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1. SEM images and GIWAXS maps

The MoS; layer was prepared on three different substrates: Si, SiO./Si, and
diamond-coated SiO> /Si (H-NCD/SiO; /Si). The surface morphology of the samples is
compared in Figure S1 together with bare Si and bare SiO2/Si samples. In addition, Figure S2
compares the GIWAXS reciprocal space maps of the MoS2/Si and MoS2/SiO2/Si samples.
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Figure S1 SEM images of different samples: (a) bare Si, (b) SiO2/Si, (c) H-NCD/SiO./Si,
(d) MoS2/Si, () MoS,/SiO,/Si and (f) MoS,/H-NCD/SiO-/Si.
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Figure S2 Comparison of GIWAXS reciprocal space maps of the (a) MoS./Si and
(b) M0S,/SiO,/Si samples.
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2. Gas sensor testing setup
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Figure S3 Photo of the experimental setup for gas sensor testing. Inset: wire-bonded sensor
in the gas chamber.

3. Gas responses of reference samples

The time response of MoS; and H-NCD/SiO- conductivity gas sensors on Si substrate
to three different types of gas (oxidizing, reducing and synthetic air) was measured in a test
chamber at room temperature (about 22 °C). The measured enduring resistance of the MoS»/Si
was as low as 0.6 Q. The absence of the insulating layer between the MoS> and the Si substrate
causes low resistance, while silicon represents a shortcut. The steady-state value of the
NCD/SiO2/Si sample was measured at 17.8 kQ.

The MoS; and NCD/SiO>/Si impedance-based sensors responded poorly to the reducing
(NHs) and oxidizing (NO>) gases at low temperatures. The NCD/SiO2/Si only responds to 90 %
humidity by changing its resistance. It can be therefore concluded that MoS,/Si is unsuitable as
a gas sensing layer, but the growth of MoS; was well-optimized on Si substrates as a reference.

3.1 Gas response of the H-NCD layer

The second sample that was tested was the NCD film grown on the SiO/Si substrate.
Figure S4 shows the change in resistance and its percentage change dependence over time as a
function of different gases. Unlike MoS, the bulk bare NCD layer is an insulator. However, it
could exhibit P-type subsurface conductivity if hydrogen atoms sufficiently terminate its
surface. The steady-state value of the resistance was measured at 17.8 kQ. The gas response of
the NCD has a low value due to the low temperature. The NCD/SiO2/Si sample, similar to the
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MoS2/Si sample, only reacts to 90 % humidity, reducing the resistance by 17 %. Therefore, the
prepared NCD sample is unsuitable for gas sensing applications at room temperature. The
response to gases in H-NCD is caused by a chemical reaction forming counter-ions on its
surface via the electron transfer model. At room temperature, the chemical reaction of a pure
material is not supported by higher temperature or a chemical catalyst. For this reason, the
chemical reaction is minimal, and the response is immeasurable. It is necessary to use higher
temperatures or another material as a catalyst to increase the gas response. The responses at
40 °C are shown in Figure S5 for a) reducing gas ammonia and b) oxidizing gas nitrogen
dioxide. The responses equal to theoretical gas interaction model at higher temperature.
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Figure S4 Time response of H-NCD/SiO2/Si to three types of gases (ammonia, nitrogen dioxide,
and synthetic air with 90 % humidity).
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Figure S5 Time response of H-NCD/SiO,/Si at 40 °C to a) ammonia NH3 and b) nitrogen
dioxide NO;

4. Verification of synergy effect between MoS2 and H-NCD

The measurement of the water contact angle indirectly verifies the quality of the
hydrogen termination. The H-NCD is hydrophobic. A higher contact angle means more
terminated hydrogen on the surface and, thus, a better response to the exposed gas. The minimal
contact angle for good sensing properties is about 90 °. The fabricated layers revealed similar
contact angles over 100 °.

The MoS,/NCD/SiO,/Si sample was modified to verify the synergistic effect between
the H-NCD and MoS;. nanoflake layers. Firstly, the contact angles and responses of the
MoS2/NCD/SiO2/Siand NCD reference layers were measured. Subsequently, the samples were
placed in oxygen plasma to replace H-termination by O-termination, which does not reveal the
2DHG subsurface conductivity. The surface functionalization by oxygen was performed in a
MW O- plasma chamber (Tesla system, 100W, 60 Pa, 50 sccm of Ha, 4 min). These layers will
be further referred to as O-NCD layers. The contact angles decreased to a low value for both
samples because the oxygen termination is hydrophilic. In this case, the MoS2/O-NCD/SiO/Si
sensor revealed properties well known for the N-type MoS2/SiO2/Si sensor. The response is
smaller than that of traditional sensors, but a sign of change in the MoS: layer can still recognize
the type of gas, i.e., the resistivity increases for oxidizing (NO2) and decreases for reducing
(NH3) gas. Then, the oxidized MoS2/O-NCD/SiO2/Si sensor was exposed to the
low-temperature H-termination process, referred to as the recovery of the H-termination
MoS2/Hrec-NCD heterostructure, which resulted in the gas responses observed for the initial
MoS2/H-NCD heterostructure. The surface functionalization by hydrogen was performed in a
focused MW plasma CVD chamber (Aixtron P6 system, 300 sccm of H2, 10 min, 300 °C).
These layers are further referred to as Hree-NCD. Noticeably, samples exposed to the low
temperature hydrogenation process revealed lower contact angles (<60 °) than the samples
hydrogenated by the high-temperature process provided by the focused plasma system (contact
angles >100 °). A lower temperature was used for recovery because higher temperature caused
destruction of the wire bonding and MoS: active layer. Consequently, the induced surface
conductivity should also be less effective, which was confirmed by the lower response of the
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recovered MoS,/Hrec-NCD heterostructure. Therefore, the response is lower but shows a similar
course as before oxygen termination.

Table S1 Water contact angle measurements.

MoS; on diamond Reference diamond
Fabricated and 106.5° 113.8°

measured layer

(H-termination NCD)

After oxygen plasma Too low

(O-termination NCD)

After hydrogen plasma*

(Recovery of
H-termination)

* partial surface
termination due to
low-temperature
process
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Table S2 Measured responses of MoS,/H-NCD/SiO»/Si and MoS,/O-NCD/SiO,/Si.
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