Supporting Information

Tunable heteroaromatic nitriles for selective bioorthogonal click reaction with cysteine

Matic Proj^a, Nika Strašek^a, Stane Pajk^a, Damijan Knez^{a,*}, Izidor Sosič^{a,*}

^a University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Slovenia

* Corresponding authors. E-mail addresses: <u>damijan.knez@ffa.uni-lj.si</u>, <u>izidor.sosic@ffa.uni-lj.si</u>

Table of contents

1	Ex	xperimental procedures	. S2			
	1.1	Chemistry – General Information	. S2			
	1.2	UV-Vis-based stability and reactivity assays	. S4			
	1.3	NMR-based stability assay	. S7			
	1.4	DTNB thiol reactivity assay	. S7			
	1.5	Oligopeptide labeling	. S7			
	1.6	Global score calculation	. S8			
2	Su	pporting Schemes, Tables, and Figures	S10			
3	Sta	ability and Reactivity Screening	S36			
4	Ol	igopeptide Labeling	S51			
5	Cł	nemistry	S97			
6	Su	Supporting References				

1 Experimental procedures

1.1 Chemistry – General Information

The reagents and solvents were used as received from commercial suppliers. After extraction, organic phases were dried over anhydrous Na₂SO₄. Reactions were monitored using analytical thin-layer chromatography (TLC) on silica gel 60 F254 Al plates (Merck, 20 × 20 cm). Developed plates were inspected under UV light and visualized with ninhydrin, FeCl₃, or bromocresol green stains. Normal phase d column "flash" chromatography was performed on Silica gel 60 (particle size: 0.035–0.070 mm, Merck). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz spectrometer at 400 MHz for ¹H, 101 MHz for ¹³C, respectively, using DMSO- d_6 , CDCl₃, acetone- d_6 , CD₃OD and TFA-d as solvents. Chemical shifts are reported in parts per million (ppm), the central peak of the residual non-deuterated solvent signal was used as the reference, *i.e.*, for CDCl₃ at 7.26 ppm for ¹H and 77.16 ppm for ¹³C, for DMSO- d_6 at 2.50 ppm for ¹H and 39.52 ppm for ¹³C, for acetone- d_6 at 2.05 ppm for ¹H and 29.84 ppm for ¹³C, and for CD₃OD at 3.31 ppm for ¹H and 49.00 ppm for ¹³C. The multiplicities are reported as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), dd (doublet of doublets), ddd (doublet doublet of doublets), td (triplet of doublets), qd (quartet of doublets), and br (broad), and coupling constants (J) in Hertz (Hz). Mass spectra were recorded on Thermo Scientific Q Exactive Plus Orbitrap LC-MS/MS and Advion Expression CMS mass spectrometers, and IR spectra on Thermo Nicolet FT-IR spectrophotometer. UHPLC analyses were performed on Thermo Scientific Dionex UltiMate 3000 modular system (Thermo Fisher Scientific Inc.). The general method (Method I) used a Waters Acquity UPLC® HSS C18 SB column $(2.1 \times 50 \text{ mm}, 1.8 \text{ µm})$ thermostated at 40 °C, with: injection volume, 5 µL; sample, 0.1–0.2 mg/mL in MeOH; flow rate, 0.4 mL/min; detector λ , 254 and 280 nm; mobile phase A: 0.1% TFA (v/v) in water; mobile phase B: MeCN. Gradient: 0-2 min, 10% B; 2-5 min, 10%-90% B; 5-8 min, 90% B. Method II had the same conditions except gradient: 0-2 min, 2% B; 2-8 min, 2-90% B; 5-8 min, 90% B. Method III had the same conditions as Method I except column – BEH Acquity UPLC® C18 (2.1×50 mm, 1.7 µm) thermostated at 40 °C, and injection volume, 1 µL. All compounds are >95% pure by UHPLC analysis.

General procedure 1 (GP1) – BenzXazole-2-carbonitrile formation using Appel's salt: Aniline derivative (1.0 eq) was dissolved in pyridine (0.1 M) under Ar and Appel's salt – 4,5-dichloro-1,2,3-dithiazolium chloride (1.2 eq.) was added. Reaction mixture was stirred for 16 h at 70 °C

before solvent was evaporated and EtOAc (50 mL) was added. Solid was filtered off, discarded and the organic filtrate washed with 2 M $HCl_{(aq)}$ (2 × 50 mL), saturated brine (50 mL), dried, filtered and volatile components evaporated *in vacuo*. The product was purified by column chromatography.

General procedure 2 (GP2) – Benzo[d]thiazole-2-carbonitrile formation using 2-bromoanilines: To a solution of starting 2-bromoaniline (1.0 eq) in anhydrous DCM (25 mL), Appel's salt – 4,5dichloro-1,2,3-dithiazolium chloride (1.2 eq.) and anhydrous pyridine (2.0 eq) were added under Ar, The reaction mixture was stirred for 2 h at rt, then solid was filtered off (discarded), and the filtrate evaporated *in vacuo* to afford crude substituted 4-chloro-*N*-aryl-5*H*-1,2,3-dithiazol-5-imine [33]. Imine was charged in glass vial, dissolved in anhydrous pyridine (5 mL), CuI (2.0 eq) added, and heated under microwave irradiation for 20 min at 115 °C, solid filtered off, washed with EtOAc (20 mL) and organic phase evaporated *in vacuo*. The product was isolated by column chromatography.

General procedure 3 (GP3) – Methylation: 1H-Benzo[d]imidazole-2-carbonitrile (1.0 eq) was dissolved in MeCN (0.1 M) under Ar, and K_2CO_3 (1.2 eq.) and MeI (1.2 eq.) were added. After stirring the reaction mixture at rt for 72 h, volatile components were removed, residue dissolved in EtOAc (50 mL), and washed with H₂O (30 mL), saturated brine (50 mL), dried, filtered and volatile components evaporated *in vacuo*. Positional isomers were isolated and purified by column chromatography.

General procedure 4 (GP4) – Reduction: Starting nitro compound (1.0 eq) was dissolved in AcOH (5 mL), the iron powder (10 eq.) was added and the resulting mixture vigorously stirred at rt for 2 h. Excess iron was removed by filtration over a pad of Celite®545, washed with tetrahydrofuran and MeOH, volatile components evaporated *in vacuo*, and the residue purified by column chromatography or crystallization to afford pure product.

General procedure 5 (GP5) – *Ester deprotection:* Starting methyl ester (1.0 eq), aluminum (1.2 eq), and iodine (1.5 eq) were dissolved in anhydrous MeCN (5 mL) under Ar [35]. The reaction mixture was stirred at 80 °C for 18 h, then cooled to rt and quenched with 2 M $HCl_{(aq)}$ (10 mL), organic volatiles evaporated *in vacuo*, and the aqueous phase extracted with EtOAc (2 × 20 mL),

dried, filtered and volatile components evaporated *in vacuo*. The product was isolated by column chromatography.

General procedure 6 (GP6) – Ether deprotection: O-Methyl ether (1.0 eq) was dissolved or suspended in anhydrous DCM (10 mL) under Ar, and aluminum chloride (5.0 eq) was added. After stirring the reaction mixture at 40 °C for 18 h, volatile components were evaporated *in vacu*o, and residue dissolved in EtOAc (30 mL), washed with 1 M HCl_(aq) (20 mL), saturated brine (20 mL), dried, filtered and volatile components evaporated *in vacuo*. The product was isolated by column chromatography.

General procedure 7 (GP7) – RP-CC purification: Compounds were purified by reversed-phase column chromatography (RP-CC) (Isolera Biotage One Flash Chromatography system, Biotage® Sfär C18 Duo 100 Å 30 μ m column, 30 g) using a gradient of 0.1% TFA_(aq) and MeCN as eluent (gradient 0–100% MeCN in 5 column volumes (300 mL); 100% MeCN for 1 column volumes (100 mL)). After the RP-CC, fractions containing the product were combined and organic volatiles were evaporated *in vacuo*. The remaining aqueous solution was made alkaline (pH = 14) with 2 M NaOH_(aq) and extracted with DCM (2 × 20 mL). The combined organic phases were dried, filtered, and volatile components evaporated *in vacuo*.

1.2 UV-Vis-based stability and reactivity assays

The reagent solutions were freshly prepared before performing the experiments, and all solutions were pre-incubated at 37 °C. The analysis of the results was automated using a Python script (available at <u>https://github.com/maticproj/UV-Vis-analysis</u>). Figures were generated using Matplotlib v3.3.4 (<u>https://github.com/matplotlib/matplotlib</u>) for Python v3.7 (<u>https://www.python.org/</u>).

1.2.1 Screening

The aqueous stability and reactivity were determined spectrophotometrically by following the changes in the absorption spectra of the compounds as reported previously [34]. Experiments were performed in 96-well UV-transparent microplates (Corning, CLS3635) in assay buffer (50 mM Tris-HCl, 0.5 mM EDTA, pH 7.4). Briefly, 135 μ L of assay buffer was pipetted in each well, followed by the addition of 15 μ L of 1 mM compound stock solution in DMSO. Next, 150 μ L of assay buffer or 1 mM reagent solution (TCEP, L-Lys, L-Ser, NAC or L-Cys) in assay buffer was

added. The final reaction mixture contained compound (50 μ M), reagent (0.5 mM), and DMSO (5%) in assay buffer. The plate was incubated without lid at 37 °C in a plate reader (Synergy H4, BioTek Instruments, Inc., Santa Clara, CA, USA) and the absorbance spectrum (244–400 nm) was acquired in sweep mode after 0, 15, 30, 60, 120, 180, and 240 min using a discontinuous kinetic procedure in Gen5 software (BioTek Instruments, Inc., Santa Clara, CA, USA). The time required to read the entire 96-well plate was 3 min. To determine the baseline, the compound solution was replaced with pure DMSO and subtracted from each reading. Compounds with an absorbance maximum of less than 0.10 AU were not evaluated using these assays, and were labeled with low absorbance.

Aqueous stability was evaluated from the first experiment. The relative absorbance difference between the first time point and 240 min at the most responsive wavelength was calculated. If the relative absorbance difference for the compound in the buffer was below 0.1, between 0.1–0.2, and above 0.2, the compound was classified as stable, intermediate, and unstable, respectively.

From the experiments with added reagents, reactivity with L-Lys, L-Ser, TCEP, NAC, or L-Cys was evaluated. To detect hyperreactive compounds where the reaction with the reagent was complete before the first time point could be acquired, *i.e.*, up to 3 min, the spectra of the compound in the buffer solution with or without reagent at the first time point (t = 0) were compared. Significant changes (*i.e.*, relative absorbance difference at the most responsive wavelength above 0.2) indicated hyperreactivity (reactivity above the limit of detection). For other compounds, the relative absorbance difference between the first time point and 240 min at the most responsive wavelength was calculated. If the relative absorbance difference was above 0.2, the compound was classified as reactive.

1.2.2 Reaction rate evaluation from a single Cys concentration

For compounds reactive with Cys, the data from the screening experiment was used for second order reaction rate determination:

$$cpd + Cys \rightarrow cpd-Cys$$

$$\frac{-d[cpd]}{dt} = k_2[cpd][Cys]$$
(Equation 1)

As the measurement was performed under pseudo-first-order conditions using 10-fold excess of Cys over compound, we stated as follows:

$$\frac{-d[cpd]}{dt} = k_{obs}[cpd]$$
(Equation 2)

Then:

$$k_{obs}[cpd] = k_2[cpd][Cys]$$

$$k_{obs} = k_2[Cys]$$
(Equation 3)

The pseudo-first-order rate constants (k_{obs}) were obtained by fitting the data using SciPy v1.6.2 (<u>https://scipy.org/</u>) function *curve fit* for one-phase decay equation:

$$y = (y_0 - Plateau) * e^{-k_{obs} * x} + Plateau$$
 (Equation 4)

where x is time and y is absorbance with subtracted blank. The second-order reaction rate constant (k_2) was obtained by dividing k_{obs} with Cys concentration (0.5 mM).

1.2.3 Reaction rate evaluation from multiple Cys concentrations

For compounds hyperreactive with Cys under the screening conditions, a published procedure [47] was modified to achieve higher throughput. The measurements were performed under pseudofirst-order conditions using at least 10-fold excess of Cys over compound at seven different concentrations of Cys. Experiments were performed in 96-well UV-transparent microplates (Corning, CLS3635) in assay buffer (PBS, pH 7.4). Briefly, 135 μ L of assay buffer was pipetted in each well, followed by the addition of 15 μ L of 1 mM compound stock solution in DMSO. Next, 150 μ L of Cys solution in buffer (0–4 mM) supplemented with 1 mM TCEP was added. The final reaction mixture contained compound (50 μ M), Cys (0, 0.5, 0.75, 1, 1.25, 1.5, 1.75, or 2 mM), TCEP (0.5 mM), and DMSO (5%) in assay buffer. The plate was shaken, and the absorbance was monitored at the most responsive wavelength (260–390 nm) for 5 minutes using Synergy H4 microplate reader (BioTek Instruments, Inc., USA) for one compound at a time in duplicate. The delay between the addition of Cys and the first measurement was below 15 s. The most responsive wavelength was determined in the previous experiment. A blank (experiment without any Cys) was subtracted from each measurement. Next, the pseudo-first-order rate constants (k_{obs}) were obtained by fitting the data using "one-phase association/decay" in GraphPad Prism (GraphPad Software, San Diego, CA, USA). The second-order reaction rate constant (k_2) was obtained by linear regression of k_{obs} plotted at different concentrations of Cys. Data were obtained from at least two independent experiments performed in duplicate, and are reported as the mean and standard deviation of the mean.

1.3 NMR-based stability assay

Compounds were dissolved in DMSO- d_6 (5 mM) and diluted 5–fold with buffer (50 mM Tris-HCl, 0.5 mM EDTA, pH 7.4). The solution was mixed, and an NMR spectrum was acquired immediately on a Bruker Avance III 400 MHz spectrometer using water suppression pulse sequence (N WATERSUP, noesygppr1d, default settings). Next, the NMR tube was incubated in a water bath at 37 °C and additional spectra were acquired after 1 h and 4 h.

1.4 DTNB thiol reactivity assay

The assay was performed as reported previously [43]. All reagent solutions were freshly prepared before performing the experiments. The reaction mixture contained compound (100 μ M), DTNB (25 μ M), TCEP (100 μ M), and DMSO (5%) in buffer (20 mM sodium phosphate, 150 mM NaCl, pH 7.4). Absorbance at 412 nm was measured every 5 min for 4 h (Synergy H4, BioTek Instruments, Inc., USA) to monitor TNB^{2–} depletion. Compound background absorbance was subtracted from each measurement. 2-Chloro-*N*-(3-chlorophenyl)acetamide was used as a control.

1.5 Oligopeptide labeling

Oligopeptides (UP1, CGKGCGSGYGW; UP2, AGKGCGSGYGW) were prepared by GenScript Biotech (The Netherlands) with HPLC purity \geq 95.0%. The oligopeptides were dissolved in DMSO (10 mM) and immediately diluted 2–fold with TCEP (100 mM) in assay buffer (PBS, pH 7.4) to obtain the oligopeptide stock solution containing oligopeptide (5 mM) and TCEP (50 mM). The reaction mixture contained compound (100 µM, 2 eq.), oligopeptide (50 µM, 1 eq.), TCEP (500 µM, 10 eq.), and DMSO (10%) in assay buffer. Samples were incubated in a shaker at 37 °C for 30 min, filtered into a vial, and analyzed immediately. For each peptide, a blank experiment was performed without compound.

For the reversibility assays (Cys and DTT treatment), samples were aliquoted after incubating compound with oligopeptides for 30 min. A 10 mM Cys or DTT solution was added to the first

aliquot to achieve a final concentration of 100 μ M (2 eq.). Assay buffer was added to the second aliquot as a control. Both aliquots were incubated in a shaker at 37 °C for another 30 min, filtered into a vial, and analyzed immediately.

To determine the stability of adducts with **UP1**, we monitored the reaction for up to 24 h. Reaction mixtures were prepared in assay buffer (PBS, pH 7.4) at 10-fold higher concentrations than described above, containing compound (50 μ M, 1 eq.), oligopeptide (50 μ M, 1 eq.), TCEP (500 μ M, 10 eq.), and DMSO (10%) in assay buffer. After 30 min incubation in a shaker at 37 °C, the reaction mixture was diluted with each of the final buffers (PBS, pH 7.4; 10 mM Tris-HCl, pH 7.4; 10 mM potassium phosphate buffer, pH 6.5; 10 mM potassium phosphate buffer, pH 5.5) and filtered into a vial, and analyzed immediately. The final mixture was incubated at 37 °C and analyzed at 4 h, 8 h, and 24 h intervals.

Samples were analyzed by an LCMS system, which included Thermo Scientific UltiMate 3000 UHPLC liquid chromatograph and Thermo Scientific Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer. Chromatographic separation was performed on Waters Acquity UPLC BEH C18 column ($50 \times 2.1 \text{ mm}$, $1.7 \mu \text{m}$ particles), with Waters Acquity C18 BEH cartridge guard column ($5 \times 2.1 \text{ mm}$) and kept at 40 °C. Vials with samples were kept at 5 °C and the injection volume was 5.00 µL. The compounds were separated using mobile phase A consisting of water/acetonitrile/formic acid (950/50/1, v/v ratio), and mobile phase B consisting of water/acetonitrile/formic acid (950/50/1, v/v ratio). The flow rate was 0.40 mL/min with the following gradient: 0-1.0 min, 0% B; 1.0-5.0 min, 0%-100% B; 5.0-5.1 min, 100%-0% B; 5.1-8.0 min 0% B. The detection wavelength was set at 280 nm. From 1.0 min to 6.0 min the flow was diverted to mass spectrometer, mass analysis was performed between 1.1 min to 6.0 min. The mass spectrometer was operated in HESI positive or negative mode with the following MS parameters: sheath gas flow rate, 25 (arbitrary units); auxiliary gas flow rate, 10 (arbitrary units); capillary temperature, 350 °C; and spray voltage, 3.5 kV. HESI source was set at the height D.

1.6 Global score calculation

Second-order reaction rate constants (k_2 in s^{-1} M⁻¹) for reaction with Cys were converted to a negative logarithm and normalized between values 0–1. Selectivity was calculated as a ratio between UP1 and UP2 conversion, converted to a negative logarithm, and normalized between

values 0–1. Substituents with derivatization capability (amino, hydroxyl, and carboxylic acid) were scored with 1, whereas all other substituents were scored with 0. The global score (Equation 5) was calculated by addition of reactivity, selectivity, and derivatization capability with factors 1.5, 1, and 1, respectively.

$$Global \ score = \ 1.5 \times pk_2 + p_{selectivity} + derivatization \ capability \qquad (Equation \ 5)$$

2 Supporting Schemes, Tables, and Figures

Scheme S1. Synthesis of benzXazoles and intermediates. Reaction conditions: a) corresponding 2-nitroaniline, MeI, NaH, dry DMF, 0 °C, 15 min, then rt, 18 h; b) NaBH₄, Pd/C (cat), MeOH, 0 °C, 1 h; c) Appel's salt (4,5-dichloro-1,2,3-dithiazolium chloride), pyridine, 70 °C, 16 h; d) Fe, AcOH, rt, 2 h; e) KCN, DABCO, dry DMF, 100 °C, 48 h; f) LiOH (2.0 eq), MeOH, H₂O, rt, 2 h; g) NaO*t*Bu, dry THF, rt, 24 h [1].

C Substituent	core		I-Methyl-		
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1°	18°	51°	84ª
	-NO ₂	2	19	52	850
	-COOMe	3	20	53	86
	-COOH	4	21	54	8/
	-Cl	5	22	55ª	88°
	-Me	6	23	56	89
R	-OMe	7	24	57°	90°
	-OH	8	25	58	91°
	-NH ₂	9	26	59	92 [°]
	-NO ₂	10	27	60°	93 ^b
	-COOMe	11	28	61	94
X	-COOH	12	29	62	95
CN	-Cl	13	30	63	96ª
R ⁵ N	-Me	14	31	64	97
· · ·	-OMe	15	32	65°	98 ^b
	-OH	16	33	66	99 ^b
	-NH ₂	17	34	67°	100 ^b
	-NO ₂		35	68	101 ^b
	-COOMe		36	69	102
P.6 A M	-COOH		37	70	103
X N	-Cl		38	71 ^a	104 ^a
	-Me		39	72	105⁵
	-OMe		40	73°	106 ^b
	-OH		41	74°	107 ^b
	-NH ₂		42	75	108 ^b
	-NO ₂		43	76	109 ^b
	-COOMe		44	77	110
R R	-COOH		45	78	111
	-Cl		46	79ª	112ª
	-Me		47	80	113
	-OMe		48	81	114 ^b
	-OH		49	82	115 [⊳]
	-NH ₂		50	83	116 ^b
Unstable in solid or not acc	cessible				

Table S1. References for compounds that were previously described or purchased from commercial vendors.

^a Synthesis and characterization described in: Kollár et al., European Journal of Medicinal Chemistry 219 (July 5, 2021): 113455. <u>https://doi.org/10.1016/j.ejmech.2021.113455</u>. ^b Synthesis and characterization described in: *Kollár et al., Cells 10, no. 12 (December 2021): 3431.*

https://doi.org/10.3390/cells10123431.

^c Purchased from commercial vendors

Table S2. Repeatability experiment for the UV-Vis-based stability assay. For each compound three independent experiments were performed.

Label	Aqueous stability	Most responsive wavelength	Absolute absorbance difference at the most responsive wavelength (0–240 min)	Relative absorbance difference at the most responsive wavelength (0–240 min)	Mean	SD	10×SD
		262	0.034	0.0335			
10	Stable	264	0.062	0.0620	0.05	0.02	0.15
		264	0.056	0.0579			_
		244	0.018	0.0419			
34	Stable	244	0.019	0.0507	0.05	0.01	0.13
		244	0.027	0.0678			
	Stable	260	0.025	0.0587		0.01	0.08
43		260	0.026	0.0732	0.07		
		262	0.032	0.0713			
		300	0.112	0.3294			
85	Unstable	296	0.111	0.3255	0.33	0.002	0.02
		300	0.113	0.3294			
		282	0.237	0.4309			
101	Unstable	282	0.234	0.4301	0.43	0.003	0.03
		282	0.244	0.4349			
1.2	1.2	10 in buffer			in buffer	0.5	

0.4

Absorbance 0.2

0.1

0.0

0.6

0.4 -

0.2

0.0

0.5

0.4

0.3

0.2

0.1

0.0

0.1

400

0.0 L. 250

300

0.3

0.2

0.1

250 300 Wavel 350 gth [nm]

Figure S1. Compounds were incubated in buffer (50 mM Tris-HCl, 0.5 mM EDTA, pH 7.4) at 37 °C in glass vials or in acrylic copolymer UV-transparent microplates.

Figure S2. NMR-based stability assay for compound 94 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Figure S3. NMR-based stability assay for compound 15 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Figure S4. NMR-based stability assay for compound 57 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Figure S5. NMR-based stability assay for compound 65 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Figure S6. NMR-based stability assay for compound 73 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Figure S7. NMR-based stability assay for compound 74 along with time-dependent absorbance spectra from the UV-Vis-based stability assay (right).

Substituent	Core			CN N	
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplates
	-NO ₂	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
	-COOH	4	21	Not accessible	Not accessible
	N -CI	5	22	55	Binding to microplates
A N	-Me	6	23	Binding to microplates	Unstable in solid
R	-OMe	7	24	57	90
· ·	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
X	-COOH	12	Unstable	62	Unstable
	V -CI	13	30	Binding to microplates	Binding to microplates
R 5 N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplates
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
P 6 • • •	-COOH		37	70	Unstable
X a	-CI		38	Binding to microplates	Binding to microplates
	N -Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplates
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
	-COOMe		44	77	Unstable
R	-COOH		45	78	Unstable
	-Cl		46	Binding to microplates	Binding to microplates
	v -Me		47	Binding to microplates	Unstable in solid
	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive		1			
Hyperreactive					

Figure S8. UV-Vis-based reactivity assay with L-Lys.

Substituent	Core				
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplate:
	-NO ₂	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
X	-COOH	4	21	Not accessible	Not accessible
	-CI	5	22	55	Binding to microplate
A N	-Me	6	23	Binding to microplates	Unstable in solid
R	-OMe	7	24	57	90
	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
X	-COOH	12	Unstable	62	Unstable
	-CI	13	30	Binding to microplates	Binding to microplate
R 5 N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplate:
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
P 6 • • •	-COOH		37	70	Unstable
X a	-CI		38	Binding to microplates	Binding to microplate:
	-Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplate:
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
-	-COOMe		44	77	Unstable
	-COOH		45	78	Unstable
X	-CI		46	Binding to microplates	Binding to microplate
	I -Me		47	Binding to microplates	Unstable in solid
N N	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive		1			
Hyperreactive					

Figure S9. UV-Vis-based reactivity assay with L-Ser.

C Substituent	ore		N 1-Methyl-		
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplates
	-NO2	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
	-COOH	4	21	Not accessible	Not accessible
	-CI	5	22	55	Binding to microplates
4 1	-Me	6	23	Binding to microplates	Unstable in solid
R	-OMe	7	24	57	90
	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
X	-C00H	12	Unstable	62	Unstable
	-Cl	13	30	Binding to microplates	Binding to microplates
R 5 N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplates
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
	-COOH		37	70	Unstable
K° ∧ X	-CI		38	Binding to microplates	Binding to microplates
	-Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplates
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
	-COOMe		44	77	Unstable
R	-COOH		45	78	Unstable
	-CI		46	Binding to microplates	Binding to microplates
	-Me		47	Binding to microplates	Unstable in solid
	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive					
Hyperreactive					
Tijperrououvo					

Figure S10. UV-Vis-based reactivity assay with TCEP. The result for 21 is false positive, based on an LCMS experiment, where 21 was classified as not reactive (see Figure S15).

Substituent	Core				
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplates
	-NO ₂	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
X	-COOH	4	21	Not accessible	Not accessible
	-Cl	5	22	55	Binding to microplate
A N	-Me	6	23	Binding to microplates	Unstable in solid
R	-OMe	7	24	57	90
	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
	-COOH	12	Unstable	62	Unstable
	-Cl	13	30	Binding to microplates	Binding to microplate:
R 5 N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplate
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
De	-COOH		37	70	Unstable
X au	-Cl		38	Binding to microplates	Binding to microplate:
	-Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplate
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
	-COOMe		44	77	Unstable
R	-COOH		45	78	Unstable
×_×	-Cl		46	Binding to microplates	Binding to microplate
	-Me		47	Binding to microplates	Unstable in solid
	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive]			
Hyperreactive					

Figure S11. UV-Vis-based reactivity assay with NAC.

Substituent	Core			CT S-CN	
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplates
	-NO ₂	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
	-COOH	4	21	Not accessible	Not accessible
	-Cl	5	22	55	Binding to microplates
4 N	-Me	6	23	Binding to microplates	Unstable in solid
k k	-OMe	7	24	57	90
	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
	-COOH	12	Unstable	62	Unstable
	-Cl	13	30	Binding to microplates	Binding to microplates
R ⁵ N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplate:
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
P 6 • • · · ·	-COOH		37	70	Unstable
X au	-Cl		38	Binding to microplates	Binding to microplates
	-Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplates
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
	-COOMe		44	77	Unstable
R	-COOH		45	78	Unstable
	-Cl		46	Binding to microplates	Binding to microplates
	-Me		47	Binding to microplates	Unstable in solid
	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive		1			
Hyperreactive					

Figure S12. UV-Vis-based reactivity assay with L-Cys.

Core Substituent					
		Benzimidazole	benzimidazole	Benzothiazole	Benzoxazole
	/	1	18	Binding to microplates	Binding to microplates
	-NO ₂	2	19	52	Unstable
	-COOMe	3	20	53	Unstable
X	-COOH	4	21	Not accessible	Not accessible
	-CI	5	22	55	Binding to microplates
N N	-Me	6	23	Binding to microplates	Unstable in solid
R	-OMe	7	24	57	90
	-OH	8	25	58	91
	-NH ₂	9	26	59	92
	-NO ₂	10	27	Binding to microplates	Not soluble
	-COOMe	11	28	61	Unstable
	-COOH	12	Unstable	62	Unstable
	-CI	13	30	Binding to microplates	Binding to microplates
R 5 N	-Me	14	31	Binding to microplates	Unstable in solid
	-OMe	15	32	65	Binding to microplates
	-OH	16	33	66	99
	-NH ₂	17	34	67	100
	-NO ₂		35	Unstable	Unstable
	-COOMe		36	69	Unstable
	-COOH		37	70	Unstable
X N	-CI		38	Binding to microplates	Binding to microplates
	-Me		39	Binding to microplates	Low absorbance
	-OMe		40	73	Binding to microplates
	-OH		41	74	107
	-NH ₂		42	75	108
	-NO ₂		43	76	Unstable
-	-COOMe		44	77	Unstable
R R	-COOH		45	78	Unstable
	-CI		46	Binding to microplates	Binding to microplate:
	-Me		47	Binding to microplates	Unstable in solid
	-OMe		48	Binding to microplates	Unstable
	-OH		49	82	115
	-NH ₂		50	83	116
Not reactive					
Reactive					

Figure S13. DTNB thiol reactivity assay.

Figure S14. LCMS chromatograms for **75** in presence of TCEP (5 eq.). Besides the main compound peak (3.71 min), no additional peaks appeared at 280 nm.

Figure S15. LCMS chromatograms for **21** in presence of TCEP (5 eq.). Besides the main compound peak (3.21 min), no additional peaks appeared at 280 nm.

Figure S16. LCMS chromatograms at 280 nm for 76 in presence of TCEP (5 eq.). Besides the main compound peak (4.40 min), an additional peak appeared at 280 nm (1.78 min) with m/z = 440.0672 (mass spectrum below), corresponding to 76–TCEP adduct [M+H]⁺ with m/z = 440.0676 (-0.9 ppm) and chemical formula $C_{17}H_{19}N_3O_7PS^+$.

Figure S17. LCMS chromatograms at 280 nm for 75 in presence of NAC (5 eq.). Besides the main compound peak (3.71 min), an additional peak appeared at 280 nm (2.93 min), corresponding to 75–NAC thioimidate adduct $[M+H]^+$ with m/z = 339.0580 (-0.3 ppm).

Figure S18. LCMS chromatograms at 280 nm for **75** in presence of Cys (5 eq.). A single peak appeared at 280 nm (3.30 min), corresponding to **75**–Cys thiazoline adduct.

	k2 with Cys [s ⁻¹ M ⁻¹]		
Compound	From a single Cys concentration ^a	From multiple Cys concentrations (mean ± SEM) ^a	Literature data ^b
O_2N N N N N N N N N N	3.8	2.5 ± 0.2	/
	1.5	1.1 ± 0.1	/
$O_2 N \xrightarrow{N}_N = N$ 35	4.8	2.97 ± 0.01	/
	1.7	1.19 ± 0.02	/
	NA ^c	12.8 ± 1.6	9.19 [2] 2.9 [3]

Table S3. Second-order reaction rate constants (k_2) with Cys, obtained from two different methodsand compared to the literature data.

^a Determined at 37 °C

^b Determined at room temperature (23 °C) with an HPLC method

^c Not available due to high reactivity

Benzimidazoles

Position / Substituent	4	5	Mean
-NO ₂	0.50	0.49	0.50
-COOMe	1.88	1.00	1.44
-COOH	1.11	1.66	1.39
-Cl	0.51	1.42	0.97
-Me	0.83	1.40	1.12
-OMe	1.03	1.20	1.12
-OH	1.16	1.26	1.21
-NH ₂	1.10	1.12	1.11
Mean	1.0	1.2	1.11

1-Methylbenzimidazoles

Position / Substituent	4	5	6	7	Mean
-NO ₂	2.23	3.78	4.76	1.53	3.08
-COOMe	0.60	1.53	1.19	0.71	1.01
-COOH	0.23	Unstable	0.74	0.33	0.44
-CI	0.78	1.01	0.89	0.73	0.85
-Me	0.32	0.42	0.45	0.29	0.37
-OMe	0.41	0.46	0.36	0.38	0.40
-OH	0.37	0.44	0.33	0.35	0.37
-NH ₂	0.34	0.29	0.29	0.40	0.33
Mean	0.7	1.1	1.1	0.6	0.87

Benzothiazoles

Position / Substituent	4	5	6	7	Mean
-NO ₂	31.2	Binding to microplates	Unstable	Reacts with TCEP	31.2
-COOMe	13.8	31.3	26.8	17.5	22.4
-COOH	Not accessible	19.4	21.7	7.1	16.1
-Cl	Reacts with NAcCys	Binding to microplates	Binding to microplates	Binding to microplates	
-Me	Binding to microplates	Binding to microplates	Binding to microplates	Binding to microplates	
-OMe	9.3	14.1	9.9	Binding to microplates	11.1
-OH	10.1	12.6	7.2	9.9	10.0
-NH ₂	7.9	9.5	5.7	18.1	10.3
Mean	14.5	17.4	14.3	13.1	14.9

Benzoxazoles

Position / Substituent	4	5	6	7	Mean		
-NO ₂	Unstable	Not soluble	Unstable	Unstable			
-COOMe	Unstable	Unstable	Unstable	Unstable			
-COOH	Not accessible	Unstable	Unstable	Unstable			
-CI	Binding to microplates	Binding to microplates	Binding to microplates	Binding to microplates			
-Me	Unstable	Unstable in solid	Low absorbance	Unstable in solid			
-OMe	Reacts with NAcCys	Binding to microplates	Binding to microplates	Unstable			
-OH	28.3	Reacts with NAcCys	Reacts with NAcCys	Reacts with NAcCys	28.3		
-NH ₂	Reacts with NAcCys	Reacts with NAcCys	188.4	49.3	118.9		
Mean	28.3		188.4	49.3	88.7		

Figure S19. Second-order reaction rate constants (k_2 in s^{-1} M⁻¹) for reaction with Cys at 37 °C.

Table S4. Results from labeling oligopeptides (**UP1**, CGKGCGSGYGW; **UP2**, AGKGCGSGYGW). Exact masses for ions of adducts between compounds and oligopeptides and parent compounds that were detected are shaded. The conversion of **UP1** and **UP2** was calculated by comparing the AUCs of parent oligopeptide peaks at 280 nm with or without added compound. Selectivity was calculated as a ratio between **UP1** and **UP2** conversion. Substituents with derivatization capability are amino, hydroxyl, and carboxylic acid. The global score accounts for reactivity, selectivity, and derivatization capability. Chromatograms are provided in Supporting Information, Oligopeptide labeling.

Cpd	Core	Substitu- tion	k₂ with Cys [M ⁻¹ s ⁻¹]	m/z cpd [M+H]⁺	m/z UP1- disulfide [M+2H] ²⁺	m/z UP1 [M+2H] ²⁺	m/z UP1- cpd [M+2H] ²⁺ (mono adduct)	m/z UP1- cpd₂ [M+2H] ²⁺ (di adduct)	m/z UP1- cpd₃ [M+2H] ²⁺ (tri adduct)	m/z UP1- cpd₃ [M+NH₃+2 H] ²⁺ (tri adduct)	m/z cpd [M+H]⁺	m/z UP2 [M+2H] ²⁺	m/z UP2- cpd [M+2H] ²⁺ (mono adduct)	m/z UP2- cpd₂ [M+2H] ²⁺ (di adduct)	m/z UP1- cpd₂ [M+NH₃+2 H] ²⁺ (di adduct)	UP1 % conver- sion	UP2 % conver- sion	Sele- ctiv- ity	Deriva- tization capabi- lity	Global score
4	benzimidazole	4-COOH	1.1	188.0455	536.7024	537.7102	622.7161	716.2351	809.7543	818.2675	188.0455	521.7242	615.2433	708.7624	717.2757	60%	0%	>60	1	2.3
12	benzimidazole	5-COOH	1.7	188.0455	536.7024	537.7102	622.7161	716.2351	809.7543	818.2675	188.0455	521.7242	615.2433	708.7624	717.2757	51%	0%	>51	1	2.3
21	1-methylbenzimidazole	4-COOH	0.2	202.0611	536.7024	537.7102	629.7239	730.2507	830.7777	839.2909	202.0611	521.7242	622.2511	722.7780	731.2913	72%	2%	45	1	1.9
27	1-methylbenzimidazole	5-NO2	2.5	203.0564	536.7024	537.7102	630.2215	731.2460	832.2707	840.7839	203.0564	521.7242	622.7487	723.7733	732.2866	70%	0%	>70	0	1.5
35	1-methylbenzimidazole	6-NO2	3.0	203.0564	536.7024	537.7102	630.2215	731.2460	832.2707	840.7839	203.0564	521.7242	622.7487	723.7733	732.2866	71%	7%	10	0	1.0
37	1-methylbenzimidazole	6-COOH	0.7	202.0611	536.7024	537.7102	629.7239	730.2507	830.7777	839.2909	202.0611	521.7242	622.2511	722.7780	731.2913	28%	3%	10	1	1.7
43	1-methylbenzimidazole	7-NO2	1.5	203.0564	536.7024	537.7102	630.2215	731.2460	832.2707	840.7839	203.0564	521.7242	622.7487	723.7733	732.2866	41%	0%	>41	0	1.3
45	1-methylbenzimidazole	7-COOH	0.3	202.0611	536.7024	537.7102	629.7239	730.2507	830.7777	839.2909	202.0611	521.7242	622.2511	722.7780	731.2913	57%	2%	31	1	1.8
52	benzothiazole	4-NO2	31.2	206.0019	536.7024	537.7102	631.6943	734.1916	836.6889	845.2021	206.0019	521.7242	624.2215	726.7188	735.2321	100%	26%	4	0	1.3
53	benzothiazole	4-COOMe	13.8	219.0223	536.7024	537.7102	638.2045	747.2119	856.2195	864.7327	219.0223	521.7242	630.7317	739.7392	748.2525	100%	13%	8	0	1.3
57	benzothiazole	4-OMe	9.3	191.0274	536.7024	537.7102	624.2070	719.2170	814.2272	822.7404	191.0274	521.7242	616.7342	711.7443	720.2576	100%	14%	7	0	1.2
58	benzothiazole	4-OH	10.1	177.0117	536.7024	537.7102	617.1992	705.2013	793.2036	801.7168	177.0117	521.7242	609.7264	697.7286	706.2419	100%	10%	10	1	2.3
59	benzothiazole	4-NH2	7.9	176.0277	536.7024	537.7102	616.7072	704.2173	791.7276	800.2408	176.0277	521.7242	609.2344	696.7446	705.2579	100%	9%	11	1	2.3
61	benzothiazole	5-COOMe	31.3	219.0223	536.7024	537.7102	638.2045	747.2119	856.2195	864.7327	219.0223	521.7242	630.7317	739.7392	748.2525	100%	26%	4	0	1.3
62	benzothiazole	5-COOH	19.4	205.0066	536.7024	537.7102	631.1966	733.1962	835.1960	843.7092	205.0066	521.7242	623.7238	725.7235	734.2368	100%	19%	5	1	2.2
65	benzothiazole	5-OMe	14.1	191.0274	536.7024	537.7102	624.2070	719.2170	814.2272	822.7404	191.0274	521.7242	616.7342	711.7443	720.2576	100%	13%	8	0	1.3
66	benzothiazole	5-OH	12.6	177.0117	536.7024	537.7102	617.1992	705.2013	793.2036	801.7168	177.0117	521.7242	609.7264	697.7286	706.2419	100%	14%	7	1	2.2
67	benzothiazole	5-NH2	9.5	176.0277	536.7024	537.7102	616.7072	704.2173	791.7276	800.2408	176.0277	521.7242	609.2344	696.7446	705.2579	100%	9%	12	1	2.3
69	benzothiazole	6-COOMe	26.8	219.0223	536.7024	537.7102	638.2045	747.2119	856.2195	864.7327	219.0223	521.7242	630.7317	739.7392	748.2525	100%	21%	5	0	1.3
70	benzothiazole	6-COOH	21.7	205.0067	536.7024	537.7102	631.1967	733.1963	835.1961	843.7093	205.0067	521.7242	623.7239	725.7236	734.2369	100%	15%	7	1	2.3
73	benzothiazole	6-OMe	9.9	191.0274	536.7024	537.7102	624.2070	719.2170	814.2272	822.7404	191.0274	521.7242	616.7342	711.7443	720.2576	100%	10%	10	0	1.3
74	benzothiazole	6-OH	7.2	177.0117	536.7024	537.7102	617.1992	705.2013	793.2036	801.7168	177.0117	521.7242	609.7264	697.7286	706.2419	100%	7%	15	1	2.3
75	benzothiazole	6-NH2	5.7	176.0277	536.7024	537.7102	616.7072	704.2174	791.7276	800.2408	176.0277	521.7242	609.2344	696.7446	705.2579	100%	10%	10	1	2.2
77	benzothiazole	7-COOMe	17.5	219.0223	536.7024	537.7102	638.2045	747.2119	856.2195	864.7327	219.0223	521.7242	630.7317	739.7392	748.2525	100%	19%	5	0	1.2
78	benzothiazole	7-COOH	7.1	205.0066	536.7024	537.7102	631.1966	733.1962	835.1960	843.7092	205.0066	521.7242	623.7238	725.7235	734.2368	100%	7%	14	1	2.3
82	benzothiazole	7-OH	9.9	177.0117	536.7024	537.7102	617.1992	705.2013	793.2036	801.7168	177.0117	521.7242	609.7264	697.7286	706.2419	100%	8%	12	1	2.3
83	benzothiazole	7-NH2	18.1	176.0277	536.7024	537.7102	616.7072	704.2173	791.7276	800.2408	176.0277	521.7242	609.2344	696.7446	705.2579	100%	16%	6	1	2.3
91	benzoxazole	4-OH	28.3	161.0346	536.7024	537.7102	609.2106	689.2242	769.2380	777.7512	161.0346	521.7242	601.7378	681.7515	690.2648	100%	36%	3	1	2.1
108	benzoxazole	6-NH2	188.4	160.0506	536.7024	537.7102	608.7186	688.2402	767.7620	776.2752	160.0506	521.7242	601.2458	680.7675	689.2808	100%	31%	3	1	2.6
116	benzoxazole	7-NH2	49.3	160.0506	536.7024	537.7102	608.7186	688.2402	767.7620	776.2752	160.0506	521.7242	601.2458	680.7675	689.2808	100%	45%	2	1	2.2

Figure S20. (A) Proposed UP1-cpd₃ triadducts. (B) Proposed UP2-cpd₂ diadducts. Labeling of nucleophilic residues other than Cys is possible, *i.e.*, Lys, Ser, and Tyr. UP1, CGKGCGSGYGW; UP2, AGKGCGSGYGW.

A Com	pound 35								
+ UP1 (CGKGCG	SGYGW) ation: 60 min at 37 °C		3.66 3.96 UP1-cpd UP1-cpd ₂ 3.87 Cpd	. ~					
0 Incub	ation: 30 min at 37 °C + 30 min with Cys at 37 °C	····	UP1-cpd						
+ UP2 (AGKGCG	SGYGW) ation: 60 min at 37 °C	3.03 UP2	3.96						
1.0E5 -	ation: 30 min at 37 °C + 30 min with Cys at 37 °C	3.03 UP2	3.89 Cys-cpd 3.96 Cpd					·····	
1.0 1.2	: 1.4 1.6 1.8 2.0 2.2 2.4 2.6	2.8 3.0 3.2	3:4 3:6 3:8 4:0 4:2 Time (min)	4.4 4.6	4.8 5.	0 5.2	5.4	5.6 5	5.8 6.0
+ UP1 (CGKGCG	pound 52		UP1-cpd, UP1-cpd 3.94 Cpd 3.71 (\) 4.02 UP	1-cod,					
0 Incub	ation: 60 min at 37 °C	·····	3.53 3.88 4.09	4.40				·	<u> </u>
5.0E4 Incub	ation: 30 min at 37 °C + 30 min with Cys at 37 °C	····	UP1-cpd Cys-cpd					, , ,	<u> </u>
+ UP2 (AGKGCG	SGYGW) ation: 60 min at 37 °C	2.98 3.02 UP2	P2-cpd 3.38 UP2-cpd ₂ Cpd						
1.0E5	ation: 30 min at 37 °C + 30 min with Cys at 37 °C	3.02 UP2	4.01 Cys-cpd						
1.0 1.	2 1.4 1.6 1.8 2.0 2.2 2.4 2.6	2.8 3.0 3.2	3.4 3.6 3.8 4.0 4.2 Time (min)	4.4 4.6	4.8 5.	0 5.2	5.4	5.6 5	5.8 6.0
C Com	pound 83								
+ UP1 (CGKGCG	SGYGW)		3.57 UP1-cpd 3.68 3.88 Cpd						
	ation: 60 min at 37 °C		3.57						
1.0E5 - Incub	ation: 30 min at 37 °C + 30 min with Cys at 37 °C		UP1-cpd 3.66Cys-cpd						
+ UP2 (AGKGCG 1.0E5 - Incub	SGYGW) ation: 30 min at 37 °C + 30 min with Cys at 37 °C	3.03 A UP2	Cys-cpd 3.88 Cpd						
0- 	2 1.4 1.6 1.8 2.0 2.2 2.4 2.6	2.8 3.0 3.2	3.4 3.6 3.8 4.0 4.2 Time (min)	4.4 4.6	4.8 5.0	5.2	5.4	5.6 5	5.8 6.0

Figure S21. HPLC chromatograms at 280 nm for Cys treatment experiment with compounds 35, 52, and 83. Species present in each peak were determined from the mass spectra (see Supporting Information, Oligopeptide labeling).

A Compound 35					
+ UP1 (CGKGCGSGYGW) 1.0E5 Incubation: 60 min at 37 *C	UP1-cpd UP1-cpd2 Cpd				
0	UP1-cpd UP1-cpd2 Cpd				
0	3.02	, , , , , , , , , , , , , , , , , , , 			
0	3,03				
U - <u></u>	2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 Time(min)	4.4 4.6 4.8	5.0 5.2	5.4 5.6	5.8 6.0
B Compound 52	UP1-cpd 372 372				
Incubation: 60 min at 37 °C	3.54 3.88 4.09 Cpd 3.72 DTT-cpd			5.58	~ <u> </u>
5.0E4 incubation: 30 min at 37 °C + 30 min with DTT at 37 °C	UP1-cpd 3.54 UP1-cpd 4.04 UP1-cpd 4.04				
+ UP2 (AGKGCGSGYGW)	2.99 UP2 3.38 3.56 4.04 Cpd				
5.0E4 Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C	3.03 2.99 UP2 UP2-cpd up2-cpd DTT-cpd 3.38 3.56 UP2 0.99 UP2 0.99	4.64			
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 Time (min)	4.4 4.6 4.8	5.0 5.2	5.4 5.6	5.8 6.0
C Compound 83					
+ UP1 (CGKGCGSGYGW) 5.0E4 Incubation: 60 min at 37 *C	UP1-cpd 3.59 UP1-cpd 3.69 Cpd				
Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C	3.60 UP1-cpd UP1-cpd_2 ^{3.91} DTT-cpd ^{3.51} 3.69 3.82 Cpd			_	
+ UP2 (AGKGCGSGYGW) 1.0E5 - Incubation: 60 min at 37 °C	3.03 UP2-cpd 3.91 UP2 ∧ 3.24 UP2 ∧ 3.24 Cpd				
0	3.02 UP2-cpd DTT-cpd UP2 3.24 3.50 Cpd				· · · ·
0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4	2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 Time (min)	4.4 4.6 4.8	5.0 5.2	5.4 5.6	5.8 6.0

Figure S22. HPLC chromatograms at 280 nm for DTT treatment experiment with compounds 35, 52, and 83. Species present in each peak were determined from the mass spectra (see Supporting Information, Oligopeptide labeling).

Figure S23. HPLC chromatograms at 280 nm for stability of adducts between **UP1** and **35**. Adduct is stable for at least 4 h in PBS, pH 7.4, and more than 24 h in Tris, pH 7.4, and phosphate buffer, pH 6.5 or 5.5. Species present in each peak were determined from the mass spectra.

83 + UP1, PBS, pH 7.4

Figure S24. HPLC chromatograms at 280 nm for stability of adducts between **UP1** and **83**. Adduct is stable for at least 8 h in PBS, pH 7.4, and more than 24 h in Tris, pH 7.4, and phosphate buffer, pH 6.5 or 5.5. Species present in each peak were determined from the mass spectra.

Figure S25. HPLC chromatograms at 280 nm comparing selectivity of oligopeptide labeling and UP1 conversion for 2-cyanobenzimidazole 12 under different experimental conditions (10 vs 2 eq. of compound, 3 h vs 30 min incubation time). Species present in each peak were determined from the mass spectra (see Supporting Information, Oligopeptide labeling).

Figure S26. HPLC chromatograms at 280 nm comparing selectivity of oligopeptide labeling in presence of 1 or 2 eq. of 2-cyanobenzothiazoles after 30 min incubation at 37 °C. Species present in each peak were determined from the mass spectra (see Supporting Information, Oligopeptide labeling).

3 Stability and Reactivity Screening

Time-dependent absorbance spectra from the UV-Vis-based stability and reactivity assays. Unstable compounds were evaluated only in assay buffer. Stable and intermediately stable compounds were evaluated at six different conditions. Spectra are color-coded from 0 to 240 min (from blue to red). A black dashed line denotes compound background spectrum in buffer for the first timepoint. For compounds that were flagged as reactive in the UV-Vis-based screening assay with Cys, the timepoints obtained at the most responsive wavelength (denoted with red vertical line) were used to evaluate the rate of reaction with Cys.

4 Oligopeptide Labeling

The following chromatograms show absorbance at 280 nm, total ion count (TIC), and extracted ions for oligopeptides, compounds and their adducts. The compounds (2 eq.) were incubated with the oligopeptides (1 eq.) in presence of TCEP (10 eq.) at 37 °C for 30 min and analyzed by LCMS, unless stated otherwise.

UV (280 nm)

12 + UP1 (CGKGCGSGYGW), 3 h incubation:

3.12 3.35

A

RT :0.00-8:00

1.0E5

0

0.41 0.46

35 + UP2 (AGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with Cys at 37 °C RT :0.00-8.00

Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C

4.22

4.0 Time (min) 5.5

5.0

6.0

6.5

100 -

0-

0

1.0

2.0

2.5

3.0

3.5

1.5

100 -

NL: 1.48E9 Base Peak m/z= 521.7216-521.7268 MS GDK708_A3_UP

NL: 4.84E8 Base Peak m/z= 203.0554-203.0574 MS GDK708_A3_UP:

UP2 [M+2H]²⁺

cpd [M+H]⁺

7.0 7.5 8.0

S64

Incubation: 60 min at 37 °C

52 + UP1 (CGKGCGSGYGW)

Incubation: 30 min at 37 $^\circ\text{C}$ + 30 min with Cys at 37 $^\circ\text{C}$

52 + UP1 (CGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C

52 + UP2 (AGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C

3.5

4.0 Time (min) 4.5

7.0

7.5

-----8.0

0.0

58 + UP2 (AGKGCGSGYGW):

62 + UP2 (AGKGCGSGYGW):

4.0 Time (min)

20

4.5

5.5

S77

3.89 4.01

4.02

4.5

4.0 me (n 4.42 4.72

5.08 5.32 5.56 5.83 5.97

NL: 1.30E9 Base Peak m/ 521.7216-521.7268 MS SN286_UP2

1.09E8

609.7234-609.7294 MS SN286_UP2

NL: 2.44E8 Base Peak m/ 177.0108-177.0125 MS SN286_UP2

-----8.0

UP2 [M+2H]²⁺

UP2-cpd [M+2H]²⁺

7.0

cpd [M+H]⁺

7.5

3.31

<u>3.</u>10

3.24

1.49 1.79 1.90 2.11 2.30 2.43 2.83 2.97

1.12

0-

100 -

50 -

100 -

50 -

0

07 0.0

100 50

4.0 Time (min)

4.5

5.0

3.5

5.5

6.0

NL: 3.57E9

176.0268-176.0286 MS CBZ35_UP2

cpd [M+H]⁺

6.5 7.0 7.5 8.0

0

100 -

50 -

0.0

1.0

2.0

2.5

3.0

1.5

74 + UP2 (AGKGCGSGYGW):

83 + UP1 (CGKGCGSGYGW)

83 + UP2 (AGKGCGSGYGW)

83 + UP2 (AGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with Cys at 37 °C

s

83 + UP1 (CGKGCGSGYGW)

83 + UP1 (CGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C $_{\text{RT}.000800}$

83 + UP2 (AGKGCGSGYGW)

Incubation: 30 min at 37 °C + 30 min with DTT at 37 °C RT.000300

4-Nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**2**) was prepared following *GP1* from 3nitrobenzene-1,2-diamine (5.0 g, 32.6 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 614 mg (10%) of pale-orange solid. ¹H NMR (400 MHz, DMSO d_6 + TFA-*d*) δ 7.54 (t, *J* = 8.1 Hz, 1H), 8.22 (dd, *J* = 8.2, 0.9 Hz, 1H), 8.32 (dd, *J* = 8.1, 0.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6 + CDCl₃) δ 112.86, 113.17, 124.37, 132.80, 135.30, 147.58, 148.92, 159.29. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅O₂N₄: 189.04070, found 189.04061. IR (cm⁻¹): 2262 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.843 min, 95.5% total area.

Methyl 2-cyano-1*H*-benzo[*d*]imidazole-4-carboxylate (**3**) was prepared following *GP1* from methyl 2,3-diaminobenzoate (1.03 g, 6.32 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:4; 2. EtOAc/*n*-hex= 1:2). Yield: 430 mg (34%) of brown solid. ¹H NMR (400 MHz, CDCl₃) δ 4.06 (s, 3H), 7.49 (dd, *J* = 8.3, 7.6 Hz, 1H), 8.10 (dd, *J* = 8.3, 1.0 Hz, 1H), 8.13 (dd, *J* = 7.6, 1.0 Hz, 1H), 11.43 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.90, 111.48, 114.85, 124.23, 125.40, 126.98, 128.73, 133.21, 143.26, 166.33. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₈O₂N₃ 202.06110, found 202.06066. IR (cm⁻¹): 2244 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.173 min, 96.3% total area.

2-Cyano-1*H*-benzo[*d*]imidazole-4-carboxylic acid (4) was prepared following *GP5* from methyl 2-cyano-1*H*-benzo[*d*]imidazole-4-carboxylate (200 mg, 0.99 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1) and subsequent RP-CC (*GP7*). Yield: 22 mg (12%) of beige solid. ¹H NMR (400 MHz, DMSO- d_6 + TFA-*d*) δ 7.43 – 7.49 (m, 1H),

8.04 (td, J = 7.7, 1.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6 + TFA-d) δ 112.24, 116.56, 123.68, 125.58, 126.35, 128.29, 132.74, 143.25, 166.04. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₆O₂N₃ 188.04545, found 188.04525. IR (cm⁻¹): 2246 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.560 min, 96.3% total area.

4-Chloro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**5**) was prepared following *GP1* from 3chlorobenzene-1,2-diamine (2.0 g, 14,0 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent crystallization (EtOH). Yield: 573 mg (23%) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 7.37–7.44 (m, 1H), 7.49 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.67 (dd, *J* = 8.1, 1.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 112.18, 114.28, 122.12, 124.25, 125.16, 126.38, 137.19, 137.33. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅N₃Cl 178.01665, found 178.01647. IR (cm⁻¹): 2246 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.123 min, 96.5% total area.

4-Methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**6**) was prepared following *GP1* from 3methylbenzene-1,2-diamine (6.0 g, 49.1 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 1.16 g (15%) of yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 2.52 (s, 3H), 7.17 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.27 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.50 (dt, *J* = 8.2, 0.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 16.58, 112.78, 113.76, 123.67, 124.87, 125.18, 126.83, 137.50, 138.07. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈N₃ 158.07127, found 158.07148. IR (cm⁻¹): 2245 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.070 min, 95.4% total area.

4-Methoxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (7) was prepared following *GP1* from 3methoxybenzene-1,2-diamine (1.0 g, 7.96 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 1:3) and subsequent crystallization (EtOH). Yield: 406 mg (29%) of pale-brown solid. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 3.94 (s, 3H), 6.87 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.24 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.27 – 7.35 (m, 1H). ¹³C NMR (101 MHz, DMSO*d*₆ + TFA-*d*) δ 55.85, 104.91, 108.27, 112.67, 123.23, 126.23, 129.66, 138.90, 149.72. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06623. IR (cm⁻¹): 2243 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.773 min, 96.5% total area.

4-Hydroxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (**8**) was prepared following *GP1* from 3hydroxybenzene-1,2-diamine (3.55 g, 28.6 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:1; 2. EtOAc/*n*-hex= 3:1) and subsequent RP-CC (*GP7*). Yield: 88 mg (2%) of beige solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.82 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.18 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.26 (dd, *J* = 8.3, 7.7 Hz, 1H), 9.97 (br s, 2H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 106.80, 109.30, 112.86, 124.01, 127.51, 131.22, 139.14, 148.84. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₆ON₃ 160.05054, found 160.05071. IR (cm⁻¹): 2258 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 1.793 min, 96.8% total area.

4-Amino-1*H*-benzo[*d*]imidazole-2-carbonitrile (**9**) was prepared following *GP4* from 4-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (586 mg, 3.11 mmol), and isolated by column chromatography on silica (DCM/MeOH = 15:1) and subsequent RP-CC (*GP7*). Yield: 79 mg (16%) of dark brown solid. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 7.17 – 7.26 (m, 1H), 7.41 – 7.49 (m, 1H), 7.56 (dd, *J* = 8.1, 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 111.07, 112.25, 115.66, 124.51, 126.55, 126.67, 126.77, 135.18. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₇N₄ 159.06652, found 159.06638. IR (cm⁻¹): 2244 (CN group). Purity: UHPLC (Method II, 280 nm): tr = 1.860 min, 95.2% total area.

5-Nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**10**) was prepared following *GP1* from 4nitrobenzene-1,2-diamine (5.0 g, 32.7 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:1; 2. EtOAc/*n*-hex= 2:1) and subsequent crystallization (EtOH). Yield: 1.38 g (22%) of orange crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.92 (d, *J* = 9.1 Hz, 1H), 8.26 (dd, *J* = 9.1, 2.2 Hz, 1H), 8.67 (d, *J* = 2.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + CDCl₃) δ 112.86, 113.17, 124.37, 132.80, 135.30, 147.58, 148.92, 159.29. ESI-HRMS ([M– H]⁻, m/z): Calcd for C₈H₃O₂N₄ 187.02615, found 187.02538. IR (cm⁻¹): 2254 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.947 min, 96.6% total area.

Methyl 2-cyano-1*H*-benzo[*d*]imidazole-5-carboxylate (**11**) was prepared following *GP1* from methyl 3,4-diaminobenzoate (8.3 g, 49.9 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:1; 2. EtOAc/*n*-hex= 2:1) and subsequent RP-CC (*GP7*). Yield: 156 mg (2%) of off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.99 (dd, *J* = 8.7, 1.6 Hz, 1H), 8.31 (s, 1H), 14.53 (br s, 1H). ¹³C NMR (101 MHz, DMSO*d*₆ + TFA-*d*) δ 52.42, 112.29, 116.19, 119.51, 125.78, 126.37, 126.84, 138.62, 140.18, 166.42. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₈O₂N₃ 202.06110, found 202.06088. IR (cm⁻¹): 2259 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.043 min, 99.7% total area.

2-Cyano-1*H*-benzo[*d*]imidazole-5-carboxylic acid (**12**) was prepared following *GP5* from methyl 2-cyano-1*H*-benzo[*d*]imidazole-5-carboxylate (200 mg, 0.99 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1). Yield: 67 mg (36%) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 7.79 (dd, *J* = 8.7, 0.8 Hz, 1H), 7.99 (dd, *J* = 8.7, 1.6 Hz, 1H), 8.31 (dd, *J* = 1.4, 0.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 112.24, 116.02, 119.37, 125.93, 126.47, 127.38, 138.41, 140.00, 167.25. ESI-HRMS ([M+H]⁺, m/z):

Calcd for $C_9H_6O_2N_3$ 188.04545, found 188.04519. IR (cm⁻¹): 2254 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 2.907 min, 96.6% total area.

5-Chloro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**13**) was prepared following *GP1* from 4chlorobenzene-1,2-diamine (5.0 g, 35.1 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent RP-CC (*GP7*). Yield: 573 mg (9%) of yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 7.42 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 1.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 112.27, 116.29, 118.16, 125.53, 125.58, 129.71, 136.69, 138.63. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅N₃Cl 178.01665, found 178.01647. IR (cm⁻¹): 2242 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.257 min, 97.1% total area.

5-Methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (14) was prepared following *GP1* from 4methylbenzene-1,2-diamine (6.0 g, 49.1 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent crystallization (EtOH). Yield: 849 mg (11%) of orange crystals. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 2.43 (s, 3H), 7.22 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.48 (dt, *J* = 1.7, 0.9 Hz, 1H), 7.60 (dd, *J* = 8.4, 0.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 21.33, 112.77, 115.22, 116.91, 123.67, 126.78, 135.10, 136.98, 137.46. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈N₃ 158.07127, found 158.07149. IR (cm⁻¹): 2236 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.083 min, 99.5% total area.

5-Methoxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (**15**) was prepared following *GP1* from 4methoxybenzene-1,2-diamine (7.0 g, 50.7 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:3; 2. EtOAc/*n*-hex= 1:1) and subsequent crystallization (EtOH). Yield: 443 mg (5%) of brown solid. ¹H NMR (400 MHz, DMSO- d_6 + TFA-*d*) δ 3.80 (s, 3H), 7.00 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.11 (d, *J* = 2.4 Hz, 1H), 7.61 (d, *J* = 9.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6 + TFA-d) δ 55.74, 96.39, 112.90, 116.08, 119.45, 123.20, 134.38, 137.31, 158.40. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06608. IR (cm⁻¹): 2229 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.860 min, 97.3% total area.

5-Hydroxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (**16**) was prepared following *GP6* from 5methoxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (100 mg, 0.58 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 18 mg (20%) of pale-yellow crystalls. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 6.90 (dd, *J* = 9.2, 2.2 Hz, 1H), 6.91 (s, 1H), 7.51 – 7.57 (m, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 97.87, 112.95, 115.71, 119.29, 122.51, 134.29, 136.78, 156.35. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₆ON₃ 160.05054, found 160.05054. IR (cm⁻¹): 2234 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 3.740 min, 95.6% total area.

5-Amino-1*H*-benzo[*d*]imidazole-2-carbonitrile (17) was prepared following *GP4* from 5-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (350 mg, 1.86 mmol), and isolated by column chromatography on silica (DCM/MeOH= 20:1). Yield: 43 mg (15%) of brown solid. ¹H NMR (400 MHz, DMSO-*d*₆ + TFA-*d*) δ 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.77 (d, *J* = 1.9 Hz, 1H), 7.87 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆ + TFA-*d*) δ 111.58, 112.21, 117.89, 120.53, 125.99, 128.55, 137.02, 138.13. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₇N₄ 159.06652, found 159.06664. IR (cm⁻¹): 2228 (CN group). Purity: UHPLC (Method II, 280 nm): tr = 1.177 min, 96.6% total area.

1-Methyl-4-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (19) and 1-methyl-7-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (43) were prepared following GP3 from 4-nitro-1*H*-

benzo[*d*]imidazole-2-carbonitrile (1.45 g, 7.71 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:3; 2. EtOAc/*n*-hex= 1:1; 2. EtOAc/*n*-hex= 1:4) and subsequent RP-CC (*GP7*). Overall yield: 788 mg (51%).

1-Methyl-4-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**19**). **19** was additionally purified by crystallization (EtOH). Yield: 740 mg (47%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.13 (s, 3H), 7.65 (t, *J* = 8.1 Hz, 1H), 7.82 (dd, *J* = 8.3, 1.0 Hz, 1H), 8.30 (dd, *J* = 7.9, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 32.19, 110.12, 117.12, 121.79, 125.79, 130.41, 135.68, 137.05, 140.11. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇O₂N₄ 203.05635, found 203.05628. IR (cm⁻¹): 2245 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.627 min, 96.0% total area.

1-Methyl-7-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**43**). **43** was additionally purified by column chromatography on silica (1. DCM/*n*-hex= 1:1; 2. DCM/*n*-hex= 9:1). Yield: 48 mg (3%) of brown solid. ¹H NMR (400 MHz, CDCl₃) δ 4.20 (s, 3H), 7.50 (t, *J* = 8.1 Hz, 1H), 8.15 (dd, *J* = 8.2, 1.0 Hz, 1H), 8.18 (dd, *J* = 8.0, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 36.33, 110.32, 123.63, 124.07, 127.02, 128.57, 131.24, 136.61, 145.85. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇O₂N₄ 203.05635, found 203.05637. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.430 min, 99.8% total area.

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-4-carboxylate (**20**) and methyl 2-cyano-1methyl-1*H*-benzo[*d*]imidazole-7-carboxylate (**44**) were prepared following *GP3* from methyl 2-cyano-1*H*-benzo[*d*]imidazole-4-carboxylate (438 mg, 2.18 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 1:1). Overall yield: 356 mg (76%).

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-4-carboxylate (**20**). Yield: 185 mg (39%) of pale-yellow solid. ¹H NMR (400 MHz, Acetone-*d*₆) δ 3.95 (s, 3H), 4.13 (s, 3H), 7.58 (dd, *J* = 8.3, 7.5 Hz, 1H), 7.93 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.98 (dd, *J* = 7.5, 1.1 Hz, 1H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 32.07, 52.33, 111.94, 116.67, 123.88, 126.06, 127.51, 129.40, 136.88, 141.31, 166.32. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₁H₁₀O₂N₃ 216.07675, found

216.07632. IR (cm⁻¹): 2239 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.003 min, 98.5% total area.

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-7-carboxylate (**44**). Yield: 171 mg (36%) of white solid. ¹H NMR (400 MHz, Acetone-*d*₆) δ 3.98 (s, 3H), 4.17 (s, 3H), 7.41 – 7.46 (m, 1H), 7.93 – 7.94 (m, 1H), 7.95 – 7.97 (m, 1H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 36.10, 52.88, 111.97, 118.68, 124.09, 126.52, 129.80, 130.90, 133.37, 145.04, 166.15. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₁H₁₀O₂N₃ 216.07675, found 216.07637. IR (cm⁻¹): 2240 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 4.443 min, 95.7% total area.

2-Cyano-1-methyl-1*H*-benzo[*d*]imidazole-4-carboxylic acid (**21**) was prepared following *GP5* from methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-4-carboxylate (100 mg, 0.47 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1) and subsequent crystallization (EtOH). Yield: 58 mg (61%) of pale-brown solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.03 (s, 3H), 7.60 (dd, *J* = 8.3, 7.4 Hz, 1H), 7.95 (dd, *J* = 7.5, 1.1 Hz, 1H), 8.03 (dd, *J* = 8.3, 1.1 Hz, 1H), 13.02 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.71, 111.43, 116.28, 123.26, 125.33, 126.61, 128.11, 135.73, 166.20. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₈O₂N₃ 202.06110, found 202.06096. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 3.070 min, 95.0% total area.

4-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**22**) was prepared following *GP3* from 4-chloro-1*H*-benzo[*d*]imidazole-2-carbonitrile (2.78 g, 15.7 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent RP-CC (*GP7*). Yield: 90 mg (3%) of yellow crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.01 (s, 3H), 7.47–7.54 (m, 2H), 7.77 (dd, *J* = 6.5, 2.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.97, 111.12, 111.20, 123.77, 124.27, 126.71, 127.67, 135.92, 138.79. ESI-HRMS ([M+H]⁺, m/z): Calcd for

 $C_9H_7N_3Cl$ 192.03230, found 192.03207. IR (cm⁻¹): 2293 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.397 min, 95.1% total area.

Positional isomer 7-chloro-1-methyl-1H-benzo[d]imidazole-2-carbonitrile (46) was not obtained in sufficient purity, thus alternative synthetic route was used.

7-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (46)

2-Chloro-6-nitroaniline (5.0 g, 29.0 mmol) was dissolved in anhydrous DMF (40 mL), flushed with Ar, cooled on an icebath, then NaH (60% dispersion on mineral oil, 1.16 g, 29.0 mmol) was added, the reaction mixture stirred for 15 min followed by the addition of MeI (1.98 mL, 31.9 mmol). The reaction mixture was stirred under Ar at rt for 18 h, volatile components evaporated *in vacuo* and the residue dissolved in EtOAc (50 mL), washed with H₂O (50 mL), saturated brine (50 mL), dried, filtered, solvents evaporated *in vacuo* and 2-chloro-*N*-methyl-6-nitroaniline (**122**) isolated by column chromatography on silica (PE/Et₂O = 9:1). Yield: 3.93 g (73%) of orange oil. ¹H NMR (400 MHz, CDCl₃) δ 3.08 (d, *J* = 5.5 Hz, 3H), 6.68 (dd, *J* = 8.5, 7.8 Hz, 1H), 6.71 (br s, 1H), 7.46 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.88 (dd, *J* = 8.5, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 34.16, 117.04, 123.58, 125.50, 136.20, 137.57, 143.46. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₇H₈O₂N₂Cl 187.02688, found 187.02659.

2-Chloro-*N*-methyl-6-nitroaniline (**122**) (3.0 g, 16.1 mmol) was dissolved in MeOH (30 mL), flushed with Ar, then 10% Pd/C (100 mg) was added, and NaBH₄ was added in 100 mg portions with stirring on an icebath until the yellow solution turned greyish. The catalyst was removed by filtration, washed with MeOH, and the filtrate evaporated *in vacuo*. Oily residue was acidified with 6 M HCl_(aq) (50 mL), then made alkaline (pH = 13–14) using 50% NaOH_(aq), extracted with EtOAc (2 × 30 mL), organic layer washed with saturated brine (30 mL), dried, filtered and volatile components evaporated *in vacuo* to afford crude 6-chloro- N^1 -methylbenzene-1,2-diamine (**123**). Yield: 1.39 g (55%) of dark-brown oil. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₇H₁₀N₂Cl 157.05270, found 157.05259.

7-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**46**) was prepared following *GP1* from 6-chloro- N^1 -methylbenzene-1,2-diamine (**123**) (1.39 g, 8.91 mmol), and isolated by

column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 376 mg (22%) of beige solid. ¹H NMR (400 MHz, CDCl₃) δ 4.28 (s, 3H), 7.27 (dd, *J* = 8.2, 7.7 Hz, 1H), 7.38 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.70 (dd, *J* = 8.3, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 34.33, 110.65, 117.24, 120.61, 125.01, 127.43, 128.78, 130.97, 144.48. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₃Cl 192.03230, found 192.03193. IR (cm⁻¹): 2243 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.583 min, 99.0% total area.

1,4-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**23**) and 1,7-dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**47**) were prepared following *GP3* from 4-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (1.19 g, 7.57 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent RP-CC (*GP7*). Overall yield: 441 mg (34%).

1,4-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**23**). Yield: 194 mg (15%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 2.65 (s, 3H), 3.95 (s, 3H), 7.18 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.23 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.36 (dd, *J* = 8.3, 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 16.55, 31.41, 107.74, 111.31, 124.53, 126.15, 126.56, 132.00, 134.61, 142.22. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀N₃ 172.08692, found 172.08700. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.430 min, 97.5% total area.

1,7-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (47). Yield: 246 mg (19%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 2.75 (s, 3H), 4.21 (s, 3H), 7.16 (dt, *J* = 7.2, 1.0 Hz, 1H), 7.22–7.28 (m, 1H), 7.65 (dt, *J* = 8.2, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 18.60, 34.22, 111.33, 119.74, 122.36, 124.61, 127.81, 128.46, 133.72, 143.37. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀N₃ 172.08692, found 172.08700. IR (cm⁻¹): 2235 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.373 min, 95.1% total area.

4-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**24**) and 7-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**48**) were prepared following *GP3* from methyl 4-methoxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (300 mg, 1.73 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 1:3). Overall yield: 199 mg (61%).

4-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**24**). Yield: 96 mg (30%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.97 (s, 3H), 4.03 (s, 3H), 6.76 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.00 (dd, *J* = 8.3, 0.7 Hz, 1H), 7.40 (t, *J* = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.54, 56.05, 102.69, 104.08, 111.11, 125.65, 127.68, 133.50, 136.33, 152.47. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀ON₃ 188.08184, found 188.08185. IR (cm⁻¹): 2234 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.150 min, 95.8% total area.

7-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**48**). Yield: 103 mg (32%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3H), 4.13 (s, 3H), 6.76 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.22 (t, *J* = 8.1 Hz, 1H), 7.34 (dd, *J* = 8.4, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 34.19, 55.82, 105.86, 111.07, 113.73, 124.83, 125.06, 127.06, 144.36, 147.58. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀ON₃ 188.08184, found 188.08186. IR (cm⁻¹): 2240 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.457 min, 95.7% total area.

4-Hydroxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**25**) was prepared following *GP6* from 4-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (50 mg, 0.27 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 16 mg (34%) of white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.94 (s, 3H), 6.71 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.11 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.25 – 7.33 (m, 1H), 10.37 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.47, 101.79, 107.86, 111.76, 124.99, 127.28, 132.48, 136.70, 150.07. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06613. IR (cm⁻¹): 2242 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 4.090 min, 99.4% total area.

4-Amino-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**26**) was prepared following *GP4* from 1-methyl-4-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (320 mg, 1.58 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 1:1). Yield: 72 mg (26%) of orange crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.93 (s, 3H), 4.52 (br s, 2H), 6.58 (d, *J* = 7.8 Hz, 1H), 6.74 (d, *J* = 8.2 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.51, 99.19, 106.66, 111.48, 124.69, 128.09, 132.50, 135.93, 140.11. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₉N₄ 173.08217, found 173.08206. IR (cm⁻¹): 2231 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 2.007 min, 98.7% total area.

1-Methyl-5-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (27) and 1-methyl-6-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (35) were prepared following *GP3* from 5-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (460 mg, 2.44 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:3; 2. EtOAc/*n*-hex= 1:1) and subsequent crystallization (EtOH). Overall yield: 231 mg (47%).

1-Methyl-5-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (27). 27 was additionally purified by column chromatography on silica (DCM/acetone= 8:1). Yield: 175 mg (35%) of beige solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.07 (s, 3H), 8.03 (dd, *J* = 9.1, 0.6 Hz, 1H), 8.37 (dd, *J* = 9.1, 2.2 Hz, 1H), 8.74 (dd, *J* = 2.2, 0.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 32.12, 110.84, 112.88, 117.19, 120.76, 131.04, 138.59, 140.64, 144.41. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇O₂N₄ 203.05635, found 203.05616. IR (cm⁻¹): 2240 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.213 min, 96.5% total area.

1-Methyl-6-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (**35**). Yield: 56 mg (11%) of orange crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.12 (s, 3H), 8.03 (dd, *J* = 9.1, 0.6 Hz, 1H), 8.24 (dd, *J* = 9.0, 2.3 Hz, 1H), 8.88 (dd, *J* = 2.2, 0.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 32.20, 109.40, 110.85, 118.93, 121.45, 131.69, 134.19, 145.23, 145.39. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇O₂N₄ 203.05635, found 203.05634. IR (cm⁻¹): 2252 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.190 min, 96.3% total area.

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-5-carboxylate (**28**) and methyl 2-cyano-1methyl-1*H*-benzo[*d*]imidazole-6-carboxylate (**36**) were prepared following *GP3* from methyl 2-cyano-1*H*-benzo[*d*]imidazole-5-carboxylate (3.38 g, 16.8 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 1:3; 1. EtOAc/*n*-hex= 1:1) and subsequent crystallization (EtOH). Overall yield: 1.62 g (45%).

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-5-carboxylate (**28**). Yield: 1.32 g (37%) of brown crystalls. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.90 (s, 3H), 4.03 (s, 3H), 7.90 (dd, *J* = 8.8, 0.7 Hz, 1H), 8.09 (dd, *J* = 8.7, 1.5 Hz, 1H), 8.38 (dd, *J* = 1.6, 0.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.76, 52.33, 111.15, 112.19, 122.42, 125.58, 126.21, 129.18, 137.71, 141.23, 166.11. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₁H₁₀O₂N₃ 216.07675, found 216.07639. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.303 min, 96.2% total area.

Methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-6-carboxylate (**36**). Yield: 295 mg (8%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.95 (s, 3H), 4.04 (s, 3H), 7.83 (d, *J* = 8.7 Hz, 1H), 8.04 (dd, *J* = 8.7, 1.5 Hz, 1H), 8.14 – 8.19 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.67, 52.62, 110.61, 112.86, 121.49, 125.33, 128.19, 129.45, 134.45, 145.46, 166.60. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₁H₁₀O₂N₃ 216.07675, found 216.07643. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.317 min, 97.4% total area.

2-Cyano-1-methyl-1*H*-benzo[*d*]imidazole-5-carboxylic acid (**29**) was prepared following *GP5* from methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-5-carboxylate (230 mg, 1.07 mmol), and isolated by column chromatography on silica (DCM/MeOH= 15:1) and subsequent crystallization (EtOH). Yield: 46 mg (21%) of beige solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.03 (s, 3H), 7.88 (dd, *J* = 8.7, 0.6 Hz, 1H), 8.08 (dd, *J* = 8.7, 1.5 Hz, 1H), 8.36 (dd, *J* = 1.5, 0.6 Hz, 1H), 13.08 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.74, 111.24, 111.93, 122.48, 126.51, 126.81, 128.94, 137.55, 141.30, 167.19. ESI-HRMS ([M+H]⁺, m/z): Calcd for

 $C_{10}H_8O_2N_3$ 202.06110, found 202.06075. IR (cm⁻¹): 2240 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 3.647 min, 96.8% total area.

5-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**30**) and 6-chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**38**) were prepared following *GP3* from 5-chloro-1*H*-benzo[*d*]imidazole-2-carbonitrile (2.90 g, 16.3 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent RP-CC (*GP7*). Overall yield: 1.28 g (41%).

5-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**30**). Yield: 781 mg (25%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 4.01 (s, 3H), 7.38 (dd, *J* = 8.8, 0.6 Hz, 1H), 7.47 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.84 (dd, *J* = 1.9, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.63, 110.71, 111.31, 121.20, 127.24, 128.13, 130.45, 133.37, 143.15. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₃Cl 192.03230, found 192.03209. IR (cm⁻¹): 2242 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.530 min, 95.3% total area.

6-Chloro-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**38**). Yield: 500 mg (16%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.98 (s, 3H), 7.38 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.45 (dd, *J* = 1.9, 0.6 Hz, 1H), 7.77 (dd, *J* = 8.8, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.56, 110.45, 110.78, 122.72, 125.62, 127.81, 132.81, 135.33, 141.16. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₃Cl 192.03230, found 192.03206. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.530 min, 97.4% total area.

1,5-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**31**)

4-Methyl-2-nitroaniline (2.0 g, 13.1 mmol) was dissolved in anhydrous DMF (15 mL), flushed with Ar, cooled on an icebath, then NaH (60% dispersion on mineral oil, 524 mg, 13.1 mmol) was added, the reaction mixture stirred for 15 min followed by the addition of MeI (0.90 mL, 14.4 mmol). The reaction mixture was stirred under Ar at rt for 18 h, volatile components evaporated *in vacuo* and the residue dissolved in EtOAc (50 mL), washed with H₂O (30 mL), saturated brine (30 mL), dried, filtered, solvents evaporated *in vacuo* and *N*,4-dimethyl-2-

nitroaniline (**118**) isolated by crystallization (EtOH). Yield: 2.05 g (94%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 3H), 3.00 (d, *J* = 5.1 Hz, 3H), 6.75 (d, *J* = 8.7 Hz, 1H), 7.28 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.92 (s, 1H), 7.95 (dd, *J* = 2.1, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 20.06, 29.87, 113.46, 124.80, 126.08, 131.55, 137.93, 144.75. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₁₁O₂N₂ 167.08150, found 167.08140.

N,4-Dimethyl-2-nitroaniline (**118**) (2.0 g, 12.0 mmol) was dissolved in MeOH (30 mL), flushed with Ar, then 10% Pd/C (75 mg) was added, and NaBH₄ was added in 100 mg portions with stirring on an icebath until the yellow solution turned greyish. The catalyst was removed by filtration, washed with MeOH, and the filtrate evaporated *in vacuo*. Oily residue was acidified with 6 M HCl_(aq) (40 mL), then made alkaline (pH = 13–14) using 50% NaOH_(aq), extracted with EtOAc (2 × 30 mL), organic layer washed with saturated brine (30 mL), dried, filtered and volatile components evaporated *in vacuo* to afford crude N^1 ,4-dimethylbenzene-1,2-diamine **119**. Yield: 1.63 g (quantitative) of greyish semisolid. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₁₃N₂ 137.10732, found 137.10716.

1,5-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**31**) was prepared following *GP1* from N^1 ,4-dimethylbenzene-1,2-diamine (**119**) (1.63 g, 12.0 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent crystallization (EtOH). Yield: 267 mg (13%) of brown crystals. ¹H NMR (400 MHz, Acetone-*d*₆) δ 2.47 (s, 3H), 4.05 (s, 3H), 7.32–7.38 (m, 1H), 7.53–7.58 (m, 2H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 21.47, 31.73, 111.53, 112.29, 121.13, 127.83, 128.66, 134.25, 134.71, 143.80. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀N₃ 172.08692, found 172.08689. IR (cm⁻¹): 2233 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.423 min, 95.5% total area.

5-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**32**) and 6-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**40**) were prepared following *GP3* from methyl 5-methoxy-1*H*-benzo[*d*]imidazole-2-carbonitrile (**320** mg, 1.85 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 1:2) and subsequent crystallization (EtOH). Overall yield: 129 mg (37%).

5-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**32**). Yield: 46 mg (13%) of yellow crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.96 (s, 3H), 7.13 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.20 (d, *J* = 2.3 Hz, 1H), 7.27 – 7.32 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.52, 55.85, 101.90, 110.85, 111.32, 118.29, 126.73, 129.67, 143.60, 157.86. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀ON₃ 188.08184, found 188.08157. IR (cm⁻¹): 2239 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.217 min, 99.6% total area.

6-Methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**40**). Yield: 83 mg (24%) of brown crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 3.92 (s, 3H), 6.75 (d, J = 2.3 Hz, 1H), 7.02 (dd, J = 9.0, 2.4 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 31.29, 55.95, 92.04, 111.44, 115.65, 122.41, 125.77, 135.79, 137.22, 159.61. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀ON₃ 188.08184, found 188.08183. IR (cm⁻¹): 2232 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.247 min, 99.5% total area.

5-Hydroxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**33**) was prepared following *GP6* from 5-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (50 mg, 0.27 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 18 mg (38%) of off-white solid. ¹H NMR (400 MHz, CD₃OD) δ 3.97 (s, 3H), 7.03 (dd, *J* = 2.3, 0.7 Hz, 1H), 7.06 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.44 (dd, *J* = 8.8, 0.7 Hz, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 31.87, 104.38, 111.91, 112.58, 118.69, 127.71, 130.43, 144.18, 156.82. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06612. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 4.013 min, 97.5% total area.

5-Amino-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**34**) was prepared following *GP4* from 1-methyl-5-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (1.16 g, 1.58 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex= 2:1). Yield: 161 mg (16%) of pale-brown crystals. ¹H NMR (400 MHz, CD₃OD) δ 3.96 (s, 3H), 6.92 – 6.98 (m, 1H), 6.98 – 7.04 (m, 1H), 7.38 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 31.77, 103.82, 112.08, 112.33,

119.30, 127.01, 129.92, 144.51, 147.24. ESI-HRMS ($[M+H]^+$, m/z): Calcd for C₉H₉N₄ 173.08217, found 173.08213. IR (cm⁻¹): 2231 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 1.963 min, 95.5% total area.

2-Cyano-1-methyl-1*H*-benzo[*d*]imidazole-6-carboxylic acid (**37**) was prepared following *GP5* from methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-6-carboxylate (100 mg, 0.46 mmol), and isolated by column chromatography on silica (DCM/MeOH= 15:1) and subsequent crystallization (EtOH). Yield: 22 mg (24%) of white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.01 (s, 3H), 7.76 (d, *J* = 8.6 Hz, 1H), 8.02 (dd, *J* = 8.6, 1.5 Hz, 1H), 8.30 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.57, 111.45, 113.11, 119.66, 125.23, 128.31, 133.12, 134.45, 143.60, 169.71. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₈O₂N₃ 202.06110, found 202.06079. IR (cm⁻¹): 2245 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 3.703 min, 95.8% total area.

1,6-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**39**)

5-Methyl-2-nitroaniline (5.0 g, 32.9 mmol) was dissolved in anhydrous DMF (30 mL), flushed with Ar, cooled on an icebath, then NaH (60% dispersion on mineral oil, 1.32 g, 32.9 mmol) was added, the reaction mixture stirred for 15 min followed by the addition of MeI (2.25 mL, 36.2 mmol). The reaction mixture was stirred under Ar at rt for 18 h, volatile components evaporated *in vacuo* and the residue dissolved in EtOAc (60 mL), washed with H₂O (40 mL), saturated brine (40 mL), dried, filtered, solvents evaporated *in vacuo* and *N*,5-dimethyl-2-nitroaniline (120) isolated by crystallization (EtOH). Yield: 3.55 g (65%) of orange crystals. ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 3.01 (d, *J* = 5.1 Hz, 3H), 6.46 (dd, *J* = 8.7, 1.7 Hz, 1H), 6.60 (d, *J* = 1.6 Hz, 1H), 8.05 (d, *J* = 8.7 Hz, 1H). 8.06 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 22.33, 29.81, 113.09, 117.08, 126.89, 130.17, 146.53, 147.98. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₁₁O₂N₂ 167.08150, found 167.08133.

N,5-Dimethyl-2-nitroaniline (**120**) (3.50 g, 21.1 mmol) was dissolved in MeOH (40 mL), flushed with Ar, then 10% Pd/C (100 mg) was added, and NaBH₄ was added in 100 mg portions with stirring on an icebath until the yellow solution turned greyish. The catalyst was removed by filtration, washed with MeOH, and the filtrate evaporated *in vacuo*. Oily residue was acidified with 6 M HCl_(aq) (50 mL), then made alkaline (pH = 13–14) using 50% NaOH_(aq), extracted with EtOAc (2 × 40 mL), organic layer washed with saturated brine (40 mL), dried, filtered and volatile components evaporated *in vacuo* to afford crude N^1 ,5-dimethylbenzene-1,2-diamine (**121**). Yield: 0.98 g (34%) of dark-brown semisolid. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₁₃N₂ 137.10732, found 137.10716.

1,6-Dimethyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**39**) was prepared following *GP1* from N^1 ,4-dimethylbenzene-1,2-diamine (**121**) (980 mg, 7.20 mmol), and isolated by column chromatography on silica (1. PE/DCM= 3:1; 2. DCM; 3. DCM/MeOH= 50:1) and subsequent crystallization (EtOH). Yield: 126 mg (10%) of pale-brown solid. ¹H NMR (400 MHz, CDCl₃) δ 2.53 (d, *J* = 0.8 Hz, 3H), 3.94 (s, 3H), 7.18 – 7.20 (m, 1H), 7.22 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.70 (dd, *J* = 8.4, 0.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 22.16, 31.26, 109.92, 111.36, 121.19, 126.44, 126.58, 135.12, 137.20, 140.87. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₁₀N₃ 172.08692, found 172.08671. IR (cm⁻¹): 2233 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.413 min, 99.8% total area.

Reaction of 6-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (50 mg, 0.27 mmol) according to *GP6* failed to produce 6-hydroxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**41**) was prepared by deprotecting 6-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (100 mg, 0.53 mmol) according to *GP5*, and isolated by column chromatography on silica (1. EtOAc/*n*-hex = 1:1; 2. EtOAc). Yield: 8 mg (9%) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.87 (s, 3H), 6.92 (d, *J* = 8.2 Hz, 2H), 7.55 – 7.63 (m, 1H), 9.94 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 31.12, 95.23, 111.96, 115.31, 121.36, 124.89, 135.67, 136.09, 156.85. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06609. IR (cm⁻¹): 2236 (CN group). Purity: UHPLC (Method I, 280 nm): tr = 3.260 min, 95.1% total area.

6-Amino-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**42**) was prepared following *GP4* from 1-methyl-6-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (445 mg, 2.20 mmol), and isolated by column chromatography on silica (DCM/MeOH= 20:1) and subsequent RP-CC (*GP7*). Yield: 36 mg (10%) of off-white crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.79 (s, 3H), 5.57 (br s, 2H), 6.55 (d, *J* = 2.0 Hz, 1H), 6.75 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 30.80, 91.28, 112.42, 115.12, 120.99, 122.92, 134.10, 136.67, 148.51. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₉N₄ 173.08217, found 173.08217. IR (cm⁻¹): 2227 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 2.417 min, 97.6% total area.

2-Cyano-1-methyl-1*H*-benzo[*d*]imidazole-7-carboxylic acid (**45**) was prepared following *GP5* from methyl 2-cyano-1-methyl-1*H*-benzo[*d*]imidazole-7-carboxylate (100 mg, 0.47 mmol), and isolated by column chromatography on silica (1. DCM/MeOH= 20:1; 2. DCM/MeOH= 4:1) and subsequent crystallization (EtOH). Yield: 38 mg (40%) of white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.11 (s, 3H), 7.48 (dd, *J* = 8.2, 7.5 Hz, 1H), 7.95 (dd, *J* = 7.5, 1.1 Hz, 1H), 8.04 (dd, *J* = 8.3, 1.1 Hz, 1H), 13.58 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 35.53, 111.51, 119.17, 123.53, 125.11, 128.75, 129.62, 132.16, 143.58, 166.52. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₈O₂N₃ 202.06110, found 202.066. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.763 min, 97.2% total area.

7-Hydroxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**49**) was prepared following *GP6* from 7-methoxy-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (50 mg, 0.27 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1) and subsequent RP-CC (*GP7*). Yield: 18 mg (38%) of white crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.16 (s, 3H),

6.79 (dd, J = 7.4, 1.2 Hz, 1H), 7.14 (dd, J = 8.3, 7.4 Hz, 1H), 7.19 (dd, J = 8.3, 1.2 Hz, 1H), 10.48 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 33.80, 109.88, 111.31, 111.62, 124.57, 124.77, 126.69, 144.16, 145.29. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₈ON₃ 174.06619, found 174.06636. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method II, 254 nm): tr = 4.207 min, 99.1% total area.

7-Amino-1-methyl-1*H*-benzo[*d*]imidazole-2-carbonitrile (**50**) was prepared following *GP4* from 1-methyl-7-nitro-1*H*-benzo[*d*]imidazole-2-carbonitrile (50 mg, 0.25 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex= 2:1; 1. EtOAc/*n*-hex= 4:1) and subsequent RP-CC (*GP7*). Yield: 3 mg (7%) of brown solid. ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 2H), 4.29 (s, 3H), 6.71 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.16 (dd, *J* = 8.4, 7.5 Hz, 1H), 7.32 (dd, *J* = 8.3, 0.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 33.99, 111.23, 113.58, 113.63, 125.32, 125.88, 127.50, 133.01, 144.63. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₉N₄ 173.08217, found 173.08222. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 1.997 min, 97.8% total area.

4-Nitrobenzo[*d*]thiazole-2-carbonitrile (**52**) was prepared following *GP2* from 2-bromo-6nitroaniline (400 mg, 1.84 mmol), and isolated by column chromatography on silica (1. EtOAc/*n*-hex = 1:2; 2. EtOAc/*n*-hex = 1:1). Yield: 117 mg (31%) of orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (t, *J* = 8.1 Hz, 1H), 8.32 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.38 (dd, *J* = 7.9, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 112.17, 124.59, 127.53, 128.42, 138.28, 140.44, 143.86, 144.41. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₄O₂N₃S 206.00187, found 206.00136. IR (cm⁻¹): 2230.85 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.277 min, 98.1% total area.

Methyl 2-cyanobenzo[*d*]thiazole-4-carboxylate (**53**) was prepared following *GP2* from methyl 2-amino-3-bromobenzoate (1.0 g, 4.35 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:4). Yield: 390 mg (41%) of orange solid. ¹H NMR (400 MHz, CDCl₃) δ 4.05 (s, 3H), 7.68 – 7.74 (m, 1H), 8.18 (dd, *J* = 8.3, 1.2 Hz, 1H), 8.25 (dd, *J* = 7.4, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 53.04, 112.83, 126.01, 127.40, 128.20, 130.66, 136.96, 138.35, 150.02, 165.61. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₂N₂S 219.02227, found 219.02166. IR (cm⁻¹): 2229 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.343 min, 99.0% total area.

Synthesis of 2-cyanobenzo[*d*]thiazole-4-carboxylic acid (54) following *GP5* from methyl 2cyanobenzo[*d*]thiazole-4-carboxylate (360 mg, 1.65 mmol), and isolation by column chromatography on silica (DCM/MeOH= 4:1) failed to produce the desired product.

4-Methylbenzo[*d*]thiazole-2-carbonitrile (**56**) was prepared following *GP2* from 2-bromo-6methylaniline (400 mg, 2.15 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:6). Yield: 8 mg (2%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 2.80 (s, 3H), 7.43 (dt, *J* = 7.3, 1.1 Hz, 1H), 7.49 – 7.55 (m, 1H), 7.80 (dd, *J* = 8.1, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 18.43, 113.38, 119.24, 128.32, 128.84, 135.31, 135.53, 135.92, 152.05. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₂S 175.03245, found 175.03208. IR (cm⁻¹): 2228 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 5.010 min, 99.0% total area.

4-Methoxybenzo[*d*]thiazole-2-carbonitrile (**57**). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.00 (s, 3H), 7.22 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.67 (t, *J* = 8.1 Hz, 1H), 7.84 (dd, *J* = 8.3, 0.9 Hz, 1H). HRMS (ESI⁺) *m/z* [M+H]⁺, calcd. for C₉H₇N₂OS 191.02736, found 191.02705. Purity: UHPLC (Method I, 254 nm): tr = 4.500 min, 95.5% total area.

4-Hydroxybenzo[*d*]thiazole-2-carbonitrile (**58**) was prepared following *GP6* from 4methoxybenzo[*d*]thiazole-2-carbonitrile (50 mg, 0.26 mmol), and isolated by column chromatography on silica (EtOAc/hex = 1:4). Yield: 34 mg (74%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (br s, 1H), 7.12 (dd, *J* = 7.8, 1.0 Hz, 2H), 7.48 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 112.00, 112.93, 113.18, 130.98, 134.75, 136.16, 142.34, 151.56. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅ON₂S 177.01171, found 177.01131. IR (cm⁻¹): 2229 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.130 min, 99.0% total area.

4-Aminobenzo[*d*]thiazole-2-carbonitrile (**59**) was prepared following *GP4* from 4nitrobenzo[*d*]thiazole-2-carbonitrile (102 mg, 0.50 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 31 mg (35%) of orange solid. ¹H NMR (400 MHz, CDCl₃) δ 4.78 (br s, 2H), 6.79 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.24 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 109.94, 110.37, 113.49, 130.48, 132.81, 136.59, 141.40, 143.18. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₆N₃S 176.02769, found 176.02733. IR (cm⁻¹): 2223 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.370 min, 96.4% total area.

5-Nitrobenzo[*d*]thiazole-2-carbonitrile (**60**). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.52 (dd, *J* = 9.0, 2.2 Hz, 1H), 8.63 (d, *J* = 9.0 Hz, 1H), 9.09 (d, *J* = 2.3 Hz, 1H). HRMS (ESI⁺) *m*/*z* [M+H]⁺, calcd. for C₈H₄N₃O₂S 206.00187, found 206.00168. Purity: UHPLC (Method I, 254 nm): tr = 4.530 min, 96.4% total area.

Methyl 2-cyanobenzo[*d*]thiazole-5-carboxylate (**61**) was prepared following *GP2* from methyl 3-amino-4-bromobenzoate (330 mg, 1.43 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 160 mg (50%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.01 (s, 3H), 8.06 (dd, *J* = 8.6, 0.5 Hz, 1H), 8.30 (dd, *J* = 8.6, 1.6 Hz, 1H), 8.89 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.88, 112.69, 121.99, 127.05, 129.07, 130.57, 138.20, 139.61, 152.26, 166.06. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₂N₂S 219.02227, found 219.02175. IR (cm⁻¹): 2232 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.707min, 97.0% total area.

2-Cyanobenzo[*d*]thiazole-5-carboxylic acid (**62**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]thiazole-5-carboxylate (80 mg, 0.37 mmol), and isolated by column chromatography on silica (1. DCM/MeOH= 9:1; 2. DCM/MeOH/AcOH= 9:1:0.1). Yield: 35 mg (2%) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.23 (dd, *J* = 8.6, 1.5 Hz, 1H), 8.41 (d, *J* = 8.6 Hz, 1H), 8.70 (dd, *J* = 1.6, 0.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 113.28, 123.16, 125.21, 128.77, 138.64, 138.73, 151.50, 167.13, 172.06. ESI-HRMS ([M–H][–], m/z): Calcd for C₉H₃O₂N₂S 202.99207, found 202.99114. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.123min, 96.6% total area.

5-Chlorobenzo[*d*]thiazole-2-carbonitrile (**63**) was prepared following *GP1* from 2-amino-4chlorobenzenethiol (500 mg, 3.13 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:6). Yield: 40 mg (7%) of orange solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.79 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.37 – 8.43 (m, 2H). NMR (101 MHz, DMSO-*d*₆) δ 113.17, 123.86, 124.78, 128.86, 132.99, 134.29, 139.43, 152.34. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₄N₂ClS 194.97782, found 194.97744. IR (cm⁻¹): 2235 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.997 min, 98.1% total area.

5-Methylbenzo[*d*]thiazole-2-carbonitrile (**64**) was prepared following *GP2* from 2-bromo-5methylaniline (0.5 g, 2.17 mmol), and isolated by column chromatography on silica (EtOAc/*n*hex = 1:6). Yield: 95 mg (57%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 2.56 (s, 3H), 7.46 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.98 – 8.04 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 152.77, 138.44, 136.44, 132.46, 130.53, 124.95, 121.19, 113.14, 21.49. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₂S 175.03245, found 175.03204. IR (cm⁻¹): 2228 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.933 min, 99.0% total area.

5-Methoxybenzo[*d*]thiazole-2-carbonitrile (**65**). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.89 (s, 3H), 7.37 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.77 (d, *J* = 2.5 Hz, 1H), 8.21 (d, *J* = 9.0 Hz, 1H). HRMS (ESI⁺) *m/z* [M+H]⁺, calcd. for C₉H₇N₂OS 191.02736, found 191.02712. Purity: UHPLC (Method I, 254 nm): tr = 4.673 min, 98.2% total area.

5-Hydroxybenzo[*d*]thiazole-2-carbonitrile (**66**) was prepared following *GP6* from 5methoxybenzo[*d*]thiazole-2-carbonitrile (50 mg, 0.26 mmol), and isolated by column chromatography on silica (EtOAc/hex = 1:3). Yield: 30 mg (65%) of yellow solid. ¹H NMR (400 MHz, Acetone-*d*₆) δ 7.30 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.57 (d, *J* = 2.0 Hz, 1H), 8.02 – 8.09 (m, 1H), 9.16 (br s, 1H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 109.56, 114.01, 120.35, 120.41, 123.72, 127.34, 138.03, 154.75, 158.82. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅ON₂S 177.01171, found 177.01129. IR (cm⁻¹): 2240 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.110 min, 96.5% total area.

5-Aminobenzo[*d*]thiazole-2-carbonitrile (67). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.67 (br s, 2H), 7.05 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.24 (d, *J* = 2.2 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H). HRMS (ESI⁺) *m*/*z* [M+H]⁺, calcd. for C₈H₆N₃S 176.02769, found 176.02769. Purity: UHPLC (Method I, 254 nm): tr = 1.853 min, 98.2% total area.

6-Nitrobenzo[*d*]thiazole-2-carbonitrile (68). То а suspension of 2-chloro-6nitrobenzo[d]thiazole (150 mg, 0.70 mmol) in MeCN (10 mL), DABCO (12 mg, 0.11 mmol) was added, followed by a solution of NaCN (41 mg, 0.84 mmol) in H₂O (1 mL). After stirring the reaction mixture at rt for 24 h, a solution of FeCl_{3(aq)} (10 mL) was added, extracted with EtOAc (3×20 mL), organic layer washed with saturated brine (30 mL), dried, filtered, volatile components evaporated *in vacuo* and product isolated by column chromatography on silica (EtOAc/n-hex = 1:5). Yield: 77 mg (54%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 9.1, 0.6 Hz, 1H), 8.52 (dd, J = 9.1, 2.2 Hz, 1H), 8.96 (dd, J = 2.2, 0.6 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 112.13, 118.69, 123.22, 126.18, 135.70, 141.89, 147.36, 155.43. ESI-HRMS ($[M+H]^+$, m/z): Calcd for C₈H₄O₂N₃S 206.00187, found 206.00138. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.597 min, 98.3% total area.

Methyl 2-cyanobenzo[*d*]thiazole-6-carboxylate (**69**) was prepared following *GP2* from methyl 4-amino-3-bromobenzoate (440 mg, 1.91 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 140 mg (34%) of yellow solid. ¹H NMR (400 MHz, DMSO*d*₆) δ 3.93 (s, 3H), 8.22 (dd, *J* = 8.7, 1.7 Hz, 1H), 8.37 (dd, *J* = 8.7, 0.5 Hz, 1H), 9.05 (dd, *J* = 1.7, 0.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 52.81, 113.24, 124.78, 125.55, 128.29, 129.24, 135.81, 141.14, 154.19, 165.52. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₂N₂S 219.02227, found 219.02183. IR (cm⁻¹): 2234 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.733 min, 95.0% total area.

2-Cyanobenzo[*d*]thiazole-6-carboxylic acid (**70**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]thiazole-6-carboxylate (119 mg, 0.55 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 39 mg (35%) of brown solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 – 8.27 (m, 2H), 8.88 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 113.83, 124.29, 124.92, 129.35, 135.78, 135.82, 139.48, 153.53, 168.42. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₅O₂N₂S 205.00662, found 205.00625. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.157 min, 98.0% total area.

6-Methylbenzo[*d*]thiazole-2-carbonitrile (72) was prepared following *GP1* from 2-amino-5methylbenzenethiol (400 mg, 2.87 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:6) and RP-CC (*GP7*). Yield: 20 mg (4%) of white solid. ¹H NMR (400 MHz, CDCl₃) δ 2.55 (s, 3H), 7.46 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.76 (p, *J* = 0.8 Hz, 2H), 8.09 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 21.98, 113.30, 121.35, 124.84, 129.94, 135.42, 135.81, 139.68, 150.64. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₂S 175.03245, found 175.03202. IR (cm⁻¹): 2229 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.923 min, 97.2% total area.

6-Methoxybenzo[*d*]thiazole-2-carbonitrile (**73**). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.88 (s, 3H), 7.32 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.89 (d, *J* = 2.6 Hz, 1H), 8.14 (d, *J* = 9.1 Hz, 1H). HRMS (ESI⁺) *m*/*z* [M+H]⁺, calcd. for C₉H₇N₂OS 191.02736, found 191.02702. Purity: UHPLC (Method I, 254 nm): tr = 4.680 min, 98.5% total area.

6-Hydroxybenzo[*d*]thiazole-2-carbonitrile (74). Commercially available. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.18 (dd, J = 9.0, 2.4 Hz, 1H), 7.59 (d, J = 2.4 Hz, 1H), 8.06 (d, J = 9.0 Hz, 1H), 10.53 (s, 1H). HRMS (ESI⁺) *m/z* [M+H]⁺, calcd. for C₈H₅N₂OS 177.01171, found 177.01157. Purity: UHPLC (Method I, 254 nm): tr = 4.060 min, 99.6% total area.

6-Aminobenzo[d]thiazole-2-carbonitrile (75) was prepared following GP4 from 6nitrobenzo[d]thiazole-2-carbonitrile (300 mg, 1.45 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 86 mg (33%) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.97 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.15 (d, *J* = 2.2 Hz, 1H), 7.86 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 102.26, 114.32, 117.38, 125.12, 127.80, 138.39, 143.23, 150.55. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₆N₃S 176.02769 found 176.02726. IR (cm⁻¹): 2228 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 3.533 min, 99.0% total area.

7-Nitrobenzo[*d*]thiazole-2-carbonitrile (76). То а suspension of 2-chloro-7nitrobenzo[d]thiazole (150 mg, 0.70 mmol) in MeCN (10 mL), DABCO (12 mg, 0.11 mmol) was added, followed by a solution of NaCN (41 mg, 0.84 mmol) in H₂O (1 mL). After stirring the reaction mixture at rt for 7 h, a solution of FeCl_{3(aq)} (10 mL) was added, extracted with EtOAc (3 × 20 mL), organic layer washed with saturated brine (30 mL), dried, filtered, volatile components evaporated in vacuo and product isolated by column chromatography on silica (EtOAc/n-hex = 1:3). Yield: 102 mg (71%) of white solid. ¹H NMR (400 MHz, Acetone- d_6) δ 8.07 (t, J = 8.1 Hz, 1H), 8.69 (dd, J = 8.2, 0.9 Hz, 1H), 8.74 (dd, J = 8.1, 0.9 Hz, 1H).¹³C NMR (101 MHz, Acetone-d₆) & 113.25, 125.75, 129.56, 130.92, 132.73, 142.76, 143.63, 154.65. ESI-HRMS ($[M+H]^+$, m/z): Calcd for C₈H₄O₂N₃S 206.00187, found 206.00142. IR (cm⁻¹): 2241 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.667 min, 99.0% total area.

Methyl 2-cyanobenzo[*d*]thiazole-7-carboxylate (77) was prepared following *GP2* from methyl 3-amino-2-bromobenzoate (200 mg, 0.87 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:4). Yield: 7 mg (4%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.07 (s, 3H), 7.76 (dd, *J* = 8.2, 7.5 Hz, 1H), 8.34 (dd, *J* = 7.6, 1.1 Hz, 1H), 8.43 (dd, *J* = 8.2, 1.1 Hz, 1H).. ¹³C NMR (101 MHz, CDCl₃) δ 53.30, 113.13, 124.78, 127.88, 130.04, 130.14, 135.70, 141.04, 153.25, 165.58. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₂N₂S 219.02227, found 219.02171. IR (cm⁻¹): 2231 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.850 min, 99.0% total area.

2-Cyanobenzo[*d*]thiazole-7-carboxylic acid (**78**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]thiazole-7-carboxylate (180 mg, 0.82 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:2). Yield: 85 mg (50%) of brown solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.74 – 7.80 (m, 1H), 8.20 (d, *J* = 7.4 Hz, 1H), 8.32 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 113.97, 126.66, 127.94, 128.73, 135.07, 141.05, 151.89, 166.51. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₅O₂N₂S 205.00615, found 205.00662. IR (cm⁻¹): 2237 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.283 min, 97.4% total area.

7-Methylbenzo[*d*]thiazole-2-carbonitrile (**80**) was prepared following *GP2* from 2-bromo-3methylaniline (300 mg, 1.61 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 40 mg (14%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.42 (dt, *J* = 7.3, 0.9 Hz, 1H), 7.55 – 7.59 (m, 1H), 8.06 (d, *J* = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 21.48, 113.26, 122.85, 128.30, 128.68, 132.25, 136.13, 136.26, 152.35. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇N₂S 175.03245, found 175.03202. IR (cm⁻¹): 2229 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.947 min, 95.0% total area.

7-Methoxybenzo[*d*]thiazole-2-carbonitrile (**81**) was prepared following *GP2* from 2-bromo-3methoxyaniline (300 mg, 1.48 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 167 mg (59%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.03 (s, 3H), 7.01 (d, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 8.2 Hz, 1H), 7.82 (dd, *J* = 8.3, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 56.36, 107.74, 113.21, 117.56, 124.89, 129.11, 137.24, 153.94, 154.30. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₉H₇ON₂S 191.02736 found 191.02672. IR (cm⁻¹): 2233 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.887 min, 95.8% total area.

7-Hydroxybenzo[*d*]thiazole-2-carbonitrile (**82**) was prepared following *GP6* from 7methoxybenzo[*d*]thiazole-2-carbonitrile (50 mg, 0.26 mmol), and isolated by column chromatography on silica (EtOAc/hex = 1:6). Yield: 37 mg (80%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 5.80 (br s, 1H), 6.99 (dd, *J* = 7.8, 0.6 Hz, 1H), 7.51 (t, *J* = 8.1 Hz, 1H), 7.84 (dd, *J* = 8.3, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 112.49, 113.14, 117.87, 123.73, 129.01, 137.30, 150.50, 154.44. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₅ON₂S 177.01171, found 177.01121. IR (cm⁻¹): 2223 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.317 min, 99.1% total area.

7-Aminobenzo[*d*]thiazole-2-carbonitrile (**83**). 2-Chloro-7-aminobenzo[*d*]thiazole (**124**) was prepared following *GP4* from 2-chloro-7-nitrobenzo[*d*]thiazole (1.0 g, 4.66 mmol), and isolated by crystallization (Et₂O). Yield: 860 mg (quantitative) of yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.81 (s, 2H), 6.68 (d, *J* = 7.8 Hz, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.25 (t, *J* = 7.9 Hz, 1H).

To a solution of 2-chloro-7-aminobenzo[*d*]thiazole (247 mg, 1.15 mmol) in anhydrous DMF (5 mL), DABCO (12 mg, 0.11 mmol) was added. The reaction mixture was cooled on icebath, and KCN (90 mg, 1.38 mmol) was added. After stirring the reaction mixture at 100 °C for 48 h, a solution of FeCl_{3(aq)} (10 mL) was added, extracted with EtOAc (3×20 mL), organic layer washed with saturated brine (30 mL), dried, filtered, volatile components evaporated *in vacuo*, and product isolated by column chromatography on silica (EtOAc/*n*-hex = 1:1). Yield: 10 mg (5%) of yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.02 (br s, 2H), 6.91 (dd, *J* = 7.7, 0.6 Hz, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.71 (dd, *J* = 8.2, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 113.08, 113.19, 116.04, 122.68, 129.19, 135.43, 140.88, 153.74. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₈H₆N₃S 176.02769, found 176.02724. IR (cm⁻¹): 2241.25 (CN group). Purity: UHPLC (Method III, 254 nm): tr = 4.117 min, 98.3% total area.

Methyl 2-cyanobenzo[*d*]oxazole-4-carboxylate (**86**) was prepared following *GP1* from methyl 2-amino-3-hydroxybenzoate (1.0 g, 6.00 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 146 mg (10%) of off-white crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 7.64 (dd, *J* = 8.4, 7.7 Hz, 1H), 7.84 (dd, *J* = 8.4, 1.1 Hz, 1H), 8.12 (dd, *J* = 7.7, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.75, 108.69, 115.91, 123.93, 128.62, 129.04, 138.23, 138.45, 150.76, 164.29. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₃N₂ 203.04512, found 203.04481. IR (cm⁻¹): 2252 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.317 min, 96.6% total area.

Synthesis of 2-cyanobenzo[*d*]oxazole-4-carboxylic acid (**87**) following *GP5* from methyl 2cyanobenzo[*d*]oxazole-5-carboxylate (110 mg, 0.54 mmol), and isolation by column chromatography on silica (DCM/MeOH= 9:1) and subsequent RP-CC (*GP7*) failed to produce the desired product. Yield: 20 mg (20%) of dark brown solid. ESI-HRMS ([M–H][–], m/z): Calcd for C₉H₃O₃N₂ 187.01492, no clear mass peak found. IR (cm⁻¹): no clear peak for CN group. Purity: UHPLC (Method I, 254 nm): mixture of two major compounds tr = 3.583 and 3.683 min, 81.2 % total area. Alternative strategies, i.e. using trimethylsilyl iodide [4], sodium *tert*butoxide in THF [1], or LiOH catalyzed hydrolysis of ester, resulted in complete degradation of starting methyl 2-cyanobenzo[*d*]oxazole-5-carboxylate (using trimethylsilyl iodide) or formation of 2-oxo-2,3-dihydrobenzo[*d*]oxazole-4-carboxylic acid (**125**) (sodium *tert*butoxide in THF and LiOH catalyzed hydrolysis of ester). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.15 (t, *J* = 8.0 Hz, 1H), 7.50 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.61 (dd, *J* = 8.1, 1.1 Hz, 1H), 11.64 (s, 1H), 13.38 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 113.41, 113.61, 121.31, 124.43, 131.43, 143.84, 154.24, 165.60. ESI-HRMS ([M–H][–], m/z): Calcd for C₈H₄O₄N 178.01348, found 178.01364. IR (cm⁻¹): no signal for CN group, signals at 1760, 1678, 1630.

Methyl 2-cyanobenzo[*d*]oxazole-5-carboxylate (**94**) was prepared following *GP1* from methyl 3-amino-4-hydroxybenzoate (3.0 g, 17.9 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 617 mg (17%) of brown crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3H), 7.69 (d, *J* = 8.8 Hz, 1H), 8.29 (dd, *J* = 8.8, 1.7 Hz, 1H), 8.53 (d, *J* = 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.79, 108.73, 111.60, 124.10, 129.21, 130.60, 138.49, 139.58, 152.95, 165.70. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₃N₂ 203.04512, found 203.04491. IR (cm⁻¹): 2254 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.623 min, 95.3% total area.

2-Cyanobenzo[*d*]oxazole-5-carboxylic acid (**95**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]oxazole-5-carboxylate (100 mg, 0.50 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1) and subsequent RP-CC (*GP7*). Yield: 24 mg (26%) of yellow-orange crystals. ¹H NMR (400 MHz, CD₃OD) δ 7.85 (dd, *J* = 8.8, 0.7 Hz, 1H), 8.31 (dd, *J* = 8.7, 1.6 Hz, 1H), 8.51 (dd, *J* = 1.7, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 109.95, 112.71, 124.65, 131.08, 131.66, 140.15, 140.81, 154.41, 168.25. ESI-HRMS ([M–H]⁻, m/z): Calcd for C₉H₃O₃N₂ 187.01492, found 187.01432. IR (cm⁻¹): 2255 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.040 min, 96.5% total area.

Methyl 2-cyanobenzo[*d*]oxazole-6-carboxylate (**102**) was prepared following *GP1* from methyl 4-amino-3-hydroxybenzoate (5.0 g, 29.9 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3). Yield: 1.81 g (30%) of orange crystals. ¹H NMR (400 MHz, CDCl₃) δ 3.98 (s, 3H), 7.91 (dd, *J* = 8.5, 0.7 Hz, 1H), 8.20 (dd, *J* = 8.5, 1.5 Hz, 1H), 8.31 (dd, *J* = 1.5, 0.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.92, 108.77, 113.35, 121.84, 127.86, 131.14, 139.41, 142.84, 150.10, 165.64. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₃N₂ 203.04512, found 203.04483. IR (cm⁻¹): 2257 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.650 min, 97.5% total area.

2-Cyanobenzo[*d*]oxazole-6-carboxylic acid (**103**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]oxazole-6-carboxylate (200 mg, 0.99 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1) and subsequent RP-CC (*GP7*). Yield: 65 mg (35%) of white crystals. ¹H NMR (400 MHz, CD₃OD) δ 7.92 – 7.98 (m, 1H), 8.15 – 8.23 (m, 1H), 8.32 – 8.38 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 109.96, 114.31, 122.50, 128.82, 133.03, 141.00, 143.97, 151.54, 168.04. ESI-HRMS ([M–H]⁻, m/z): Calcd for C₉H₃O₃N₂ 187.01492, found 187.01435. IR (cm⁻¹): 2255 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.067 min, 99.8% total area.

Methyl 2-cyanobenzo[*d*]oxazole-7-carboxylate (**110**) was prepared following *GP1* from methyl 3-amino-2-hydroxybenzoate (1.0 g, 6.00 mmol), and isolated by column chromatography on silica (EtOAc/*n*-hex = 1:3) and subsequent RP-CC (*GP7*). Yield: 315 mg (26%) of brown solid. ¹H NMR (400 MHz, CDCl₃) δ 4.03 (s, 3H), 7.59 (t, *J* = 7.9 Hz, 1H), 8.07 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.22 (dd, *J* = 7.7, 1.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 52.90, 108.86, 116.25, 126.47, 126.78, 131.30, 138.36, 140.77, 149.04, 163.45. ESI-HRMS ([M+H]⁺, m/z): Calcd for C₁₀H₇O₃N₂ 203.04512, found 203.04494. IR (cm⁻¹): 2255 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 4.540 min, 97.2% total area.

2-Cyanobenzo[*d*]oxazole-7-carboxylic acid (**111**) was prepared following *GP5* from methyl 2cyanobenzo[*d*]oxazole-7-carboxylate (200 mg, 0.99 mmol), and isolated by column chromatography on silica (DCM/MeOH= 9:1) and subsequent RP-CC (*GP7*). Yield: 65 mg (35%) of yellow-orange crystals. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.70 (t, *J* = 7.9 Hz, 1H), 8.17 (dd, *J* = 7.7, 1.2 Hz, 1H), 8.26 (dd, *J* = 8.1, 1.2 Hz, 1H), 13.81 (br s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 109.67, 116.69, 126.34, 126.60, 130.83, 138.31, 140.25, 148.64, 163.87. ESI-HRMS ($[M-H]^-$, m/z): Calcd for C₉H₃O₃N₂ 187.01492, found 187.01433. IR (cm⁻¹): 2256 (CN group). Purity: UHPLC (Method I, 254 nm): tr = 3.883 min, 95.3% total area.

4-((2-Cyanobenzo[*d*]thiazol-6-yl)amino)-4-oxobutanoic acid (**117**) was synthesized by reacting 6-aminobenzo[*d*]thiazole-2-carbonitrile (25 mg, 0.143 mmol) with succinic anhydride (57 mg, 0.571 mmol) and *N*-methylmorpholine (79 µL, 0.715 mmol) dissolved in THF (6 mL) at 80 °C for 24 h (pressure tube). Volatile components were evaporated *in vacuo*, and the product isolated by RP-CC (*GP7*) with H₂O replacing 0.1% TFA_(aq) as the aqueous component of the mobile phase. Fractions containing the product were combined and organic volatiles were evaporated *in vacuo*. The precipitate formed was collected by filtration and dried at 50 °C for 18 h. Yield: 30 mg (76%) of white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.53 – 2.59 (m, 2H), 2.64 (t, *J* = 6.6 Hz, 2H), 7.72 (dd, *J* = 9.0, 2.1 Hz, 1H), 8.18 (d, *J* = 9.0 Hz, 1H), 8.74 (d, *J* = 2.0 Hz, 1H), 10.49 (s, 1H), 12.18 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 28.67, 31.19, 110.89, 113.62, 120.53, 124.78, 134.74, 136.77, 139.78, 147.41, 170.85, 173.76. ESI-HRMS ([M–H]⁻, m/z): Calcd for C₁₂H₈O₃N₃S 274.05919, found 274.02960. IR (cm⁻¹): 2230 (CN group).

6 Supporting References

- Yang, H.S.; Macha, L.; Ha, H.-J.; Yang, J.W. Functionalisation of Esters via 1,3-Chelation Using NaOtBu: Mechanistic Investigations and Synthetic Applications. *Org. Chem. Front.* 2021, 8, 53–60, doi:10.1039/D0Q001135E.
- Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J. A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. *Angew. Chem. Int. Ed.* 2009, 48, 9658–9662, doi:10.1002/anie.200903627.
- 3. Chen, Z.; Chen, M.; Cheng, Y.; Kowada, T.; Xie, J.; Zheng, X.; Rao, J. Exploring the Condensation Reaction between Aromatic Nitriles and Amino Thiols To Optimize In Situ Nanoparticle Formation for the Imaging of Proteases and Glycosidases in Cells. *Angew. Chem. Int. Ed.* **2020**, *59*, 3272–3279, doi:10.1002/anie.201913314.
- 4. Structural Analysis and Optimization of NK1 Receptor Antagonists through Modulation of Atropisomer Interconversion Properties | Journal of Medicinal Chemistry Available online: https://pubs.acs.org/doi/10.1021/jm030197g (accessed on 2 February 2023).