.).

We thank the reviewer for the suggestions to adopt a more rigorous strategy to calculate
DEGs, we have applied a “pseudobulk” strategy for differential expression testing,
which models variation across biological samples rather than single cell replicates. The
codes for performing “pseudobulk” analysis have been uploaded to Github
(https://github.com/GaoYuchenPUMC/MSC _paper/tree/main/code for paper Revisi

on), and we have updated the method of ‘pseudobulk’ DEG analysis in the manuscript.
For each single cell cluster within each sample, we generated the “pseudobulk” cluster
by summing UMI counts across all cells within this cluster. All “pseudobulk” clusters
from the same tissue or age group constitute “pseudobulk” biological replicates. Next,

we applied DESeq?2 to calculate DEGs between different “pseudobulk” replicates. The



DEGs calculated by “pseudobulk” strategy were showed in supplementary table 2. The
results of DEGs showed in dot plots and heatmaps are updated with the results
calculated by “pseudobulk” strategy (Fig. 1h; Fig. 2b, e; Supplementary Fig. 1f;
Supplementary Fig. 2e). Although the expression levels of many originally ‘false
positive’ genes were no longer significantly different (p.adj>0.05) after switching to the
“pseudobulk”™ strategy, the key aging markers (TP53, CDKNIA, GLB1, CDKN2A)
were still found to be differentially upregulated in aging clusters. Besides, the results
of “pseudobulk” DEGs were further used to perform Gene Ontology analysis (Fig. 2d;
Supplementary Fig 2a, b), which still indicates the senescent phenotype of cluster 5-
7. Furthermore, we have also implemented the “pseudobulk” strategy to calculate DEGs
of BM-MSCs from young and aged donors (Fig. Se; Supplementary Fig. 5d), the
results revealed that the biochemical basis for BM5 and BM6 senescence are misfolded
protein response and DNA damage, respectively. Collectively, these results indicate that
differences in cellular senescence at the single-cell level persist after switching to a

more rigorous analysis strategy.

Cell cycle phase assignments and interpretations: Cell cycle scores were assigned
per cell using the associated functionality in Seurat. This approach predicts a likely cell
cycle phase (output as G1, S, or G2M) for each cell based on expression patterns of
associated gene sets. While a useful tool, there are some concerns as to these data are
interpreted in the text. For example, the authors note that (line 132), “MSCs from C1
were predicted to be in S phase, MSCs from C2 and C3 were assigned to G2/M phase,
and cell cycle arrest occurred in, MSCs from C5 to C7, as nearly all cells were predicted
to be in G1 phase.” A “G1” assignment does not indicate “cell cycle arrest.” Indeed, in
our experience, this is a typical observation in sSCRNA-Seq data for cells that are not
actively in the S/G2M proliferating process; in the Seurat classification function, there
are no other options (e.g. “G0”, etc.), so the G1 label often acts as a “catch all” for non-
S, non-G2M. We tend to observe large numbers of “G1” classified cells even in scCRNA-

Seq datasets of universally proliferating cell lines.

Related observations such as (line 142) “phenotype space between nonproliferative (C5,
C6, C7) and proliferative clusters (C1, C2, C3) is relatively weak compared to the
connectivity within either proliferative or nonproliferative subpopulations (Fig. 1f)”
may not be fully explanatory, as the S/G2M gene expression patterns result in
considerable variation across cells that can “drive” the PCA and consequent clustering

and UMAP, without necessarily indicating distinct underlying phenotypes of the cells.



We thank the reviewer for raising this question. We have relearned the
CellCycleScoring function of Seurat, which stores S and G2/M scores in object meta
data, along with the predicted classification of each cell in either G2M, S or G1 phase.
The CellCycleScoring function only assign each cell a S or G2M score, based on its
expression of G2/M and S phase markers, cells expressed low levels of G2M and S
phase genes were assigned G1 phase. Thus, cells predicted to be in the G1 phase are
more like cells with relatively weak proliferative ability or cells that are not in the cell
cycle state, and it is inappropriate for us to interpret it as “cell cycle arrest” or “non-
proliferative”. Therefore, we have changed the interpretation of cell cycle analysis in
the manuscript to: “MSCs from C1, C2 and C3 were assigned high G2/M or S phase
score based on its high expression of G2/M and S phase markers. Cells from C5, C6
and C7 were likely not in active cycling and were assigned G1 phase, indicating a
relatively low proliferative potential as compared to cells from C1, C2 and C3. C4
appeared to be a subset of cells in a transition state” (line 129). Besides, the
interpretation of PAGA analysis was changed to “PAGA analysis revealed
transcriptional similarity between active proliferating clusters (C1, C2 and C3), and
strong connective structures were observed in phenotype space between C5, C6 and C7
(Fig. 1d). Consistent with the Monocle analysis, the PAGA path also suggested that
active proliferating clusters gave rise to cells in C5, C6 and C7, while C4 appeared as

a node that linking this transition” (line 138).

By extension, it is somewhat unclear how much of the gene expression differences in
the “proliferative” vs “non-proliferative” clusters are driven simply by differences in
cell cycle phase versus differences in senescence. While many of the genes highlighted
by the authors are associated with senescence, alternatively, these differences in
expression could be associated with cell cycle phases. It would be most helpful to have
a “ground truth” scRNA-Seq dataset that included definitive senescent cells for direct
comparison. These and related observed gene expression differences in “proliferative”
vs. “non-proliferative” clusters may overinterpret the biological significance of these
patterns, and do not necessarily support definitive statements such as “These results
collectively indicate that the attenuated MSC proliferation can be ascribed to cellular
senescence” (Line 152), and “Thus, our data at single-cell resolution indicate that the
loss of proteostasis plays an important role in driving the cellular senescence of C5.”
(Line 227), and “The abundant expression of genes such as EGR1, TP53, CDKNIA,
CDKN2A and FOXO3 provided solid evidence that senescence of C6 and C7 is linked
to genomic stress (Fig. 2a, b, Supplementary Fig. 2a) (Line 191).”



We thank the reviewer for raising this important question. We want to explain from the
following three aspects that the cell clustering of MSCs data was more attributable to

senescence, not the cell cycle.

(1) We first set to remove cell cycle effect on data dimensional reduction and cell
clustering. Two methods are used in this section to remove the effect of cell cycle
related genes’. The first method removed the cell cycle related genes from highly
variable genes calculated by FindVariableFeatures, this method was reported before®
and can avoids cell cycle genes effect the downstream PCA analysis. However, after
removal of cell cycle related genes, MSCs are still divided into seven clusters
(Appendix Fig. 4a) with similar differentially expressed genes as before (Appendix
Fig. 4b). The Pearson correlation analysis provided further evidence that MSCs were
still divided as senescent and non-senescent cluster (Appendix Fig. 4d). Besides,
perinatal tissue derived MSCs show higher percentage of non-aging clusters and lower
percentage of aging cluster as compared to adult MSCs. In the second method, we first
assigned each single cell a cell cycle score through the CellCycleScoring function, and
then regressed out cell cycle score using ScaleData function. After regressed out cell
cycle related effect (Appendix Fig. 4e-f), we found two non-aging clusters still highly
expressed anti-senescence genes (DNMT1, EZH2, LMNBI1), while three aging clusters
were distinguished by upregulated senescent markers (GLB1, TP53, CDKNI1A).
Collectively, these results reveal that removal of cell cycle related effect make no
change on cell clustering, which indicate the differentially expressed cell cycle genes
are not major determinants of cell clustering. The codes of this part of analysis have
been uploaded to Github.

(2) Secondly, while many of the genes highlighted as senescence marker could be
associated with cell cycle phases, many aging marker genes (IL6, GLB1, HSPA9) and
various SASPs factors (COL1A1, COL5A2, IGFBPS5, FGF2) were not cell cycle related.
These genes only highly expressed in senescent clusters and showed relatively low
expression in non-aging clusters (Appendix Fig. 4b, f), if cell cycle alone determined
cell clustering, the expression of these genes should not vary appreciably across cell
populations. After removing the effect of cell cycle, the expression difference of these

senescent related genes can still determine the cell grouping.

(3) At last, each young and aged BM-MSC sample was tested for senescence prior to
single-cell sequencing (Fig. 5b) and high proportion of senescent MSCs was identified
within adult-derived BM-MSCs at early passage 3, which indicates that MSCs from



aged donors may have experienced senescence before leaving the bone marrow niche.
Our single cell analysis results also showed that aged BM-MSCs possessed a
significantly higher frequency of senescent cells (Fig. Sh) expressing aging markers
and SASPs factors (Fig. 5e). These results may provide further evidence that cell

clustering of MSCs data was more attributable to senescence, not the cell cycle.

Gene set scoring by GSVA: GSVA, a widely used tool for gene set scoring and
enrichment analysis in “bulk” RNA-Seq studies, was used to assign per cell gene set
scores, which in some cases were subsequently used to test for differential set
enrichment across samples. Unlike standard “bulk” RNA-Seq data, scRNA-Seq
datasets are extremely sparse and have many different characteristics than bulk datasets.
Is there any indication that GSVA has been tested and found to be appropriate/robust
for single cell RNA-Seq data? There appears to be a github package under development
(https://github.com/guokai8/scGSVA), but there do not seem to be any peer reviewed
indications that this tool performs appropriately for scRNA-Seq data, raising concerns
about these results. If the authors wish to use the GSVA tool for scRNA-Seq data, they
must demonstrate its robust performance with appropriate controls and ground truth

benchmarking, and/or cite such a demonstration.

We thank the reviewer for the suggestion to improve our analysis of gene set activity.
Based on previous reports’, we agree that GSVA is not designed for single-cell analysis.
We decided to choose R packages AUCell (version 1.8.0) for gene set analysis, which
was recommended for single-cell analysis® and used in many published works!®!!. The
AUCell was used to convert the cell-by-gene matrix into a cell-by-gene-set matrix
based on normalized data with default parameters, the reference gene sets were the
same as we used in GSVA analysis (Supplementary Table 3). The ‘pseudobulk’
strategy were also used to assess differential activities of pathway (scored per cell by
AUCell) between ‘pseudobulk’ replicates (Supplementary Table 4), only gene sets
score with significant expression differences were shown (Fig. 1¢). The code used for

AUCell gene set scoring have been uploaded to Github.

Trajectory analysis: Trajectory analysis was performed using Monocle v2. These
types of analyses can present potential pitfalls for integrated multisample data. However,
there are no details provided on how the trajectory analysis was implemented for the
integrated datasets. Furthermore, while most of the analysis code is helpfully available
via the provided github link, it appears that this repository does not contain the code for

the Monocle trajectory analyses, which made it challenging to evaluate this aspect of



the study. In particular, Monocle analysis allows for specifying several parameters
regarding the expected number of roots/branches, etc. from trajectory data. Without
knowing how these parameters were set, the interpretation that “mesenchymal clusters
occurred on a onefold trajectory, starting from cells in the active 139 proliferating phase

(C1, C2 and C3) and ending with C7 (Fig. 1e)” may not be appropriate.

We thank the reviewer for the suggestion to improve our analysis of pseudotime
trajectory analysis. In the first edition of manuscript, trajectory analysis was performed
using Monocle version 2.12.0. We have reperformed the analysis after upgrading the
version of Monocle from 2.12.0 to 2.26.0 (Supplementary Fig. 1e), which is the new
version fixed existing problems and improved performance and stability. The result of
monocle analysis revealed 4 branch points along the trajectory (Appendix Fig. 5a),
which divided MSCs along the trajectory to 8 states, with non-aging cluster 1-3 mainly
resides at state 6 and 7, while aging clusters mainly resides at state 1 (Appendix Fig.
Sb). Therefore, state 7 was set as the “root state” in orderCells function, as
nonsenescent MSCs highly expressed proliferative genes (Appendix Fig.5¢c, d). The

code used for Monocle trajectory analysis have been uploaded to Github.

RNA velocity: RNA velocity analysis can also present potential pitfalls for integrated
multisample data, especially when attempting to compare velocity results across
different conditions (as in Fig 3). It is not clear how the different samples (and different
batches) were managed in RNA velocity analysis which makes it challenging to

evaluate the results.

We apologize for not providing the complete code due to our mistake. The new code
has been completed and uploaded to Github. Besides, in order to prove our RNA
velocity results were not affected by integrated analysis, we have performed RNA
velocity analysis in each 12 MSC sample from adult and perinatal tissue respectively
(Appendix Fig. 6). All MSC samples from adult tissue bearing longer vectors from C3
to C4 as compared to MSCs from perinatal tissue, which provide further evidence that
adult MSCs have a stronger tendency to progress to senescent clusters during in vitro

expansion.

2. The inclusion of functional assays for cell proliferation, immunosuppression by
MSCs via PD-L1, and GATA2 regulation of PD-L1 expression are a strength of the
paper, following up on hypotheses generated by the scRNA-Seq and proteomics data.

However, while significant, the differences in immunosuppressive effects via PD-L1



appear to be somewhat modest — would this difference be sufficient to explain some of

the differences observed in vivo?

We thank the reviewer for raising this question. We have performed multiple
experimental groups (perinatal and adult MSCs; aged and young donor BM-MSCs;
GATA2-modified MSCs) to detect PD-L1-mediated immunosuppression effect. In each
experimental group, we have not only detected the proliferation of T cells, but also
evaluated the change of their function by detecting the inflammatory factors secreted
by T cells. These exhaustive experimental data provided solid evidence that the
downregulation of PD-L1 is sufficient to attenuate the immunosuppressive capacity of
senescent MSCs. Furthermore, we agree that in vivo experiments are important to
verify the function of PD-L1, we have reported here a clinical trial (NCT04014166) of
the use of PD-L1 abundant perinatal UC-MSCs in treating refractory immune
thrombocytopenia (ITP), which is an autoimmune disorder characterized by immune-
mediated destruction of circulating platelets (PLTs) and suppression of PLT production.
These six participants all received splenectomy and showed no durable response,
indicating a complicated pathogenic mechanism of these patients and the research on
new therapies for them are necessary. The results showed that participants in high dose
group (2 x 10° MSCs/kg) had great odds of response after the first 4 weeks after MSC
transfusion with all six participants showed no severe adverse effect (Supplementary
Fig. 8). Our single-cell study on MSCs and this phase | trial are the early phase research
of clinical MSC therapy, the follow-up data of this clinical trial will be reported in the
future work, we are also preparing for a clinical trial of PD-L1 overexpressed MSCs in
the treatment of refractory ITP. However, due to the various limitations of human
clinical trial, we cannot conduct extensive validation, so the current results cannot
provide direct evidence for the role of PD-L1 in vivo. For this part of the clinical data,
we are willing to hear the opinions from the reviewer. If the reviewer think that this part
of in vivo clinical trial data is not convincing, we also agree with this point of view and

will delete it.
ADDITIONAL MINOR POINTS

The text notes that genes associated with dissociation-induced artifact were removed to
test for such effects. Were these genes removed for the final analysis? While it’s good
that they were checked for dissociation gene expression patterns, removing these genes
is not appropriate — the genes could also be involved in the MSC biological pathways

under study.



We thank the reviewer for raising this question. During the quality control of our single
cell data, we have found that the dissociation-related genes do not affect our MSC
clustering (Appendix Fig. 3d-f), the dissociation-related genes were then kept in the

dataset and were not removed from formal analysis.

The text references “Supplemental Table 107, but this table does not appear in the
supplied Excel workbook.

We apologize for the mistake. We have removed the wrong text and revised the

supplementary tables.

In the Methods section, there are no details provided as to how the number of principal
components were selected for sScRNA-Seq dimensionality reduction or how the cluster

resolution was determined.

We thank the reviewer for raising this question. We supplemented the details in the
methods section of our manuscript (line 989). The number of principal components is
set to 30, for an ‘elbow’ was observed around PC 30 through the ElbowPlot function,
suggesting the majority of true signal is captured in the first 30 PCs. The resolution is
set to 0.4, as small clusters appeared when the resolution is higher than 0.4, which
possessed DEGs with low Log2foldchange value, and most of these DEGs overlapped

with other clusters, making it hard to define their functional characteristics.

Reviewer #3 (Remarks to the Author):

The authors have performed an exhaustive gene and protein expression analysis of
mesenchymal stroma cells (MSC). The goal of the single cell based analysis was to
describe the cellular phenotype variation in MSC and compare MSC from bone marrow,
adipose tissue, placenta and cord blood. The data confirmed that MSC are not
homogenous in culture, and that the charachteristics of the different sources organs are
maintained. Fewer proliferative and stem like cells are present in adult MSC than in
perinatal MSC, while more senescence markers and in general G1/2 phase markers are
reciprocally present. This is not new, except for the now very thorough analysis
showing the shift in senescence and the cell source specific relative proportions of

senescence and non-senescent cells. The data alsoe confirm many of the previous



findings on factors influencing or accompanying proliferation, senescence,
immuesuppressive function or differentiation. It remains unclear whether the
comparison is biologically sound as the MSC from different tissue sources may as well
represent different cell types, which are compared here. The transcriptomic analysis
hints in this direction. The finding that PD-L1 is associated with senescence and
immunesuppression was confirmed, but is not new (e.g. non referenced paper by Davies,
2017). New is the finding that GATA2, by regulating for example PD-L1, is important
for maintaining a rather non-senescent phenotype and maintaining a better immune
suppression in the used biological assays. It would be of interest whether this function
can be shown in long-term cultures after multiple passageing of cells in vitro - and not
only in peroxide induced senescence. The authors claim that knowing the
transcriptomic profiles and factors can be used to influence senescence and thus
maintain a homogenous and strong immunosuppressive phenotype in clinical products.
This is a well written manuscript. However, the complex methodological procedure and
amount of figures (6 Figures and 61 panels) are not needed to get the information out
and should be reduced and focused on the main new findings. The specific points raised

arc:

We thank the reviewer for the encouraging comments. Following the suggestion of the
reviewer, we have used lentivirus vectors to overexpress GATA?2 in adult BM-MSCs at
passage 3, and passaged these MSCs to passage 15. We then complemented SA-B-gal
staining and quantification of EV and GATA2-OE BM-MSCs at passage 15 (Fig. 7¢;
Supplementary Fig. 7b). As compared to the GATA2-OE counterparts, EV BM-MSCs
at passage 15 exhibited an enlarged size and higher percentage of staining positive cell,
which indicates that GATA2 overexpression enhanced the anti-senescence function of

BM-MSCs under in vitro expansion.

- elucidate the point that the MCS from different source organs are intrinsically different
and cannot be compared as potentially identical cell types. Can the data be analysed
under this aspect? Are 'tissue origin related differences among subpopulations...' also

found between populations?

We thank the reviewer for raising this question. We do understand that the function of
MSCs is tissue-differentiated, which presents challenges in determining if potential
differences in senescence are due to tissue source or age. Therefore, we have followed
the reviewer’s suggestion and performed another single cell RNA sequencing of BM-
MSCs from young (n=4; age<20) and aged (n=4; age>45) donors. Our analysis revealed



that BM-MSCs can be divided into five clusters (Fig. 5c). The analysis of DEGs
revealed that MSCs from BM1-3 expressed anti-senescence genes, while BM5 and
BM6 highly expressed aging markers (Fig. 5d; Supplementary Fig. 5d-f).
Furthermore, MSCs from older donors were found to be more senescent, with reduced
immunosuppressive capacity due to PD-L1 decline (Fig. 5i-k; Supplementary Fig.
5h-j). At last, we have also co-cultured CFSE labeled activated CD4+ T cell with young
and aged BM-MSCs (Supplementary Fig. 5I). Compared to aged BM-MSCs, MSCs
derived from young donors showed a stronger capacity to suppress T cells activation.
After PD-L1 blockade with specific antibodies, the inhibition of CD4+ T-cell activation
by young BM-MSCs was largely reversed, while the proliferation and TNF-o/ IFN-y
secretion in the presence of aged BM-MSCs was changed only slightly after PD-L1
blockade, indicating relatively low endogenous PD-L1 expression in BM-MSCs from
aged donors. (Fig. 51; Supplementary Fig. Sn-p), which indicates that upregulated PD-
L1 mediates the enhanced immunosuppressive capacity of young BM-MSCs.
Collectively, by comparing BM-MSCs from donors of different ages, we have provided
further evidence without confounded with tissue resource that cellular senescence is the
key determinant of downregulated PD-L1 in MSCs from aged donors, which leads to a

decrease in their immunomodulatory capacity.

- is it possible that the cell clusters just reflect different cell cycle stages, which could

be misinterpreted as senecscent vs. proliferative?

We thank the reviewer for raising this important question. We would like to answer
your questions through the following points and clarify that the cell clustering of MSCs

data was more attributable to senescence, not the cell cycle.

(1) We first set to remove cell cycle effect on data dimensional reduction and cell
clustering. Two methods are used in this section to remove the effect of cell cycle
related genes’. The first method removed the cell cycle related genes from highly
variable genes calculated by FindVariableFeatures, this method was reported before®
and can avoids cell cycle genes effect the downstream PCA analysis. However, after
removal of cell cycle related genes, MSCs are still divided into seven clusters
(Appendix Fig. 4a) with similar differentially expressed genes as before (Appendix
Fig. 4b). The Pearson correlation analysis provided further evidence that MSCs were
still divided as senescent and non-senescent cluster (Appendix Fig. 4d). Besides,
perinatal tissue derived MSCs show higher percentage of non-aging clusters and lower

percentage of aging cluster as compared to adult MSCs. In the second method, we first



assigned each single cell a cell cycle score through the CellCycleScoring function, and
then regressed out cell cycle score using ScaleData function. After regressed out cell
cycle related effect (Appendix Fig. 4e-f), we found two non-aging clusters still highly
expressed anti-senescence genes (DNMT1, EZH2, LMNBI1), while three aging clusters
were distinguished by upregulated senescent markers (GLB1, TP53, CDKNI1A).
Collectively, these results reveal that removal of cell cycle related effect make no
change on cell clustering, which indicate the differentially expressed cell cycle genes
are not major determinants of cell clustering. The codes of this part of analysis have
been uploaded to Github.

(2) Secondly, while many of the genes highlighted as senescence marker could be
associated with cell cycle phases, many aging marker genes (IL6, GLB1, HSPA9) and
various SASPs factors (COL1A1, COL5A2, IGFBPS5, FGF2) were not cell cycle related.
These genes only highly expressed in senescent clusters and showed relatively low
expression in non-aging clusters (Appendix Fig. 4b, f), if cell cycle alone determined
cell clustering, the expression of these genes should not vary appreciably across cell
populations. After removing the effect of cell cycle, the expression difference of these

senescent related genes can still determine the cell grouping.

(3) At last, each young and aged BM-MSC sample was tested for senescence prior to
single-cell sequencing (Fig. 5b) and high proportion of senescent MSCs was identified
within adult-derived BM-MSCs at early passage 3, which indicates that MSCs from
aged donors may have experienced senescence before leaving the bone marrow niche.
Our single cell analysis results also showed that aged BM-MSCs possessed a
significantly higher frequency of senescent cells (Fig. Sh) expressing aging markers
and SASPs factors (Fig. 5e). These results may provide further evidence that cell

clustering of MSCs data was more attributable to senescence, not the cell cycle.

-donor age should be reported (AD and BM MSC)

We apologize for not specifying the biological age of each sample. We have
complemented in Supplementary Table 1 the biological age information of each MSC

sample used for sequencing and functional experiments in this manuscript.

- reduce complexity of text and figures and focus on main novel findings. For example,
most transcriptomic and proteomics data confirm what has been known, but novelty is

limited (although the provided cell atlas is valuable).



We thank the reviewer for the suggestion to present data in a clearer way. Following the
reviewer’s suggestion, we have reduced the complexity of figures by transferring
redundant panels to corresponding supplemental figures (now is 7 figures and 64 panel
after new experimental data being complemented), which made the manuscript more
conducive to presenting the main new findings. Furthermore, we have simplified the
complex methodological procedure descriptions (line 121, line 145, line 305, line 320,
line 442), and we have reduced the description of known background knowledge in our
data analysis (line 159, line 171, line 193, line 196, line 206, line 228, line 461).

- it should be discussed whether the detected functional differences are potentially
clinically relevant (how predictive are the used suppression assays to predict clinical

efficacy)?

We thank the reviewer for raising this question. We agreed that in vivo experiments are
important to verify the functional difference caused by PD-L1 in young and aged MSCs.
However, we have reported here a phase | clinical trial (NCT04014166) of the use of
UC-MSCs in treating refractory immune thrombocytopenia (ITP), which is an
autoimmune disorder characterized by immune-mediated destruction of circulating
platelets (PLTs) and suppression of PLT production. Here we have described the
research methodology, study design and patient outcomes in detail (Supplementary
Fig. 8), and discussed here the promising effectiveness and safety of UC-MSCs for the
treatment of refractory ITP. Our single-cell study on MSCs and this phase | trial are
only the early phase research of clinical MSC therapy, the follow-up data of this clinical
trial will be reported in the future work, we are also preparing for a clinical trial of PD-
L1 overexpressed MSCs in the treatment of refractory ITP. However, various
limitations of human clinical trial have prevented us from conducting experimental
validation, so the current results cannot provide direct evidence for the
immunosuppressive role of PD-L1 in vivo. Besides, for this part of the clinical data, we
are willing to listen to the opinions from the reviewer. If the reviewer think that this part
of in vivo clinical trial data is not convincing, we also agree with this point of view and

will delete it.

Recommend to accept with major revision.

We thank the reviewers for giving us the opportunity to revise our work, we have

supplemented detailed experiments and revised the manuscript as required.
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Appendix Fig. 1

Correlation analysis between Correlation analysis between
immunosuppressive function score immunosuppressive function score
and 2000 highly variable genes  and Perinatal MSCs highly expressed genes
(Cor>0.1, P<0.05) (Cor>0.1, P<0.05)
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Appendix Figure 1. PD-L1 was an important gene mediating the decline of
immunusppresive function during senescence. Venn diagram showing the
overlap of genes with high correlation with immunosuppressive function score,
only six genes colored in red was genes with immunomodulatory ability.



Appendix Fig. 2

a UMAP projection of BM3

Appendix Figure 2. Dimensionality reduction and marker genes of BM3.
(a), UMAP projection of 2,740 BM3 MSCs. (b), Dotplot showing the marker
genes of each BM3 MSC cluster.



Appendix Fig. 3
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Appendix Figure 3. Quality control of single cell transcriptomic data.
(a), Bar plots showing the cell number, the number of transcripts and
the number of genes for all QC-passed cells from each sample (with
plot center, box and whiskers corresponding to median, IQR and 1.5

x IQR, respectively). (b), UMAP plot showing the contaminated
cluster (C8), which may be generated by experimental manipulation.
(c), Heatmap showing specifically expressed genes in C8 with the
representative GO enrichment results listed on the right. (d), UMAP
showing the clustering result after removing the dissociation-related
genes from the datasets. (e), Heatmap displaying the signature genes
of each cluster, which were nearly unchanged after removing the
dissociation-related genes. (f), Violin plot showing the GSVA score
for the dissociation-related gene set of each subcluster.



Appendix Fig. 4

1. Remove cell cycle related genes from Variable Features, avoid its effect on the downstream PCA analysis
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Appendix Figure 4. Effect of removal of cell cycle genes on clustering

(a), UMAP showing seven cluster of MSCs after remove cell cycle related
genes from Variable Features. (b), Dot plots showing the scaled expression of
representative senescent-related genes for each cluster calculated in appendix

Fig. 4a. (¢), Correlation matrices showing the Pearson correlation coefficients of

the 7 MSC clusters caculated after remove cell cycle related genes and 7 MSC
clusters as shown in Fig. 1b. (d), Fractions of subpopulations in six adult versus

six perinatal MSC samples (Error bar: Mean + s.d.s). P values are generated by
two-tailed t test with Welch’s correction (**p<0.005; ***p<0.0005). (e), UMAP
showing six cluster of MSCs after regress out cell cycle scoring. (f), Dot

plots showing the scaled expression of representative senescent-related genes for
each cluster calculated in appendix Fig. 4e. (g), Correlation matrices showing the
Pearson correlation coefficients of the 6 MSC clusters caculated after regress out
cell cycle scoring and 7 MSC clusters as shown in Fig. 1b. (h), Fractions of clusters
in six adult versus six perinatal MSC samples (Error bar: Mean + s.d.s). P values

are generated by two-tailed t test with Welch’s correction (**p<0.005; ***p<0.0005).



Appendix Fig. 5
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Appendix Figure 5. Trajectory analysis using monocle2

(a-c), Monocle trajectories of MSCs colored by cluster identity (a),
predicted cell state (b) and predicted pseudotime value (c). (d), Relative
expression level of senescent related genes along the pseudotime sequence.



Appendix Fig. 6
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Appendix Figure 6. RNA velocity analysis of each MSC sample
(a), RNA velocity analysis of 6 MSC sample from adult tissues.
(b), RNA velocity analysis of 6 MSC sample from perinatal tissues.



REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

While the authors have made a heroic effort in the revision by substantially increasing sample
numbers of different ages and more functional assays to validate the role of GATA2/PD-L1 in MSC
senescence, the decision to just merely delete the stemness portion not only ignores the biological
identity of the studied cells, but also completely changes the hypothesis & direction of the research. In
this “no-stemness “ context, finding any molecular mechanism (i.e. the GATA2/PDL1 axis) loses much
its significant because the only functional outcome for non-stem cell senescence, AKA ‘regular’
somatic cell senescence, is proliferation, because there is no issue of differentiation capacity for non-
stem cells. And in this non-stem cell context, the finding of PD-L1 involvement in immunomodulation
is completely expected, leaving only the modulation by GATA2 being novel. Moreover, if typical non-
stem cell/somatic cell senescence is emphasized—meaning reversal and/or changes in differentiation
capacity is no longer an issue—then the assessment of only proliferation is not enough, i.e. cell cycle
dynamics and other more senescence-specific molecular mechanistic reversals by perturbing
GATA2/PD-L1 needs to be evaluated.

The decision to just leave out stemness in the manuscript is actually problematic on several levels: 1)
fundamentally, the authors are considering MSCs as stromal cells and NOT stem cells, and therefore
has assigned immunomodulatory properties as a functional characteristic of M-stromal-Cs, a function
which have yet to reach consensus; 2) the authors still show trilineage differentiation experiments
AND use the changes in trilineage differentiation capacity as evidence of senescence (Supp. Fig 5a),
so clearly the assayed cells ARE stem cells—how can these functions be just ignored?; and 3) so
why do the authors still use mesenchymal STEM cells throughout the article? Perhaps a most
troubling concern is that the authors are misunderstanding stem cell biology: in the reply, the
statement “if MSCs cannot be proved to be pluripotent stem cells...” shows that the authors are
maybe uncertain on stem cell biology in general, and pluripotent stem cells vs. somatic stem cells in
particular.

The addition of clinical data perhaps demonstrates the commitment of authors to MSC translational
use, but actually does not add to support the hypothesis of the manuscript itself (no involvement of
GATAZ2, PD-L1, or senescence), so it is also unclear why this data was added in the revision.

Minor comment: The authors should make available the .rds file, including meta data, labeled assays,
and reduction map information in order to ensure the reproducibility of the scRNA-seq data.

Reviewer #2 (Remarks to the Author):

In their revised manuscript, Gao et al. make substantial improvements to their initial submission and
respond to many of the reviewer concerns detailed in the original review. The addition of several
experimental datasets further demonstrating a role for GATA2 in PD-L1 regulation, clarification of
computational analyses, and important methodological details all strengthen the manuscript.
However, despite these improvements, significant concerns remain regarding portions of manuscript
content, particularly for single cell RNA-Seq (scRNA-Seq) analyses and interpretations.

MAJOR POINTS
* The inclusion of new mechanistic data in Figure 7 and Supplemental Figure 7 further supports a role
for GATAZ in regulating senescence and PD-L1 expression. These additions significantly improve the

manuscript and provide support for some of the patterns observed in sScCRNA-Seq data.

» There remain significant concerns regarding the degree to which cell cycle phase differences
potentially contribute to the different MSC clusters defined in sScCRNA-Seq analysis. In the initial



review, multiple reviewers raised concerns about whether differences in cell cycle phase might be
driving the heterogeneity annotated as different MSC “senescent” and “non-aging” clusters. The
authors helpfully address some of these points by modifying the language used in describing cell
cycle assignments and reframing their interpretation of these data. However, as noted in the initial
review, it still remains unclear how much of the gene expression differences in the “proliferative” vs
“non-proliferative” clusters are driven simply by differences in cell cycle phase versus differences in
senescence. While the authors attempt to address this in their response to initial review, the following
issues remain:

- The authors explain that when removing cell cycle genes from the highly variable genes used for
PCA and clustering, there are minimal differences in cluster assignments (Appendix 4a-c). However,
the “cell cycle genes” used are the Seurat cell cycle gene sets “cc.genes$s.genes” and
“cc.genes$g2m.genes’. While very effective in calculating single cell cycle scores and regressing out
these signatures, these gene sets are not comprehensive; there are many additional genes that may
be associated with cell cycle that are not included in these sets. Therefore, even upon removal of
these genes, remaining cell cycle-associated genes could still be driving the clustering pattern
observed.

- The authors next regress out Seurat cell cycle scores and observe its impact on UMAP visualization
and clustering (Appendix 4e). While they note that they still observe different clusters, it is very
apparent that the clusters are far less distinct than the initial analysis, suggesting that indeed cell
cycle gene expression likely contributes considerably to cluster assignment.

Importantly, these critiques are not intended to suggest that the authors’ interpretation of these cells
as “senescent” vs. “non-aging” are necessarily incorrect (subsequent experimentation demonstrates
very clearly the difference in senescent cell frequencies in these samples!); however, if the presented
output of these analyses is a characterization of the transcriptomic heterogeneity of these cells, it is
important to acknowledge the contributions of cell cycle to clustering. In sum, while the different
clusters may represent and/or overlap with senescent vs. non-aging cells, some portion of this
heterogeneity may be driven by cell cycle and/or cell cycle-associated effects.

* In initial submission, multiple reviewers commented on the potentially confounding effects of
comparing MSC from different tissue sources. In the more recent submission, the authors have
included a helpful comparison of BM-derived MSC from young vs old donors. Importantly, as noted in
the text, all samples were collected and processed in a single technical batch, enabling direct
comparisons of groups. This addition significantly strengthens the manuscript and adds additional
support to the authors’ claims of age-associated senescence programs. However, the manuscript also
includes inter-tissue comparisons of four different tissue sources that were processed in different
batches. While not necessarily a problem, direct comparisons across these samples without either 1)
demonstrating the (unlikely) absence of a batch effect or 2) accounting for potential technical batch
effects in differential gene expression testing could lead to spurious results. At the advice of
reviewers, the authors did add pseudobulk differential gene expression testing to take advantage of
their biological replication. However, in their analysis code, it appears that they did not include a
design term for “batch” (which are noted and balanced across groups in Supplemental table 1). While
unlikely to dramatically change the results, given the appropriate experimental setup, replication and
analysis approach, the DESeg2 model (or alternative approach) should account for “batch” to ensure
the most robust results.

In addition, throughout the manuscript, many figures (non-comprehensive examples include figures
1h, 2b, 2f, and others) present expression values (either averaged across cells/samples or for
individual cells) for comparison across groups or clusters. These figures appear to be generated with
Seurat functions. It is not clear if the values are “integrated” assay values (which are not readily
interpretable across group comparisons) or normalized “RNA” assay values. While RNA assay values
are appropriate for visualization, they would not account for technical batch differences, which could
complicate comparisons. This should be addressed and/or indicated to enable clarity of interpretation
for these visualizations.



* In response to the initial review, the authors have helpfully demonstrated consistent RNA velocity
patterns in different samples. RNA velocity figures appear multiple times in the manuscript. At multiple
points, the authors make interpretations about the relative magnitude of RNA velocity vectors that
appear to be based primarily on visual observation of integrated UMAP projections (lines 248-252).
These are likely overinterpretations of these data, which while potentially supportive of the authors’
model, are not really necessary to prove their points. In particular, inclusion and acknowledgment of
differences in relative cell frequency per cluster (lines 252-254, Fig3b, Supplemental Fig 3a) provide
much stronger data to support differences in adult vs. perinatal sources; these are controlled for
tissue source and batch (Seurat integration) and should not be susceptible to gene expression
differences. It is this reviewer’s opinion that the same conclusions could be drawn by focusing on
these frequency differences rather than the RNA velocity results.

« In response to initial review, per cell gene set scores have now been calculated and compared with
AUCell, an appropriate tool for this application at single cell resolution. However, the authors also
note application of AUCell to pseudobulk profiles (lines 1055-1056). It is not clear from the available
analysis code how AUC scores were compared for differential pathway activity analyses in
pseudobulk profiles or if this approach is appropriate.

* The clinical trial data, which while interesting in comparing MSC dosing regimens for clinical
response, does not inform the manuscript’s primary subject (senescence in MSCs). It seems outside
the scope of the present manuscript.

* As noted in the previous review, at multiple points throughout the manuscript main text, the authors
use language that suggests firm biological conclusions drawn solely from scRNA-Seq analysis. Some
examples include:

- Lines 148-149: “These results collectively indicate that the attenuated MSC proliferation can be
ascribed to cellular senescence.”

- Lines 202-204: “Thus, our data at single-cell resolution indicate that the loss of proteostasis plays an
important role in driving the cellular senescence of C5.”

- Lines 257-259: “Additionally, this heterogeneity in the dynamics of transition led to a major increase
in the proportion of C7 but caused no significant expansion of C5 and C6 in adult MSCs (Fig. 3b;
Supplementary Fig. 3a).”

In each of these cases, the text states firm causal relationships (“ascribed to...”, “plays an important
role in driving...”, “led to a major increase...”) inferred from the scRNA-Seq results. While the single
cell gene expression data may suggest, infer, be consistent with, and/or inform future investigations, it
is not sufficient to support such definitive statements, which would require validating experimentation
(which is provided by the authors in several cases). These statements, which appear throughout the

text, should be modified accordingly.

Reviewer #3 (Remarks to the Author):

The authors have responded to the points made by the reviewers in detail and added relevant
information, experimental data and explanations. The key finding that GATA2 reguates PD-L1 and
thus by analogy immunosuppressive function, and that ihis is impaired on older (senescent) MSC is
supported. The general correlation between ageing, stemness and differentiation properties has been
more realistically described. Thus, | am of the opinion that the experimental options to strengthen the
manuscript and support the finding have been exhausted.



Point by point response to reviewers

We sincerely appreciate the efforts of all the reviewers for their careful evaluation and
valuable feedback on our manuscript. Your insightful comments and constructive
criticism have significantly help us to improve the quality our work. Following the
suggestions by the reviewers, we have made several revisions to the bioinformatics
analysis and writing to ensure the accuracy and reliability of the results, and we have
also clarified some sections to better convey the research findings. Among the
highlights of the new results, we have supplemented the data regarding stemness and
further discussed our finding on how cellular senescence affects MSC stemness. In
addition, we optimized and complemented the analysis to remove the cell cycle effect
and better assess its contribution to cluster formation. The article also includes a
detailed discussion of the impact of the cell cycle on cell clustering. Furthermore, we
have improved the analysis of RNA velocity by adopting more rigorous strategies and
revising the previous over interpreted results, which further enhanced the credibility of
our analysis. Finally, we have revised the manuscript to tone down conclusions that
are only drawn from scRNA sequencing, thus increasing the rigor of our results. The
new data are highlighted in a blue font in the revised manuscript, including the legends
and labels of figures and supplementary tables. With the new results, we believe we
have addressed all of the reviewers’ concerns, substantially improved the

accuracy and reliability of our work, and broadened the impacts of our study.

A brief summary of the major new results is listed below, which are divided into four
categories.

A. Analysis of cell senescence effects on MSC stemness.

1. The comparison of stem cell signature gene score of seven MSCs clusters
derived from adult and perinatal tissue (Supplementary Fig. 1f).

2. The stem cell signature gene scores of AD-MSCs, BM-MSCs, PM-MSCs, and
UC-MSCs were compared (Supplementary Fig. 3d).

3. The real time gPCR analysis of pluripotency marker expression in AD-MSCs,
BM-MSCs, PM-MSCs and UC-MSCs (Supplementary Fig. 3e).

4. The comparison of stem cell signature gene score of six BM-MSCs clusters
derived from young and aged donors (Supplementary Fig. 5g).

5. The expanded discussion on the effects of aging on MSC stemness, including
areas of uncertainty in stemness function and the limitations of stemness
investigation in this study (line 626).

B. Further investigation to assess the effect of cell cycle genes on cell clustering.

1. The results of cell clustering after complete removal of cell cycle related genes
and avoid the cell cycle genes from affecting downstream clustering analysis
(Appendix Fig. 1)

2. The results of cell clustering after Seurat cell cycle regression analysis
(Appendix Fig. 2)



3. The results of cell clustering after cell cycle effect regression by Scanpy
“regress_out” function (Appendix Fig. 3).
4. A further discussion of the cell cycle effect on MSCs clustering (line 569).

C. The revision of RNA velocity analysis.
1. The re-interpretation of RNA velocity analysis on MSCs from adult and
perinatal tissues (line 252).
2. The RNA velocity analysis of all BM-MSCs from young and aged donors (Fig.

50).

D. Adoption of more rigorous strategies to calculate DEGs and AUCell gene set score.
1. The DEG analysis between different “pseudobulk™ replicates was performed
using the R package DESeq2 with batch effect correction, and the improved
DEG results were used to update GO enrichment analysis (Supplementary
Table 2; Fig. 2d; Supplementary Fig. 2a, b).
2. The ‘pseudobulk’ strategy were also used to assess differential activities of
pathway scored per cell by AUCell with batch effect correction
(Supplementary Table 4).

The appendix figures were presented as additional results at the end of our response
letter (Appendix Fig. 1-3). We prefer not to include these data in the manuscript due
to space limitations and the scope of our study, but we will be happy to include them if
the reviewers or the editors think it is necessary. Unless otherwise noted, all figure
callouts below correspond to figures in the revised manuscript.

Reviewers' comments:
Reviewer #1 (Remarks to the Author):

While the authors have made a heroic effort in the revision by substantially increasing
sample numbers of different ages and more functional assays to validate the role of
GATA2/PD-L1 in MSC senescence, the decision to just merely delete the stemness
portion not only ignores the biological identity of the studied cells, but also completely
changes the hypothesis & direction of the research. In this “no-stemness” context,
finding any molecular mechanism (i.e. the GATA2/PDL1 axis) loses much its
significant because the only functional outcome for non-stem cell senescence, AKA
‘regular’ somatic cell senescence, is proliferation, because there is no issue of
differentiation capacity for non-stem cells. And in this non-stem cell context, the
finding of PD-L1 involvement in immunomodulation is completely expected, leaving
only the modulation by GATA2 being novel. Moreover, if typical non-stem cell/somatic
cell senescence is emphasized—meaning reversal and/or changes in differentiation
capacity is no longer an issue—then the assessment of only proliferation is not enough,
i.e. cell cycle dynamics and other more senescence-specific molecular mechanistic
reversals by perturbing GATA2/PD-L1 needs to be evaluated.



The decision to just leave out stemness in the manuscript is actually problematic on
several levels: 1) fundamentally, the authors are considering MSCs as stromal cells and
NOT stem cells, and therefore has assigned immunomodulatory properties as a
functional characteristic of M-stromal-Cs, a function which have yet to reach consensus;
2) the authors still show trilineage differentiation experiments AND use the changes in
trilineage differentiation capacity as evidence of senescence (Supp. Fig 5a), so clearly
the assayed cells ARE stem cells—how can these functions be just ignored?; and 3) so
why do the authors still use mesenchymal STEM cells throughout the article? Perhaps
a most troubling concern is that the authors are misunderstanding stem cell biology: in
the reply, the statement “if MSCs cannot be proved to be pluripotent stem cells...”
shows that the authors are maybe uncertain on stem cell biology in general, and
pluripotent stem cells vs. somatic stem cells in particular.

We sincerely appreciate reviewer for the constructive comments. We apologize for the
possible misunderstanding caused by previous response and we admit that it may not
be appropriate to directly remove stemness relevant content. We would like to respond
to the reviewers' concerns by the following points:

(1) To clarify, we removed the stem cell aspects of the manuscript not because we
believe that MSCs lack stemness and should be considered solely as stromal cells, but
rather to emphasize our focus on the immunomodulatory properties of stem cells. Stem
cell immunomodulatory property is a crucial research focus in the fields of stem cell
biology and cell therapy!~, and it represents the core content and main innovations of
our manuscript. Our study confirms for the first time that cell aging plays a role in the
downregulation of PD-L1 expression and elucidates its regulatory mechanism during
the in vitro senescence process. Extensive experimental data also showed that the
downregulation of PD-L1 is involved in the decline of immunomodulatory capacity of
aging MSCs. Given that PD-L1 is a crucial target of cancer immune therapy, its
regulatory mechanisms have always been a central focus of research. The GATA2-
PDL1 regulatory mechanism that we have discovered holds significant potential for
advancing tumor immune study and cell therapy.

(2) Although this study builds upon the previous work of our team*!'? and focuses more
on the clinical application value of MSCs, we acknowledge the importance of
discussing the effect of aging on MSC stemness. According to the valuable suggestions
raised by the reviewer, we have re-supplemented the stemness-related results in the
article (Supplementary Fig. 1f, Supplementary Fig. 3d-e, Supplementary Fig. 5g) a
nd updated the corresponding text description (line 67, line 146, line 148, line 233, lin
e 271, line 275, line 383, line 402). We recognize that in the original version of the
manuscript, it was inaccurate to infer differences in stemness by comparing the
heterogeneity in differentiation capacity between perinatal and adult MSCs, as there is
an effect of different tissue origin. Therefore, we have removed this section from the
revised manuscript. Instead, in this revision, we have focused on the changes in the



differentiation capacity of MSCs from young and aged donors derived from the same
tissue and further discussed it in the Discussion section.

(3) The stemness of MSCs has always been a controversial issue'*"!>. While our study
provided evidence that senescence reduces the expression of stem cell signature genes,
restricts MSC proliferation, and alters their differentiation potential, research in future
is required to fully explore other stem cell characteristics affected by the aging process.
Additionally, the senescence-associated transcription factors and underlying regulatory
molecular mechanisms we outlined in Fig. 2h require further investigation. Therefore,
in this revised version, we have expanded the discussion on the effects of aging on MSC
stemness, including what we are not sure about in the stemness function (line 626).

The addition of clinical data perhaps demonstrates the commitment of authors to MSC
translational use, but actually does not add to support the hypothesis of the manuscript
itself (no involvement of GATA2, PD-L1, or senescence), so it is also unclear why this
data was added in the revision.

We thank the reviewer for the suggestion and we have removed the clinical trial data
from this version of manuscript.

Minor comment: The authors should make available the .rds file, including meta data,
labeled assays, and reduction map information in order to ensure the reproducibility of
the scRNA-seq data.

We appreciate the reviewer's valuable suggestion and are committed to ensuring the
reproducibility of our work. As such, we will make our processed scRNA-seq data
publicly available. In compliance with the rules on the administration of human genetic
resources of China, we have uploaded our RDS files and meta data (which contain
labeled assays and reduction map information) to OMIX/China National Center for
Bioinformation (https://ngdc.cncb.ac.cn/omix: accession no. OMIX003273) as
described in the Data Availability section, and these data will be public accessible once
the manuscript is accepted. The following link has been created to allow review of RDS
file and meta data  while it  remains in private status:
https://ngdc.cncb.ac.cn/omix/preview/dneHI96B. Besides, we have uploaded all
sequencing raw data to public databases, and all code related to the data analysis in this
manuscript, including the new code used for revision, has been uploaded to Github:
https://github.com/GaoYuchenPUMC/MSC paper. We believe that these data, along
with our newly uploaded RDS data, will greatly ensure the reproducibility of this study.

Reviewer #2 (Remarks to the Author):

In their revised manuscript, Gao et al. make substantial improvements to their initial
submission and respond to many of the reviewer concerns detailed in the original review.
The addition of several experimental datasets further demonstrating a role for GATA2



in PD-L1 regulation, clarification of computational analyses, and important
methodological details all strengthen the manuscript. However, despite these
improvements, significant concerns remain regarding portions of manuscript content,
particularly for single cell RNA-Seq (scRNA-Seq) analyses and interpretations.

We thank the reviewer for the careful evaluation and the kind comments on the revised
manuscript.

MAJOR POINTS

* The inclusion of new mechanistic data in Figure 7 and Supplemental Figure 7 further
supports a role for GATA2 in regulating senescence and PD-L1 expression. These
additions significantly improve the manuscript and provide support for some of the
patterns observed in scRNA-Seq data.

We thank the reviewer for the encouraging comments on our revised manuscript.

» There remain significant concerns regarding the degree to which cell cycle phase
differences potentially contribute to the different MSC clusters defined in scRNA-Seq
analysis. In the initial review, multiple reviewers raised concerns about whether
differences in cell cycle phase might be driving the heterogeneity annotated as different
MSC “senescent” and “non-aging” clusters. The authors helpfully address some of
these points by modifying the language used in describing cell cycle assignments and
reframing their interpretation of these data. However, as noted in the initial review, it
still remains unclear how much of the gene expression differences in the “proliferative”
vs “non-proliferative” clusters are driven simply by differences in cell cycle phase
versus differences in senescence. While the authors attempt to address this in their
response to initial review, the following issues remain:

- The authors explain that when removing cell cycle genes from the highly variable
genes used for PCA and clustering, there are minimal differences in cluster assignments
(Appendix 4a-c). However, the “cell cycle genes” used are the Seurat cell cycle gene
sets ‘cc.genes$s.genes’ and “cc.genes$g2m.genes’. While very effective in calculating
single cell cycle scores and regressing out these signatures, these gene sets are not
comprehensive; there are many additional genes that may be associated with cell cycle
that are not included in these sets. Therefore, even upon removal of these genes,
remaining cell cycle-associated genes could still be driving the clustering pattern
observed.

- The authors next regress out Seurat cell cycle scores and observe its impact on UMAP
visualization and clustering (Appendix 4e). While they note that they still observe
different clusters, it is very apparent that the clusters are far less distinct than the initial
analysis, suggesting that indeed cell cycle gene expression likely contributes
considerably to cluster assignment.



Importantly, these critiques are not intended to suggest that the authors’ interpretation
of these cells as “senescent” vs. “non-aging” are necessarily incorrect (subsequent
experimentation demonstrates very clearly the difference in senescent cell frequencies
in these samples!); however, if the presented output of these analyses is a
characterization of the transcriptomic heterogeneity of these cells, it is important to
acknowledge the contributions of cell cycle to clustering. In sum, while the different
clusters may represent and/or overlap with senescent vs. non-aging cells, some portion
of this heterogeneity may be driven by cell cycle and/or cell cycle-associated effects.

We thank the reviewer for raising this question. According to reviewer’s concerns we
have optimized and complemented the analysis to remove cell cycle effect and further
assessing their contribution to cluster formation. The codes for this part of
analysis have been wuploaded to Github (https://github.com/GaoYuchenPUM
C/MSC_paper/tree/main/code_for Revision%232/1_CellCycleRelatedGenesRegressio
n).

(1) Firstly, we acknowledge that Seurat cell cycle gene set (‘cc.genes$s.genes’ and
‘cc.genes$g2m.genes’, n=97) is not comprehensive enough to remove the cell cycle
effect in PCA analysis. Therefore, we selected the cell cycle gene set in the GO database
(GOBP_CELL_CYCLE, GO:0007049), which contains 1,847 cell cycle-related genes.
This gene set is sufficient to help us remove all cycle genes among highly variable
genes and avoid the cell cycle genes from affecting downstream PCA analysis. After
removing the cell cycle genes and performing dimensional reduction analysis, we were
still able to successfully group the seven clusters that are similar to the version in Figure
1b (Appendix Fig. 1a). The differential expression of aging-related genes and Pearson
correlation analysis further indicate that MSCs may still be divided into senescent and
non-senescent clusters (Appendix Fig. 1b-c). Additionally, the removal of cell cycle
genes did not change one of our major conclusions that perinatal MSCs contained a
lower proportion of senescent cells (Appendix Fig. 1d).

(2) Secondly, we understand the reviewer's concern that after cell cycle score regression,
cell clusters become less distinct than in the initial analysis, as three non-aging clusters
(Cl1, C2, and C3) merged into two clusters (Non-agingl and Non-aging2). In this
version of the revision, we did not change the strategy of Seurat cell cycle regression,
as the Seurat cell cycle gene sets were effective in calculating single-cell cycle scores
and regressing out these signatures. However, we found that by adjusting the
downstream dimensional reduction analysis parameters (changed to nPC=45,
resolution=0.6), the new analysis result again revealed seven populations of MSCs that
were similar to the original version (Appendix Fig. 2a) and showed differential
expression of senescence-related markers (Appendix Fig. 2b). We further inferred
from Pearson analysis that although the regression of the cell cycle effect may make
clustering less obvious on the UMAP visualization, the seven clusters we obtained
showed a high similarity in transcriptomic gene expression level compared to the pre-
treated version (Appendix Fig. 2¢), and the frequencies of cells in the new clusters still



supported our conclusion that adult MSCs possess a more senescent state than perinatal
MSCs (Appendix Fig. 2d). These results collectively suggest that the reduction in the
number of cell clusters and less distinct clustering observed in the first round of revision
may be due to differences in the selection of parameters, and that there is no significant
change in cell clusters after Seurat regression of the cell cycle effect.

(3) Furthermore, to further evaluate the influence of the cell cycle on MSC clustering,
we used the Python-based single-cell analysis package Scanpy to assign each cell a cell
cycle score and perform cell cycle regression using the Scanpy "regress out" function.
This method is widely recognized for removing cell cycle effects independent of the R
language and Seurat package. The results of the Scanpy analysis also showed seven
clusters after removing the cell cycle effect on clustering (Appendix Fig. 3a). The non-
aging clusters (Clr, C2r, and C3r) calculated by Scanpy still highly expressed anti-
senescence genes (DNMT 1, EZH2, LMNB1), while three aging clusters (C5r, Cér, and
C7r) were distinguished by upregulated senescent gene levels: GLB1, TP53, CDKN1A
(Appendix Fig. 3b). The seven subpopulations calculated by Scanpy were highly
correlated at the transcriptomic level compared with the corresponding subpopulation
calculated by Seurat (Appendix Fig. 3c¢). Moreover, the cell frequencies of the seven
clusters calculated by Scanpy also support our conclusion that perinatal MSCs are less
senescent and contain fewer aging cells during in vitro culturing (Appendix Fig. 3d).
These results collectively suggest that Scanpy and Seurat, two widely recognized tools
for removing the cell cycle effect on clustering, can independently reproduce the results
that cell clustering is barely affected after cell cycle effect regression.

Based on all the aforementioned analysis results, we suggest that differences in the
expression of cell cycle genes among different cells have no significant impact on cell
clustering. All analysis results indicate that cell clustering did not change significantly
after comprehensive removal of cell cycle genes through widely recognized methods.
However, as we compared the proportions of subpopulations before and after removing
cell cycle effects, we found that there were subtle changes in subgroup proportions
(Appendix Fig. 1e, Appendix Fig. 2e, Appendix Fig. 3e), although most of the
changes were not significant. As pointed out by the reviewer, our analysis result
characterizes all transcriptomic heterogeneity of the cells. Since cellular senescence
inevitably leads to expression differences in cell cycle genes, we acknowledge that
although these differences are not sufficient to significantly change the clustering, some
proportion of the heterogeneity may be driven by cell cycle and/or cell cycle-associated
effects. Therefore, we have supplemented the discussion of this issue in the article (line
569) and we want to also explain below why we did not remove the cell cycle effect in
the clustering analysis in this study:

Firstly, our comprehensive analysis suggested that differences in the expression of cell
cycle genes may have an impact on cell clustering, but it was not sufficient to
significantly alter the clustering results. After we removed the effect of the cell cycle,
there were no significant changes in cell clustering, and the results of the cell cycle



regression did not affect our major conclusions of this study.

Secondly, cellular senescence is defined as a state of permanent cell cycle arrest, the
changes in cell cycle during cellular senescence are also an important characteristic.

Thirdly, cell cycle genes may be involved in the proliferation and self-renewal of stem
cells. Therefore, the clustering generated by cell cycle genes in stem cells may have
biological significance!®!”. Additionally, the proliferation capacity is an important
factor for measuring MSCs' function, and retaining the influence of the cell cycle on
clustering may better reflect the functional state of MSCs. Many studies using single
cell technology on stem cell research retain the influence of the cell cycle on
clustering'®?, which is in line with common practice and may provide more
comprehensive analysis results.

* In initial submission, multiple reviewers commented on the potentially confounding
effects of comparing MSC from different tissue sources. In the more recent submission,
the authors have included a helpful comparison of BM-derived MSC from young vs old
donors. Importantly, as noted in the text, all samples were collected and processed in a
single technical batch, enabling direct comparisons of groups. This addition
significantly strengthens the manuscript and adds additional support to the authors’
claims of age-associated senescence programs. However, the manuscript also includes
inter-tissue comparisons of four different tissue sources that were processed in different
batches. While not necessarily a problem, direct comparisons across these samples
without either 1) demonstrating the (unlikely) absence of a batch effect or 2) accounting
for potential technical batch effects in differential gene expression testing could lead to
spurious results. At the advice of reviewers, the authors did add pseudobulk differential
gene expression testing to take advantage of their biological replication. However, in
their analysis code, it appears that they did not include a design term for “batch” (which
are noted and balanced across groups in Supplemental table 1). While unlikely to
dramatically change the results, given the appropriate experimental setup, replication
and analysis approach, the DESeq2 model (or alternative approach) should account for
“batch” to ensure the most robust results.

We thank the reviewer for suggesting further improvements to our DEG analysis.
According to the reviewer's suggestion, we used DESeq2 to correct for batch effects
(design = ~ batch + pseudobulk cluster) when performing DEG analysis on single-cell
data from different batches. The codes and the design file for performing batch-
corrected "pseudobulk" DEG analysis have been wuploaded to GitHub
(https://github.com/GaoYuchenPUMC/MSC paper/tree/main/code for Revision%?23
2/2 DEseq2 correct batch effect), and we have updated the DEG analysis
methodology in the manuscript (line 1012). The DEG results obtained after batch effect
correction are presented in Supplementary Table 2. Although correcting for batch
effects eliminated statistical significance (p.adj>0.05) for a small subset of genes, the
expression of the aging-related genes we are interested in remains unaffected (Fig. 1h;




Fig. 2b, e; Supplementary Fig. 1f; Supplementary Fig. 2e). Additionally, we updated
our GO analysis using the new DEG results, which still support our original conclusion
that misfolded protein response and DNA damage may contribute to MSC senescence
in different clusters (Fig. 2d; Supplementary Fig. 2a, b). Overall, the more robust
DEG results suggest the existence of differences in the expression levels of aging-
related genes between single-cell clusters.

In addition, throughout the manuscript, many figures (non-comprehensive examples
include figures 1h, 2b, 2f, and others) present expression values (either averaged across
cells/samples or for individual cells) for comparison across groups or clusters. These
figures appear to be generated with Seurat functions. It is not clear if the values are
“integrated” assay values (which are not readily interpretable across group comparisons)
or normalized “RNA” assay values. While RNA assay values are appropriate for
visualization, they would not account for technical batch differences, which could
complicate comparisons. This should be addressed and/or indicated to enable clarity of
interpretation for these visualizations.

We thank the reviewer for raising this question. In this study, we utilized data from the
‘integrated’ assay solely for dimensional reduction (PCA), UMAP visualization, and
cell clustering. The other analyses, such as differential expression analysis and gene set
enrichment, were conducted using normalized data from the ‘RNA’ assay of Seurat
object. All the values presented in the figures were normalized or scaled values obtained
from the ‘RNA’ assay. As mentioned by reviewer, we agreed that the RNA assay values
did not account for technical batch differences and may complicate comparisons.
However, we implemented a rigorous algorithm to eliminate false positives caused by
single-cell replicates (pseudobulk strategy) and further corrected the batch effect using
DESeq2, which ensured the reliability and appropriateness of our new DEG results for
visualization.

Following the reviewer’s suggestion, we have added additional information on data
visualization in the "Data Visualization and Statistical Information" section of the
Methods (line 1161). Furthermore, we have included a statement in the figure legends
clarifying that the values used for visualization were from the ‘RNA’ assay (Fig. 1h;
Fig. 2b; Fig. 2e; Fig. 4b; Fig. Se; Fig. 5j; Supplementary Fig. 1¢; Supplementary
Fig. 1f; Supplementary Fig. 2e; Supplementary Fig. 3b-c; Supplementary Fig. Sc;
Supplementary Fig. 5i; Supplementary Fig. 6d).

* In response to the initial review, the authors have helpfully demonstrated consistent
RNA velocity patterns in different samples. RNA velocity figures appear multiple times
in the manuscript. At multiple points, the authors make interpretations about the relative
magnitude of RNA velocity vectors that appear to be based primarily on visual
observation of integrated UMAP projections (lines 248-252). These are likely
overinterpretations of these data, which while potentially supportive of the authors’
model, are not really necessary to prove their points. In particular, inclusion and



acknowledgment of differences in relative cell frequency per cluster (lines 252-254,

Fig3b, Supplemental Fig 3a) provide much stronger data to support differences in adult

vs. perinatal sources; these are controlled for tissue source and batch (Seurat integration)
and should not be susceptible to gene expression differences. It is this reviewer’s

opinion that the same conclusions could be drawn by focusing on these frequency

differences rather than the RNA velocity results.

We thank the reviewer for the valuable suggestion. We totally agree with your
suggestion that the variations in the frequency of clusters between adult and perinatal
MSCs present more compelling evidence to substantiate their distinct aging statuses.,
and we have made the following changes to the corresponding content of the manuscript
in order to revise our interpretation of RNA velocity results:

(1) We have deleted the original analysis text for Fig. 3a as it may have been an
overinterpretation of the data. We have reinterpreted this analysis and now state: "RNA
velocity analysis suggests that MSCs from adult and perinatal tissues share a similar
cellular transition pattern" (line 252). Furthermore, we have modified the text
describing the frequencies of cells to highlight the difference in relative cell frequency
per cluster between adult and perinatal MSCs (line 255).

(2) We have deleted the original RNA velocity analysis and its interpretation in Fig. 5g,
which compared the RNA velocity vectors between young and aged BM-MSCs. Instead,
we have supplemented the RNA velocity analysis of all aged and young BM-MSCs in
Fig. 5g to replace the original context. We now interpret this analysis as: " We also
conducted RNA velocity analysis, which suggested that the transition trajectory of BM-
MSCs begins from non-aging clusters (BM1, BM2, and BM3) and ends in senescent
clusters BM5 and BM6" (line 409).

* In response to initial review, per cell gene set scores have now been calculated and
compared with AUCell, an appropriate tool for this application at single cell resolution.
However, the authors also note application of AUCell to pseudobulk profiles (lines
1055-1056). It is not clear from the available analysis code how AUC scores were
compared for differential pathway activity analyses in pseudobulk profiles or if this
approach is appropriate.

We thank the reviewer for raising this question. We have uploaded the code for
differential analysis of AUCell results to Github

(https://github.com/GaoYuchenPUMC/MSC paper/tree/main/code for Revision%?23
2/3 _AUCell pseudobulk analysis). We calculated the activity of gene sets in single
cells using AUCell, which convert the cell-by-gene matrix into a cell-by-gene-set
matrix based on normalized data with default parameters. For each single-cell cluster
within each sample, we generated a "pseudobulk” cluster by summing the gene set score
across all cells within that cluster. The "pseudobulk" clusters of the same type from
different tissue groups constitute biological replicates. To correct for batch effects, we




performed differential analysis between different "pseudobulk" replicates using the R
package DESeq2 with the parameter “design” set to '~ batch + pseudobulk cluster'. We
have supplemented the method for calculating differential AUCell scores in the method
section (line 1049), the results of the differential analysis after batch effect correction
have been updated in Supplementary table 4.

* The clinical trial data, which while interesting in comparing MSC dosing regimens
for clinical response, does not inform the manuscript’s primary subject (senescence in
MSC:s). It seems outside the scope of the present manuscript.

We thank the reviewer for the insightful comment and we have removed the clinical
trial data from this version of manuscript.

» As noted in the previous review, at multiple points throughout the manuscript main
text, the authors use language that suggests firm biological conclusions drawn solely
from scRNA-Seq analysis. Some examples include:

- Lines 148-149: “These results collectively indicate that the attenuated MSC
proliferation can be ascribed to cellular senescence.”

- Lines 202-204: “Thus, our data at single-cell resolution indicate that the loss of
proteostasis plays an important role in driving the cellular senescence of C5.”

- Lines 257-259: “Additionally, this heterogeneity in the dynamics of transition led to
a major increase in the proportion of C7 but caused no significant expansion of C5 and
C6 in adult MSCs (Fig. 3b; Supplementary Fig. 3a).”

In each of these cases, the text states firm causal relationships (“ascribed to...”, “plays
an important role in driving...”, “led to a major increase...”) inferred from the scRNA-
Seq results. While the single cell gene expression data may suggest, infer, be consistent
with, and/or inform future investigations, it is not sufficient to support such definitive
statements, which would require validating experimentation (which is provided by the
authors in several cases). These statements, which appear throughout the text, should
be modified accordingly.

We thank the reviewer for the valuable suggestion. According to reviewer’s concerns,
we have tone down conclusions that are only drawn from scRNA sequencing. Specific
revisions for this part are shown below:

(1) line 123: The interpretation of AUCell heatmap has been modified to “The top
expressed gene sets in each cluster are displayed on the heatmap, which suggested that
MSCs from C1, C2 and C3 highly expressed genes involved in cell cycle progression
and proliferation”.

(2) line 148: The interpretation of gene set score analysis in Fig. 1 has been modified
to “Based on the available evidence, it seems possible that the downregulation of MSC
proliferative and stem cell signature genes may be linked to cellular senescence”.



(3) line 164: The conclusion has been revised to “Collectively, our comprehensive
bioinformatic analysis suggests that clinically used MSC products from various tissue
origins have an underestimated level of heterogeneity, and our findings have also
helped reconstruct a progressive senescence process in MSCs, which is characterized
by a decline in proliferation capacity and stem cell features”.

(4) line 173: The interpretation of DEG analysis in Fig. 2b has been modified to “The
abundant expression of genes such as TP53, CDKNIA and CDKN2A suggested that
senescence of C6 and C7 is linked to genomic stress”.

(5) line 182: The interpretation of gene set score analysis in Fig. 2¢ has been modified
to “Gene set scoring analysis also suggested that, compared to MSCs from C5 and non-
senescent clusters, the unresolved DNA damage might be a contributing factor to the
cellular senescence observed in MSCs from C6 and C7, accompanied by downregulated
PI3K-AKT pathway activity in these cells”.

(6) line 186: The conclusion has been revised to “Based on these results, we inferred
that genomic stress generated during in vitro expansion might be an inducer of cell
senescence in C6 and C7”.

(7) line 195: The interpretation of GO analysis has been modified to “These results
indicate that cellular stress in C5 is likely to be induced by the abnormal accumulation
of unfolded or misfolded proteins in the ER.”

(8) line 204: The conclusion has been revised to “Together, these results suggest that
the loss of proteostasis might contribute to the cellular senescence of C5”.

(9) line 245: The conclusion has been revised to “Collectively, our data offer valuable
insights into the underlying biochemical mechanisms and molecular regulatory
networks that may be involved in MSC senescence.”

(10) line 262: The conclusion has been modified to “These results suggest that
compared to perinatal MSCs, MSCs derived from adult tissue exhibit higher levels of
cellular senescence”.

(11) line 276: We have revised the conclusion to “Collectively, these analyses suggest
a possible molecular regulatory mechanism that may contribute to the observed
differences in aging levels between MSCs derived from adult and perinatal sources”.

(12) line 407: The interpretation of Pearson correlation analysis in Fig. 5f has been
modified to “Our Pearson correlation analysis also suggested that cells from BM1-3
have high correlation value with C1-3, while BM5-6 show more similarity to aging
cluster C5-7".



(13) line 412: The conclusion has been revised to “Overall, based on another single-
cell dataset, we inferred that the cellular senescence process during in vitro expansion
may result in the emergence of MSC clusters with different aging statuses.”

Reviewer #3 (Remarks to the Author):

The authors have responded to the points made by the reviewers in detail and added
relevant information, experimental data and explanations. The key finding that GATA2
regulates PD-L1 and thus by analogy immunosuppressive function, and that this is
impaired on older (senescent) MSC is supported. The general correlation between
ageing, stemness and differentiation properties has been more realistically described.
Thus, I am of the opinion that the experimental options to strengthen the manuscript
and support the finding have been exhausted.

We appreciate the time and effort the reviewer devoted to the review process, and we
are grateful for reviewer’s valuable comments on this work.
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Appendix Fig. 1: Remove cell cycle related genes (Geneset: GOBP_CELL_CYCLE_GO0.0007049, n=1847)
from Variable Features, avoid its effect on the downstream PCA analysis

Cell clusters: after cell cycle related genes removal
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Appendix Figure 1. Effect of removal of cell cycle genes on clustering

(a), UMAP showing seven cluster of MSCs after remove cell cycle related

genes from Variable Features. (b), Dot plots showing the scaled expression of
representative senescent-related genes in RNA assay for each cluster calculated

in appendix Fig. la. (c), Correlation matrices showing the Pearson correlation
coefficients of the 7 MSC clusters caculated after remove cell cycle related genes
and 7 MSC clusters as shown in Fig. 1b. (d), Fractions of subpopulations in six
adult versus six perinatal MSC samples (Error bar: Mean = s.d.s). (e), Scatter plot
comparing the changes in cell frequencies for each cluster before and after removal
of cycle genes. P values are generated by two-tailed t test with Welch’s correction
(*p<0.05;**p<0.005; ***p<0.0005).



Appendix Fig. 2: Assign each single cell a Cell Cycle Score and Regress out
Cell Cycle Score using Seurat ScaleData function
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Appendix Figure 2. Effect of regressing out cell cycle score on clustering
(a), UMAP showing seven clusters of MSCs after regress out cell cycle scoring
by Seurat (b), Dot plots showing the scaled expression of representative
senescent-related genes in RNA assay for each cluster calculated in appendix Fig. 2a.
(c), Correlation matrices showing the Pearson correlation coefficients of

the 7 MSC clusters caculated after regress out cell cycle scoring and 7 MSC
clusters as shown in Fig. 1b (d), Fractions of subpopulations in six adult versus
six perinatal MSC samples (Error bar: Mean = s.d.s). (e), Scatter plot comparing
the changes in cell frequencies for each cluster before and after regress out cell
cycle score. P values are generated by two-tailed t test with Welch’s correction
(*p<0.05;**p<0.005; ***p<0.0005).



Appendix Fig. 3: Assign each single cell a Cell Cycle Score and Regress out
Cell Cycle Score using Scanpy regress_out function

b
Cell clusters: after regress out cell cycle score by Dé\’zl‘;’_g ] :?g
Scanpy regress_out function K67 o @@ A . _
LMNB1le @ @ verage cxpression
UBE2S 10 0@ 1
c2r PTTG1 |0 0@ )
HSPBT1 | 'YX
Cir. cér. C7rl HSPAY le ~@ 0 @ -1
GLB1 | @
car PDIAG | e00 Percent Expressed
C5r P53 e | .2
B4GALT1 - (] ® 50
C3r CTNNBT - (] @® 75
CDKN1A - @ ® 100
COL5A2 | YY)
IGFBP5 | Y
Cells are labeled as cell cluster in Fig1b COL12A1, et
NFFHFFN
ez
.I g .I C d *kk
) Pearson correlation analysis __ 604 mm Adult .
c1 ® [ Perinatal
(o'} c2 @
C3 IS
c5 c4 -
o
05 c
(0K ] C6 S
c7 S
A2 ) 325 T KA AN =
RekdRdgenede} “
Correlation coefficent C1r C2r C3r C4r Cb5r Cér C7r
AL i
Cell cycle phase low high
e
807 @ cuustersin Fig. 1b
;\? W Clusters after after regress out cell cycle score
Z 60 o "
©
(&
S 40+
c
9 o
B 204% ;
0G1 & %; % I t* . S
GZM z i o = _I_ i _'_ o0
.S 0+++ 5 T T

Ot P EF TP K K A

Appendix Figure 3. Effect of regressing out cell cycle score on clustering
(a), UMAP showing seven clusters of MSCs after regress out cell cycle scoring
by scanpy (b), Dot plots showing the scaled expression of representative
senescent-related genes in RNA assay for each cluster calculated in appendix Fig. 2a.
(c), Correlation matrices showing the Pearson correlation coefficients of

the 7 MSC clusters caculated after regress out cell cycle scoring and 7 MSC
clusters as shown in Fig. 1b (d), Fractions of subpopulations in six adult versus
six perinatal MSC samples (Error bar: Mean + s.d.s). (e), Scatter plot comparing
the changes in cell frequencies for each cluster before and after regress out cell
cycle score. P values are generated by two-tailed t test with Welch’s correction
(*p<0.05;**p<0.005; ***p<0.0005).



REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

This revised version is much improved especially in uncovering the heterogeneity between different
sources of human MSCs, as well as providing strong evidence for less senescence in chronologically
youthful perinatal MSCs compared to adult MSCs and its inverse relationship to immunosuppressive
properties. However, the ‘add-back’ of MSC stemness still results in similar problems of the initial
version of the manuscript.

1) Directly equating the 3 pluripotency factors to stand for MSC stemness factors is, at best
inappropriate and at worst wrong/unproven. If the authors wish to use these 3 factors, then these
genes must be labeled appropriately as “pluripotency stem cell signature genes” and not generically
as “stem cell signature genes”, and then further referenced as to why these factors perhaps may act
to be select for MSCs/non-pluripotent stem cells (i.e. Pochampally et al, Blood 2004 for h(BMMSCs;
Fukuchi et al, Stem Cells 2004 for fetal placental MSCs).

Specific comments:

2) The use of the term ‘MSC stemness’ is quite controversial as the authors acknowledge, which is
also reflected in the literature by the paucity of publications using this term, therefore use of another
and more descriptive term(s) is advised, i.e. “MSC multi-lineage differentiation capacity”.

3) Since the authors still include tri-lineage differentiation data, and the definition for any stem cell
critically includes multi-lineage potential, it would be more logical to assess the tri-lineage
differentiation transcriptomic programs (i.e. Runx2/Osterix & downstream ostegenic genes;
CEBPb/PPARg & downstream adipogenic genes; Sox9 & downstream

chondrogenic genes) to stand for MSC stemness. Moreover, the authors continue to use the term
“stem cells” rather than “stromal cells” throughout the manuscript, therefore incorporation of
bioinformatics analyses of differentiation transcriptional programs would not only be appropriate but
important. In fact, since the authors already found that in functional differentiation assays senescent
MSCs are more prone to adipogenesis than osteogenesis, it is definitely worthwhile to add
bioinformatics data relevant to these functional differentiation assays.

Minor comments:

a) Line 170: perhaps adding or replacing “biochemical” with “molecular” is more accurate (this was
done in the summary sentence of the paragraph/section)

b) Lines 473-4: perhaps adding “at baseline” after “senescence” in “adult tissue-derived MSCs have a
higher degree of senescence AT BASELINE than perinatal MSCs” would be useful to readers.

Reviewer #2 (Remarks to the Author):

In the present submission, the authors have addressed nearly all of this reviewer’s concerns
regarding single cell RNA-Seq (scRNA-seq) analysis. Specific comments and remaining issues are
detailed below:

Cell cycle effects on clustering

While the extensive effort the authors have undertaken to assess the impact of cell cycle associated
gene expression is impressive and welcome, as they now note in their updated text, based on the
biology under investigation, it is difficult if not impossible to fully separate cell cycle-associated gene
expression patterns from senescence. This confounding issue is not necessarily a problem as it is
managed with supporting experimental data; the key issue is to address it in interpretation of analysis
results. The newly updated language addresses this issue. It would be further improved by also
including some of the language from the rebuttal: “After we removed the effect of the cell cycle, there
were no significant changes in cell clustering, and the results of the cell cycle regression did not affect



our major conclusions of this study.” It should not be necessary to include the rebuttal appendix data
in the final manuscript.

Visualization of expression values

The updated figure legend information informing (generally appropriate) use of Seurat “RNA assay”
data for gene expression values addresses the main critique of the previous review. However, for
those figures that include gene expression data generated from multiple technical batches, it is not
fully appropriate to directly compare these values. This is not a major issue; the authors are correct in
stating that they “implemented a rigorous algorithm to eliminate false positives caused by single-cell
replicates (pseudobulk strategy) and further corrected the batch effect using DESeq2, which ensured
the reliability and appropriateness of our new DEG results for visualization.” This is sufficient to
ensure that the genes selected for plotting are indeed significant (i.e. not a consequence of batch
effects), but has no impact on the expression values themselves which are visualized. At line 1166,
the authors state that “Additionally, batch effects were corrected to ensure accurate comparisons.”
Assuming “batch effects were corrected” refers to actually transforming the expression values for
plotting, there is no evidence in the analysis code that any such correction was applied.

None of this is expected to change results or interpretations, but for those figures that include
visualization of expression values from multiple batches, it would be most accurate to note “(non-
batch corrected)” (or similar) in the figure legends.

Pseudobulk gene set scores

As noted in the previous review, the authors appropriately applied AUCell for per cell gene set scores
at single cell resolution. Also in the previous review, a question was raised about using AUCell scores
for pseudobulk profiles. While the authors have now provided an explanation and updated analysis
code, the question remains: is simply summing AUCell scores into pseudobulk profiles an appropriate
/ accurate method for gene set testing/activity? This reviewer is not aware of endorsement of this
approach by the AUCell developers or any relevant benchmarking study. An alternative approach
might be to use well-established “bulk” RNA-Seq gene set tools (e.g. GSVA, QuSage, others) on
pseudobulk profiles calculated from single cell gene expression (i.e. rather than calculating gene set
scores PER CELL and THEN summing for pseudobulk, sum gene expression to pseudobulk and then
run appropriate gene set tools).



Point by point response to reviewers

We sincerely appreciate the efforts of all the reviewers for their careful evaluation and
valuable feedback on our manuscript. Following the suggestions by the reviewers, we
have made several revisions to the bioinformatics analysis and writing, which further
enhanced the accuracy and reliability of our results. Among the highlights of the new
results, we have included additional bioinformatic analysis to elucidate the impact
of senescence on MSC trilineage differentiation capacity. Additionally, we have
optimized our gene set analysis by utilizing the GSVA algorithm on pseudobulk
samples calculated from single-cell gene expression data, which has increased the
rigor of our analysis. Finally, we have also modified the text description of MSC
stemness and revised the interpretation of pluripotency factors to enhance the
credibility of our results. The new data are highlighted in a blue font in the revised
manuscript, including the legends and labels of figures and supplementary tables. All
figure callouts below correspond to figures in the revised manuscript. With the new
results, we believe we have addressed all of the reviewers’ concerns, substantially
improved the accuracy and reliability of our work, and broadened the impacts of our
study.

A brief summary of the major new results is listed below, which are divided into two
categories.

A. Analysis of the effects of cell senescence on MSC trilineage differentiation capacity.

1. The comparison of adipogenesis score, osteogenesis score and chondrogenesis

score of six BM-MSCs clusters derived from young and aged donor
(Supplementary Fig. 5i, Supplementary table 3).

2. The tri-lineage differentiation scores of young and aged BM-MSC samples
were compared (Supplementary Fig. 5j).

3. The comparison of the expression level of CEBPB, PPARG, RUNX2 and
SOX9 in six BM-MSCs clusters derived from young and aged donors
(Supplementary Fig. 5k).

4. The expression level of CEBPB, PPARG, RUNX2 and SOX9 in young and
aged BM-MSC samples were compared (Supplementary Fig. 5I).

B. Adoption of more rigorous strategies for pseudobulk gene set analysis.
1. The ‘pseudobulk’ strategy were used to assess differential activities of
pathway scored by GSV A with batch effect correction by limma package (Fig.
1c, Supplementary Table 4).
Reviewers' comments:

Reviewer #1 (Remarks to the Author):

This revised version is much improved especially in uncovering the heterogeneity



between different sources of human MSCs, as well as providing strong evidence for
less senescence in chronologically youthful perinatal MSCs compared to adult MSCs
and its inverse relationship to immunosuppressive properties. However, the ‘add-back’
of MSC stemness still results in similar problems of the initial version of the manuscript.

We thank the reviewer for the encouraging comments on our revised manuscript.

1) Directly equating the 3 pluripotency factors to stand for MSC stemness factors is, at
best inappropriate and at worst wrong/unproven. If the authors wish to use these 3
factors, then these genes must be labeled appropriately as “pluripotency stem cell
signature genes” and not generically as “stem cell signature genes”, and then further
referenced as to why these factors perhaps may act to be select for MSCs/non-
pluripotent stem cells (i.e. Pochampally et al, Blood 2004 for hBMMSCs; Fukuchi et
al, Stem Cells 2004 for fetal placental MSCs).

We thank the reviewer for raising this question. We acknowledge that a more rigorous
description and interpretation of experimental data related to pluripotency genes is
necessary. According to reviewer’s suggestions, we have made the following revisions
to the manuscript:

(1) We have re-interpreted the gPCR data of pluripotency stem cell genes mentioned in
line 277, and have incorporated references (reference 62 and 63) recommended by the
reviewer to explain why pluripotency factors may be used to represent the pluripotency
of MSCs.

(2) In the discussion section related to pluripotency gene data (line 658), we have
revised the term "stem signature genes" to "pluripotency stem cell signature genes".

(3) As the stem cell signature gene set used for the gene set score analysis contained
pluripotency genes, we have updated the figures and textual description related to stem
cell signature gene set analysis (Supplementary Fig. 1f, Supplementary Fig. 3d,
Supplementary Fig. 5g; line 146, line 149, line 272, line 408) to use the term
"pluripotency stem cell signature” instead of “stem cell signature".

Specific comments:

2) The use of the term ‘MSC stemness’ is quite controversial as the authors
acknowledge, which is also reflected in the literature by the paucity of publications
using this term, therefore use of another and more descriptive term(s) is advised, i.e.
“MSC multi-lineage differentiation capacity”.

We thank the reviewer for the constructive comments. According to reviewer’s
suggestions, we have replaced the term 'stemness' with more specific and descriptive
terms. Specific revisions for this part are shown below:



(1) line 661: In this study, we have also investigated the effect of cell aging on MSC
pluripotency gene expression and multi-lineage differentiation capacity.

(2) line 662: Research has shown that aging can have a negative impact on the
pluripotency and self-renewal capacity of stem cells.

(3) line 666: which suggest that the heterogeneity in pluripotency gene expression
among MSC populations could be related to differences in the senescence states of
individual cells.

(4) line 668: It is worth noting that although pluripotency stem cell signature genes
are widely used to demonstrate the self-renewal ability and multipotent
differentiation capacity of MSCs, whether these genes can fully stand for MSC
pluripotency in the aging process is still controversial and needs to be proved in future
work.

(5) line 674: Although the general consensus is that a stronger differentiation potential
represents better pluripotency of stem cells.

3) Since the authors still include tri-lineage differentiation data, and the definition for
any stem cell critically includes multi-lineage potential, it would be more logical to
assess the tri-lineage differentiation transcriptomic programs (i.e. Runx2/Osterix &
downstream ostegenic genes; CEBPb/PPARg & downstream adipogenic genes; Sox9
& downstream chondrogenic genes) to stand for MSC stemness. Moreover, the authors
continue to use the term “stem cells” rather than “stromal cells” throughout the
manuscript, therefore incorporation of bioinformatics analyses of differentiation
transcriptional programs would not only be appropriate but important. In fact, since the
authors already found that in functional differentiation assays senescent MSCs are more
prone to adipogenesis than osteogenesis, it is definitely worthwhile to add
bioinformatics data relevant to these functional differentiation assays.

We thank the reviewer for raising this question. We have incorporated the following
analysis to the manuscript based on the suggestions provided by the reviewers:

(1) We analyzed the expression levels of key transcriptional regulators of MSC
adipogenesis (CEBPB and PPARG), osteogenesis (RUNX2; the SP7, also known as
Osterix, was not detected in SCRNA sequencing data), and chondrogenesis (SOX9) in
young and aged BM-MSC scRNA data. We found that the expression of CEBPB and
PPARG were significantly increased in the aging BM-MSCs clusters (BM5, BM6),
while RUNX2 and SOX9 did not show significant expression differences among
clusters (Supplementary Fig. 5k). Besides, we also investigated the expression of
these transcription factors at the pseudobulk bulk level. While not statistically
significant, we observed that CEBPB was upregulated in aged samples at the
pseudobulk level, whereas the expression of RUNX2 was decreased in aged BM-MSCs



(Supplementary Fig. 51). These results indicate that senescent MSCs may upregulate
the expression of adipogenic transcription factors while downregulating the expression
of osteogenic regulators.

(2) We collected gene sets related to MSC adipogenesis (which includes
CEBPB/PPARG and its downstream adipogenic genes), osteogenesis (which includes
RUNX2 and its downstream osteogenic genes) and chondrogenesis (which includes
SOX9 and its downstream chondrogenic genes), and these gene sets were used to
calculate gene set scores for assessing the trilineage differentiation capacity of MSCs
(Supplementary table 3). Firstly, we calculated the gene set scores for each BM-MSC
cluster (Supplementary Fig. 5i). The results showed that the adipogenesis score
increased in the aging clusters (BM5, BM6), while these clusters exhibited decreased
expression of osteogenesis-related genes. Furthermore, we found that BM-MSCs
derived from aged donors exhibited upregulation of adipogenic genes but decreased
expression of osteogenic genes (Supplementary Fig. 5j). Although no significant
difference in chondrogenic ability was observed between young and aged BM-MSCs
during the in vitro differentiation experiment, our transcriptome-level analysis
suggested that the expression of chondrogenic-related genes was downregulated in aged
BM-MSCs. (Supplementary Fig. 5i-j). These findings suggest that senescence may
disturb the balance of MSC multi-lineage differentiation ability, resulting in weakened
osteogenesis and increased adipogenic tendency, which is consistent with the results of
the in vitro differentiation experiments (Supplementary Fig. 5a).

(3) We have revised the title of the fifth section to: “Altered multi-lineage
differentiation ability and impaired immunosuppressive capacity were observed in BM-
MSCs from aged donors” (line 381). The textual description of the above
bioinformatics analysis is provided in line 424.

Minor comments:
a) Line 170: perhaps adding or replacing “biochemical” with “molecular” is more
accurate (this was done in the summary sentence of the paragraph/section)

We thank the reviewer for the valuable suggestion. We have revised the title of the
second section to “Molecular basis of human MSC senescence.” (line 171)

b) Lines 473-4: perhaps adding “at baseline” after “senescence” in “adult tissue-derived
MSCs have a higher degree of senescence AT BASELINE than perinatal MSCs” would
be useful to readers.

We thank the reviewer for the valuable suggestion. We have revised the sentence to read
as follows: “These results suggest a significant correlation between our transcriptome
and proteome data for MSCs and provide evidence from a multiomics perspective to
demonstrate that adult tissue-derived MSCs have a higher degree of senescence at
baseline than perinatal MSCs.” (line 503)



Reviewer #2 (Remarks to the Author):

In the present submission, the authors have addressed nearly all of this reviewer’s
concerns regarding single cell RNA-Seq (scRNA-seq) analysis. Specific comments and
remaining issues are detailed below:

We are grateful for reviewer’s kind comments on our revised manuscript.

Cell cycle effects on clustering

While the extensive effort the authors have undertaken to assess the impact of cell cycle
associated gene expression is impressive and welcome, as they now note in their
updated text, based on the biology under investigation, it is difficult if not impossible
to fully separate cell cycle-associated gene expression patterns from senescence. This
confounding issue is not necessarily a problem as it is managed with supporting
experimental data; the key issue is to address it in interpretation of analysis results. The
newly updated language addresses this issue. It would be further improved by also
including some of the language from the rebuttal: “After we removed the effect of the
cell cycle, there were no significant changes in cell clustering, and the results of the cell
cycle regression did not affect our major conclusions of this study.” It should not be
necessary to include the rebuttal appendix data in the final manuscript.

We appreciate the reviewer's valuable suggestion. To further clarify the impact of cell
cycle genes on MSC clustering, we have added the following statement in line 609
“After we removed the effect of the cell cycle, there were no significant changes in cell
clustering, and the results of the cell cycle regression did not affect our major
conclusions of this study.”

Visualization of expression values

The updated figure legend information informing (generally appropriate) use of Seurat
“RNA assay” data for gene expression values addresses the main critique of the
previous review. However, for those figures that include gene expression data generated
from multiple technical batches, it is not fully appropriate to directly compare these
values. This is not a major issue; the authors are correct in stating that they
“implemented a rigorous algorithm to eliminate false positives caused by single-cell
replicates (pseudobulk strategy) and further corrected the batch effect using DESeq2,
which ensured the reliability and appropriateness of our new DEG results for
visualization.” This is sufficient to ensure that the genes selected for plotting are indeed
significant (i.e. not a consequence of batch effects), but has no impact on the expression
values themselves which are visualized. At line 1166, the authors state that
“Additionally, batch effects were corrected to ensure accurate comparisons.” Assuming
“batch effects were corrected” refers to actually transforming the expression values for
plotting, there is no evidence in the analysis code that any such correction was applied.



We thank the reviewer for the constructive comments. We apologize for the previous
language error, and we would like to clarify that our original intention was to convey
that the differential genes visualized in the figure were obtained from DESeq2
differential analysis with batch correction. To rectify this error, we have revised the
sentence in line 1205 as follows: “Furthermore, to ensure that only significant genes
were selected for plotting and that they were not the result of batch effects, we used
DESeq? to correct for batch effects in the differential gene analysis (design = ~ batch
+ pseudobulk cluster).”

None of this is expected to change results or interpretations, but for those figures that
include visualization of expression values from multiple batches, it would be most
accurate to note “(non-batch corrected)” (or similar) in the figure legends.

We thank the reviewer for the valuable suggestion. To address the issue of figures that
display visualization of expression values from multiple batches, we have included the
following description in the corresponding figure legend: “The displayed values were
non-batch corrected.”

Pseudobulk gene set scores

As noted in the previous review, the authors appropriately applied AUCell for per cell
gene set scores at single cell resolution. Also in the previous review, a question was
raised about using AUCell scores for pseudobulk profiles. While the authors have now
provided an explanation and updated analysis code, the question remains: is simply
summing AUCell scores into pseudobulk profiles an appropriate / accurate method for
gene set testing/activity? This reviewer is not aware of endorsement of this approach
by the AUCell developers or any relevant benchmarking study. An alternative approach
might be to use well-established “bulk” RNA-Seq gene set tools (e.g. GSVA, QuSage,
others) on pseudobulk profiles calculated from single cell gene expression (i.e. rather
than calculating gene set scores PER CELL and THEN summing for pseudobulk, sum
gene expression to pseudobulk and then run appropriate gene set tools).

We thank the reviewer for raising this question. We recognize that in our case, which
involves batch differences and biological replicates, it is more appropriate to use bulk
RNA-Seq gene set algorithms on “pseudobulk” samples calculated from single-cell
gene expression data. To achieve this, we summed the gene expression values in each
cluster to create pseudobulk profiles, and subsequently computed the GSVA score for
each pseudobulk sample. However, since the GSVA calculation produced negative
values that are not integers, it was not suitable to use the DESeq2 algorithm for
differential expression analysis and batch correction, as this method requires positive
integer values. Instead, we utilized the limma package to remove batch effects and
perform differential expression analysis. The "removeBatchEffect” function from the
limma package was employed to eliminate potential impact of batch differences on the
calculation of GSVA scores. Subsequently, we used limma to calculate the differential
activities of pathways, and the mean GSVA scores for all pseudobulk samples per



cluster were displayed in the heatmap (Fig. 1c; Supplementary table 4). We have
supplemented the methods of this part in line1052, and the codes used for this analysis
have been uploaded to Github
(https://github.com/GaoYuchenPUMC/MSC_paper/blob/main/code for Revision%23
3/Pseudobulk GSVA.R).




REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

The last revisionary efforts are very useful, but just a few corrections are still needed since the
authors appear to still have misunderstood basic concepts of MSC differentiation capacity vs.
pluripotency (which MSCs and other adult/somatic stem cells do not possess).

Line 235: please add “factors” after “pluripotency”

Lines 278-79: please delete "represent the pluripotent signature of" and replace with revise "be better
selection markers for”

Line 281: please replace “pluripotency” with “multipotent differentiation capacity”

Line 671: please replace “pluripotency” with “stem cell capacity”

Line 675: “pluripotency” with “differentiation capacity”

Reviewer #2 (Remarks to the Author):

The authors have addressed nearly all of the previously articulated concerns regarding single cell
RNA-Seq (scRNA-Seq) and related analyses. One remaining minor issue related to gene set analysis
of pseudobulk scRNA-Seq data is detailed below.

The application of GSVA for geneset enrichment testing on pseudobulk scRNA-Seq values addresses
previous concerns regarding the appropriateness of summing/aggregating single cell gene set values
for grouped analyses. However, a minor improvement to the workflow may make for more robust
results. As implemented, the authors take the pseudobulk count matrix, “correct” for batch effects
using the removeBatchEffect functon(limma), calculate GSVA scores, and then test for differential
gene set enrichment in limma. Rather than “correcting” counts, which can have unintended effects,
the workflow could be modified to take the pseudobulk count matrix, calculate GSVA scores, and test
for differential gene sent enrichment in limma while accounting for batch in the corresponding design
matrix (i.e. ~ batch + pseudobulk cluter), as has been implemented elsewhere in the manuscript for
differential gene expression testing. For visualization (e.g. Fig 1C), median GSVA values can be
used.

Line 121: Resulting GSVA scores should not be referred to as “single-cell enrichment scores”;
“pseudobulk” or similar would be more appropriate.



Point by point response to reviewers

We sincerely appreciate the encouraging and constructive comments provided by all
the reviewers. Following the valuable suggestions from the reviewers, we have
made further enhancements to the methodology of the bioinformatics analysis
and revised the textual content of the manuscript. We have made revisions to the
structure of the manuscript and enhanced the descriptions of the statistical
methods, as well as other sections. The new data are highlighted in a blue font in the
revised manuscript, including the legends and labels of figures.

Reviewers' comments:
Reviewer #1 (Remarks to the Author):

The last revisionary efforts are very useful, but just a few corrections are still needed
since the authors appear to still have misunderstood basic concepts of MSC
differentiation capacity vs. pluripotency (which MSCs and other adult/somatic stem
cells do not possess).

We thank the reviewer for the encouraging comments on our revised manuscript.

Line 235: please add “factors” after “pluripotency”

Lines 278-79: please delete "represent the pluripotent signature of" and replace with
revise "be better selection markers for”

Line 281: please replace “pluripotency” with “multipotent differentiation capacity”
Line 671: please replace “pluripotency” with “stem cell capacity”

Line 675: “pluripotency” with “differentiation capacity”

We thank the reviewer for raising this question. We have revised all corresponding
words in the manuscript based on the suggestions from the reviewer.

Reviewer #2 (Remarks to the Author):

The authors have addressed nearly all of the previously articulated concerns regarding
single cell RNA-Seq (scRNA-Seq) and related analyses. One remaining minor issue
related to gene set analysis of pseudobulk scRNA-Seq data is detailed below.

We thank the reviewer for the encouraging comments.

The application of GSVA for geneset enrichment testing on pseudobulk scRNA-Seq
values addresses previous concerns regarding the appropriateness of
summing/aggregating single cell gene set values for grouped analyses. However, a
minor improvement to the workflow may make for more robust results. As



implemented, the authors take the pseudobulk count matrix, “correct” for batch effects
using the removeBatchEffect functon(limma), calculate GSVA scores, and then test for
differential gene set enrichment in limma. Rather than “correcting” counts, which can
have unintended effects, the workflow could be modified to take the pseudobulk count
matrix, calculate GSVA scores, and test for differential gene sent enrichment in limma
while accounting for batch in the corresponding design matrix (i.e. ~ batch +
pseudobulk cluter), as has been implemented elsewhere in the manuscript for
differential gene expression testing. For visualization (e.g. Fig 1C), median GSVA
values can be used.

We thank the reviewer for the valuable suggestion. In response to this suggestion, we
summed the gene expression values within each cluster to generate pseudobulk profiles.
Subsequently, we calculated the GSVA score for each pseudobulk cluster. We then
utilized the limma package to perform differential gene set scoring analysis. The
parameter of the model.matrix function was set to '~O+pseudobulk cluster+batch' to
further remove the influence of batch effects on limma differential analysis. The
updated results, including the heatmap and supplementary tables (Fig. 1c;
Supplementary table 4), have been updated. We have supplemented the methods of
this part in line 1054, and the codes used for this analysis have been uploaded to Github
(https://github.com/GaoYuchenPUMC/MSC _paper/blob/main/code_for Revision%?23
4/GSVA _analysis.R)

Line 121: Resulting GSVA scores should not be referred to as “single-cell enrichment
scores”; “pseudobulk” or similar would be more appropriate.

We thank the reviewer for raising this question. We have revised ‘“single-cell
enrichment scores” in line 112 to “enrichment scores for each pseudobulk cluster”.



