Supplementary Data

Table of Contents Supplementary Tables	
Supplementary Table S1. Summary of real scRNA-seq applications of GenKI analysis	
Supplementary Table S2. Trem2-KO responsive genes in microglia cells	
Supplementary Table S3. Pathway enrichment analysis results of Trem2-KO responsive genes in microglia cells (n = 10)	5
Supplementary Table S4. GO enrichment analysis results of Trem2-KO responsive genes in microglia cells (n = 20)	6
Supplementary Table S5. Nkx2-1-KO responsive genes in AT1 cells.	7
Supplementary Table S6. GO enrichment analysis results of Nkx2-1-KO responsive genes in AT1 cells (n = 20)	
Supplementary Table S7. Hnf4a & Smad4-KO responsive genes in enterocytes	9
Supplementary Table S8. GO enrichment analysis results of Hnf4a & Smad4-KO responsive genes in enterocytes (n = 20)	
Supplementary Table S9. DE analyses of the Nkx2-1 KO experiment resulting from different DE methods	11
Supplementary Table S10. STAT1-KO responsive genes in epithelial cells	
Supplementary Table S11. GO enrichment analysis results of STAT1-KO responsive genes in epithelial cells (n = 10)	13
Supplementary Figures	14
Supplementary Figure S1. Heatmap of Spearman correlation coefficients between scores of KL divergence given by GenKI across different cutoffs	four 14
Supplementary Figure S2. ROC curves of virtual KO experiments using three simulated SERGIO data sets.	15
Supplementary Figure S3. Comparing <i>p</i> -value given by GenKI and scTenifoldKnk to genes that are close or distance neighbors of a gene in the BEELINE data set	a KO 16
Supplementary Figure S4. Performance of GenKI in reconstructing scGRNs of microglia data set	17
Supplementary Figure S5. KO responsive genes cannot be simply inferred from gene expression or edge weight with the KO gene	e
Supplementary Figure S6. Comparison of absolute values of fold-change (FC=WT/KO) between randomly selected non-perturbed and KO-responsive genes given by GenKI	d genes 19
Supplementary Figure S7. STRING networks of Trem2-KO responsive genes before and after including DE genes	20

Supplementary Figure S8. Performance of GenKI in reconstructing scGRNs of COVID-19 data set	21
Supplementary Figure S9. Total running time of GenKI and scTenifoldKnk with respect to data set sizes	22

Supplementary Tables

Supplementary Table S1. Summary of real scRNA-seq applications of GenKI analysis.

Data set	Cell type of interest (cell number)	Target KO gene	Source	KO-responsive genes given by GenKI
Microglia	Microglia (648)	Trem2	GEO: GSE130627	TREM2, CTSD, APOE, CD74, LYZ2, CD9, TYROBP, CD52, CTSZ, CTSB, ACTB, H2-AA, CYBA, NDUFA4
Lung	AT1 cells (624)	Nkx2-1	GEO: GSE129628	NKX2-1, IGFBP2, CD74, SFTPD, FOS, JUN, CYR61, DAG1, EGR1, NDNF, JUNB, NAPSA, AQP1, CTSH, NPC2, SFTA2, TIMP3, RGCC, DUSP1, IER2, SCGB1A1, CLIC5, S100A6, ANXA2, TMSB4X, CLDN3, KRT8, RTKN2, KRT19, NNAT, LGALS3, WFDC2, TUBA1A, LMO7, MAL, ANXA1, F3, SFTPC, TPPP3, KRT18, RPS2, ANO1, RNASE4, PRNP, SPOCK2, S100A11, DDC, LAMC2, ATP1B1, MFGE8, CLU, PHLDA1, IGFBP7, PTMA, MUC1, S100A10, HOPX, AKAP5, CYSTM1, FJX1, STMN1, EMB, PXDC1, CCND2, H2-AA, EPCAM, ID2, CD24A, GAS6, ACTN4, H2-AB1, PLOD2, RAB25, CLDN7, AGER, ARL6IP1, MBIP, TMEM108, H2-EB1, PAICS, PDLIM1, POPDC3
Intestine	Enterocytes (502)	Hnf4a & Smad4	GEO: GSE112946	HNF4A, SMAD4, REG3B, REG3G, DMBT1, REG1, CCK, GCG, GSTA1, UGT2B34, GCLM, SFXN1, LAMP2, TSC22D1
COVID-19	Epithelial cells (108)	STATI	EGAS00001004481	STAT1, S100A8, HLA-DRA, S100A9, FTL, WFDC2, ANXA1, LCN2, CSTB, PPDPF, VIM, SLPI, HLA-DRB1, LYPD2, S100P, GPX1, CTSB, P13, KRT19, HSPB1, FABP5, AGR2, LGALS1, IL1RN, CTSD, HLA-DPA1, HSPA5, TIMP1
Nervous system	Neurons (2,054&2,156)	Mecp2	SRA: SRP135960	MECP2, GAD2, GAD1, SYP, NDRG4, MAP1B, NAPB, GNB1, ENO2, VAMP2, RAB6B, EPHA5, TIMP2, SCD2, CNTN1, RTN1, SRCIN1, PGM2L1, MAP4, RAB3C, COX411, AES, ALCAM, IDS, MT-ND5, PSMB2, PRKCE, PSMA6, SLC24A3, CADM2, GRIN3A

Supplementary Table S2. Trem2-KO responsive genes in microglia cells.

Genes are ranked according to their KL divergence between WT and virtual KO samples.

Genes	KL divergence
TREM2	1.84E5
CTSD	8.67
APOE	8.40
CD74	8.38
LYZ2	7.41
CD9	5.94
TYROBP	5.35
CD52	4.45
CTSZ	4.26
CTSB	4.11
ACTB	3.98
H2-AA	3.20
CYBA	2.79
NDUFA4	2.76
CX3CR1	2.65
TTR	2.47
COX6C	1.88
ENPP2	1.61
ADAP2OS	1.53
TIMP2	1.51

Supplementary Table S3. Pathway enrichment analysis results of Trem2-KO responsive genes in microglia cells (n = 10).

Term	Overlap	p-value	Adj. p-value	Genes
Interleukin-2 signaling pathway	7/847	1.1E-05	1.3E-03	CX3CR1;CD52;CTSZ;TIMP2;CTSD;ACTB;CTSB
Other semaphorin interactions	2/16	1.1E-04	4.0E-03	TYROBP;TREM2
Mitochondrial pathway of apoptosis	3/97	1.2E-04	4.0E-03	CTSZ;CTSD;CTSB
MHC class II antigen presentation	3/103	1.4E-04	4.0E-03	CD74;CTSD;CTSB
Lysosome	3/121	2.3E-04	5.0E-03	CTSZ;CTSD;CTSB
Adaptive immune system	5/606	2.7E-04	5.0E-03	CD74;TYROBP;CYBA;CTSD;CTSB
Alzheimer's disease	3/169	6.1E-04	9.8E-03	NDUFA4;APOE;COX6C
Semaphorin interactions	2/66	2.0E-03	2.7E-02	TYROBP;TREM2
FSH regulation of apoptosis	3/263	2.2E-03	2.7E-02	CX3CR1;APOE;ACTB
Immune system	5/998	2.5E-03	2.8E-04	CD74;TYROBP;CYBA;CTSD;CTSB

Term	Overlap	p-value	Adj. p-value	Genes
regulation of hippocampal neuron apoptotic process	3/5	8.5E-09	5.5E-06	CX3CR1;TYROBP;TREM2
macrophage activation involved in immune response	3/13	2.4E-07	3.8E-05	CX3CR1;TYROBP;TREM2
neutrophil degranulation	7/481	2.6E-07	3.8E-05	TYROBP;TTR;CTSZ;TIMP2;CYBA;CTSD;CTSB
neutrophil activation involved in immune response	7/485	2.8E-07	3.8E-05	TYROBP;TTR;CTSZ;TIMP2;CYBA;CTSD;CTSB
neutrophil mediated immunity	7/488	2.9E-07	3.8E-05	TYROBP;TTR;CTSZ;TIMP2;CYBA;CTSD;CTSB
microglial cell activation	3/22	1.3E-06	1.4E-04	CX3CR1;TYROBP;TREM2
positive regulation of transport	4/91	1.8E-06	1.7E-04	CYBA;TREM2;APOE;ACTB
regulation of interleukin-6 production	4/110	3.9E-06	3.2E-04	CD74;TYROBP;CYBA;TREM2
regulation of microglial cell mediated cytotoxicity	2/5	9.4E-06	6.3E-04	CX3CR1;TYROBP
innate immune response	5/302	9.8E-06	6.3E-04	CX3CR1;CD74;TYROBP;CYBA;TREM2
positive regulation of amyloid-beta clearance	2/7	1.9E-05	1.1E-03	TREM2;APOE
regulation of microglial cell migration	2/7	1.9E-05	1.1E-03	CX3CR1;TREM2
negative regulation of long-term synaptic potentiation	2/8	2.6E-05	1.3E-03	TYROBP;APOE
lipoprotein metabolic process	2/9	3.4E-05	1.5E-03	APOE;CTSD
synapse pruning	2/9	3.4E-05	1.5E-03	CX3CR1;TREM2
regulation of toll-like receptor 2 signaling pathway	2/11	5.2E-05	2.0E-03	CYBA;TREM2
lipoprotein catabolic process	2/11	5.2E-05	2.0E-03	APOE;CTSD
positive regulation of interleukin-6 production	3/76	5.7E-05	2.1E-03	CD74;TYROBP;CYBA
negative regulation of amyloid fibril formation	2/12	6.2E-05	2.1E-03	TREM2;APOE
negative regulation of cell activation	2/14	8.6E-05	2.8E-03	TREM2;APOE

Supplementary Table S4. GO enrichment analysis results of Trem2-KO responsive genes in microglia cells (n = 20).

Supplementary Table S5. Nkx2-1-KO responsive genes in AT1 cells.

Genes are ranked according to their KL divergence between WT and virtual KO samples.

Genes	KL divergence	Genes	KL divergence	Genes	KL divergence
NKX2-1	49.89	LGALS3	2.87E-05	STMN1	2.50E-05
IGFBP2	3.75E-05	WFDC2	2.86E-05	EMB	2.49E-05
CD74	3.73E-05	TUBAIA	2.84E-05	PXDC1	2.46E-05
SFTPD	3.65E-05	LMO7	2.84E-05	CCND2	2.46E-05
FOS	3.64E-05	MAL	2.81E-05	H2-AA	2.45E-05
JUN	3.60E-05	ANXA1	2.81E-05	EPCAM	2.44E-05
CYR61	3.35E-05	F3	2.80E-05	ID2	2.43E-05
DAG1	3.34E-05	SFTPC	2.79E-05	CD24A	2.37E-05
EGR1	3.32E-05	TPPP3	2.76E-05	GAS6	2.36E-05
NDNF	3.31E-05	KRT18	2.75E-05	ACTN4	2.35E-05
JUNB	3.26E-05	RPS2	2.73E-05	H2-AB1	2.35E-05
NAPSA	3.26E-05	ANO1	2.70E-05	PLOD2	2.33E-05
AQP1	3.25E-05	RNASE4	2.70E-05	RAB25	2.31E-05
CTSH	3.25E-05	PRNP	2.69E-05	CLDN7	2.27E-05
NPC2	3.19E-05	SPOCK2	2.69E-05	AGER	2.27E-05
SFTA2	3.13E-05	S100A11	2.68E-05	ARL6IP1	2.24E-05
TIMP3	3.12E-05	DDC	2.65E-05	MBIP	2.20E-05
RGCC	3.10E-05	LAMC2	2.65E-05	TMEM108	2.11E-05
DUSP1	3.05E-05	ATP1B1	2.64E-05	H2-EB1	2.08E-05
IER2	3.03E-05	MFGE8	2.64E-05	PAICS	2.05E-05
SCGB1A1	3.03E-05	CLU	2.63E-05	PDLIM1	2.00E-05
CLIC5	3.02E-05	PHLDA1	2.62E-05	POPDC3	1.99E-05
S100A6	2.95E-05	PTMA	2.61E-05		
ANXA2	2.93E-05	IGFBP7	2.61E-05		
TMSB4X	2.93E-05	MUC1	2.61E-05		
CLDN3	2.93E-05	S100A10	2.60E-05		
KRT8	2.91E-05	HOPX	2.58E-05		
RTKN2	2.90E-05	AKAP5	2.55E-05		
KRT19	2.90E-05	CYSTM1	2.52E-05		
NNAT	2.88E-05	FJX1	2.51E-05		

Supplementary Table S6. GO enrichment analysis results of Nkx2-1-KO responsive genes in AT1 cells (n = 20).

Term	Overlap	p-value	Adj. p-	Genes	
	12/204	5 3F 00	value		
positive regulation of macromolecule metabolic	12/384	5.2E-08	6.1E-05	CD74;EGR1;CLDN3;RGCC;ANXA2;ID2;NKX2-1;MBIP;CTSH;GAS6;CLU;F3	
process					
chemical homeostasis within a tissue	3/7	2.3E-06	7.2E-04	NAPSA;SFTPD;CTSH	
surfactant homeostasis	3/7	2.3E-06	7.2E-04	NAPSA;SFTPD;CTSH	
regulation of cell population proliferation	14/764	2.5E-06	7.2E-04	JUN;RTKN2;LAMC2;CLU;CLDN3;CCND2;RGCC;RAB25;EPCAM;ID2;CTSH;IGFB	
				P7;JUNB;S100A11	
positive regulation of cell population	11/474	3.6E-06	8.2E-04	CD74;CCND2;RAB25;EPCAM;ID2;RTKN2;S100A6;CTSH;LAMC2;GAS6;AOP1	
proliferation					
positive regulation of gene expression	11/482	4.3E-06	8.2E-04	CD74;EGR1;CLDN3;RGCC;ID2;NKX2-1;MBIP;CTSH;GAS6;CLU;F3	
positive regulation of fibroblast proliferation	4/28	4.9E-06	8.3E-04	CD74;S100A6;GAS6;AQP1	
regulation of cell migration	10/408	6.5E-06	9.4E-04	CD74;ANXA1;CLDN3;TMSB4X;DAG1;NKX2-1;CTSH;LAMC2;ACTN4;F3	
cellular protein metabolic process	10/417	7.8E-06	1.0E-03	NAPSA;SFTPC;SFTPD;IGFBP2;CTSH;PLOD2;IGFBP7;RPS2;GAS6;MFGE8	
regulation of apoptotic process	13/742	9.5E-06	1.0E-03	CD74;JUN;ANXA1;ARL6IP1;ACTN4;CLU;AQP1;KRT18;CCND2;CTSH;GAS6;PHL	
				DA1;PTMA	
negative regulation of cytokine production	7/182	9.8E-06	1.0E-03	PRNP;ANXA1;RGCC;TMSB4X;SFTPD;GAS6;AGER	
negative regulation of programmed cell death	9/381	2.6E-05	2.5E-03	CD74;ANXA1;KRT18;CCND2;ARL6IP1;CTSH;GAS6;PTMA;AQP1	
negative regulation of apoptotic process	10/485	2.9E-05	2.6E-03	CD74;ANXA1;KRT18;CCND2;ARL6IP1;CTSH;NDNF;GAS6;PTMA;AQP1	
regulation of fibroblast proliferation	4/46	3.8E-05	3.1E-03	CD74;S100A6;GAS6;AQP1	
positive regulation of neuron death	4/47	4.1E-05	3.2E-03	EGR1;PRNP;FOS;CLU	
positive regulation of cell migration	7/269	1.2E-04	7.9E-03	CLDN3;RAB25;CTSH;LAMC2;ACTN4;F3;S100A11	
cellular response to reactive oxygen species	4/63	1.3E-04	7.9E-03	JUN;ANXA1;FOS;AQP1	
positive regulation of cell death	4/66	1.5E-04	8.0E-03	EGR1;PRNP;FOS;CLU	
negative regulation of intrinsic apoptotic	3/26	1.6E-04	8.0E-03	CD74;MUC1;CLU	
signaling pathway in response to DNA damage					
positive regulation of G1/S transition of mitotic	3/26	1.6E-04	8.0E-03	CCND2;ANXA1;RGCC	
cell cycle					

Supplementary Table S7. Hnf4a & Smad4-KO responsive genes in enterocytes.

Genes are ranked according to their KL divergence between WT and virtual KO samples.

Genes	KL divergence
HNF4A	7.03E2
SMAD4	10.57
REG3B	1.29E-02
REG3G	1.09E-02
DMBT1	4.18E-03
REG1	3.05E-03
ССК	1.91E-03
GCG	1.43E-03
GSTA1	1.05E-03
UGT2B34	3.34E-04
GCLM	3.33E-04
SFXN1	3.02E-04
LAMP2	2.90E-04
TSC22D1	2.58E-04

Supplementary Table S8. GO enrichment analysis results of Hnf4a & Smad4-KO responsive genes in enterocytes (n = 20).

Term	Overlan	n-value	Adi n-value	Genes
alutathione metabolic process	2/43	4 0F-04	3 8F-02	GSTA1.GCIM
defense response to Gram-positive bacterium	2/70	1.0E-03	3.8E-02	DMRT1-REG3G
	2/70	1.0E-03	3.0E-02	UNIE 44 CCC
carbonyarate nomeostasis	2/70	1.1E-03	3.8E-02	HNF4A;GCG
regulation of peptide hormone secretion	2/74	1.2E-03	3.8E-02	HNF4A;GCG
glucose homeostasis	2/86	1.6E-03	3.8E-02	HNF4A;GCG
epithelial cell differentiation	2/101	2.2E-03	3.8E-02	DMBT1;GSTA1
regulation of insulin secretion	2/104	2.3E-03	3.8E-02	HNF4A;GCG
sulfur compound biosynthetic process	2/113	2.8E-03	3.8E-02	GSTA1;GCLM
epithelium development	2/122	3.2E-03	3.8E-02	DMBT1;GSTA1
regulation of protein secretion	2/125	3.3E-03	3.8E-02	HNF4A;GCG
negative regulation of cell growth	2/126	3.4E-03	3.8E-02	SMAD4;HNF4A
negative regulation of growth	2/126	3.4E-03	3.8E-02	SMAD4;HNF4A
positive regulation of cell proliferation involved in heart morphogenesis	1/5	3.5E-03	3.8E-02	SMAD4
lysosomal protein catabolic process	1/5	3.5E-03	3.8E-02	LAMP2
negative regulation of keratinocyte differentiation	1/5	3.5E-03	3.8E-02	REG3G
positive regulation of histone H3-K9 acetylation	1/5	3.5E-03	3.8E-02	SMAD4
cardiac endothelial cell differentiation	1/5	3.5E-03	3.8E-02	SMAD4
endocardial cell differentiation	1/5	3.5E-03	3.8E-02	SMAD4
negative regulation of cardiac muscle cell differentiation	1/6	4.2E-03	3.8E-02	SMAD4
induction of bacterial agglutination	1/6	4.2E-03	3.8E-02	DMBT1

DE method	Wilcoxon	Wilcoxon (logFC>1)	t-test	negbinom	MAST	DESeq2
Input data	Normalize d data	Normalized data	Normalized data	Raw counts	Normalized data	Raw counts
Model	Nonparam etric test	Nonparametric test	Parametric test	Negative binomial model	Generalized linear model	Negative binomial model
DE genes	1129	528	1019	878	1019	1137
Upregulated	273	175	293	167	293	240
Downregulated	856	353	726	711	726	897
DE intersect with KO-responsive genes	71 (17*)	49 (15)	70 (7)	69 (24)	74 (21)	81 (11)
Upregulated DE intersect	42	29	41	28	44	35
Downregulated DE intersect	29	20	29	41	30	46

Supplementary Table S9. DE analyses of the Nkx2-1 KO experiment resulting from different DE methods.

*Number in bracket: intersection between KO-responsive genes and top 50 DE genes ranked by each DE method

Supplementary Table S10. STAT1-KO responsive genes in epithelial cells.

Genes are ranked according to their KL divergence between WT and virtual KO samples.

Genes	KL divergence
STAT1	2.94E3
S100A8	8.72
HLA-DRA	4.29
S100A9	2.90
FTL	1.98
WFDC2	1.59
ANXA1	1.56
LCN2	1.33
CSTB	1.21
PPDPF	1.13
VIM	1.04
SLPI	0.87
HLA-DRB1	0.83
LYPD2	0.81
S100P	0.80
GPX1	0.66
CTSB	0.61
PI3	0.59
KRT19	0.55
HSPB1	0.53
FABP5	0.52
AGR2	0.41
LGALS1	0.37
ILIRN	0.35
CTSD	0.34
HLA-DPA1	0.31
HSPA5	0.27
TIMP1	0.26

Supplementary Table S11. GO enrichment analysis results of STAT1-KO responsive genes in epithelial cells (n = 10).

Term	Overlap	p-value	Adj. <i>p</i> -	Genes
			value	
neutrophil degranulation	10/481	5.2E-10	1.1E-07	CSTB;SLPI;FABP5;LCN2;S100P;CTSD;S100A9;S100A8;CTSB;FTL
neutrophil activation involved in immune response	10/485	5.7E-10	1.1E-07	CSTB;SLPI;FABP5;LCN2;S100P;CTSD;S100A9;S100A8;CTSB;FTL
neutrophil mediated immunity	10/488	6.0E-10	1.1E-07	CSTB;SLPI;FABP5;LCN2;S100P;CTSD;S100A9;S100A8;CTSB;FTL
cytokine-mediated signaling pathway	9/621	1.0E-07	1.4E-05	IL1RN;ANXA1;STAT1;LCN2;HLA-DRA;TIMP1;VIM;HLA-DRB1;HLA-
				DPA1
defense response to bacterium	6/176	1.4E-07	1.5E-05	SLPI;LCN2;PI3;S100A9;WFDC2;S100A8
interferon-gamma-mediated signaling pathway	4/68	2.4E-06	2.1E-04	STAT1;HLA-DRA;HLA-DRB1;HLA-DPA1
cellular response to cytokine stimulus	7/482	3.5E-06	2.7E-04	IL1RN;ANXA1;STAT1;LCN2;TIMP1;VIM;HLA-DPA1
antigen processing and presentation of exogenous peptide	4/98	1.0E-05	6.6E-04	HLA-DRA;CTSD;HLA-DRB1;HLA-DPA1
antigen via MHC class II				
antigen processing and presentation of peptide antigen via	4/100	1.1E-05	6.6E-04	HLA-DRA;CTSD;HLA-DRB1;HLA-DPA1
MHC class II				
response to lipid	4/114	1.8E-05	7.8E-04	ANXA1;SLPI;S100A9;S100A8

Supplementary Figures

Supplementary Figure S1. Heatmap of Spearman correlation coefficients between scores of KL divergence given by GenKI across four different cutoffs.

Supplementary Figure S2. ROC curves of virtual KO experiments using three simulated SERGIO data sets.

(A) KO gene #74 (35 edges) in SERGIO simulated data set of 100 genes by 2,700 cells. (B) KO gene #47 (110 edges) in SERGIO simulated data set of 400 genes by 2,700 cells. (C) KO gene #302 (135 edges) in SERGIO simulated data set of 1,200 genes by 2,700 cells.

Supplementary Figure S3. Comparing *p*-value given by GenKI and scTenifoldKnk to genes that are close or distance neighbors of a KO gene in the BEELINE data set.

Supplementary Figure S4. Performance of GenKI in reconstructing scGRNs of microglia data set.

(A) The levels of AP at different training epochs. (B) The APs between data with different levels of random noise in the gene expression profiles. Larger σ values result in higher levels of random noise (see "Materials and Methods" for details). (C) The levels of AUROC at different training epochs. (D) The AUROCs between data with different levels of random noise in the gene expression profiles.

Supplementary Figure S5. KO responsive genes cannot be simply inferred from gene expression or edge weight with the KO gene.

(A) Scatter plot revealing the relationship between normalized gene expression and KL divergence. (B) Scatter plot revealing the relationship between edge weight associated with Trem2 and KL divergence. The KO-responsive genes inferred by GenKI are annotated and Trem2 as an outlier is ignored for visualization purpose.

Supplementary Figure S6. Comparison of absolute values of fold-change (FC=WT/KO) between randomly selected non-perturbed genes and KO-responsive genes given by GenKI.

(A) Microglia data set (B) Lung data set (C) Intestine data set. *P*-values of the one-sided t-test are 0.0168, 0.0177 and 0.0175, respectively.

Supplementary Figure S7. STRING networks of Trem2-KO responsive genes before and after including DE genes. (A) Trem2-KO responsive genes (in green) without DE genes (B) Trem2-KO responsive genes with top ranked DE genes (in red).

Supplementary Figure S8. Performance of GenKI in reconstructing scGRNs of COVID-19 data set.

(A) The levels of AP at different training epochs. (B) The levels of AUROC at different training epochs. Larger σ values result in higher levels of random noise (see "Materials and Methods" for details).

Supplementary Figure S9. Total running time of GenKI and scTenifoldKnk with respect to data set sizes.

All evaluations were implemented on the equivalent hardware composed of a 16-core Intel Core i7-11700 CPU processor at 2.50 GHz with 15.7 GB available random-access memory (RAM). PyTorch profiler was used for GenKI and the system.time function for scTenifoldKnk.

