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Supplementary Notes 
 
Extended introduction 
Missense variants are a type of genetic variation, which causes an amino acid substitution with 
a single nucleotide change in the protein-coding region of the genome. Missense variants are a 
major class of genetic risk across a broad range of common and rare diseases, such as cancer1, 
autism2, congenital heart disease3, and epilepsy4. However, the functional effects of most 
missense variants reported in clinical genetic testing are unknown and are classified as variants 
of uncertain significance (VUS). For example, in the ClinVar database of human variations and 
phenotypes, ~75% of missense variants are VUS and ~5% are classified with ambiguity, for 
which several research groups give conflicting interpretations5,6. Variants with an allele 
frequency less than 1e-4 in population are considered as rare variants otherwise common 
variants7. Based on population genetics, common variants are extremely unlikely to be under 
strong selection, therefore they usually do not have a large genetic impact. A small fraction of 
common variants may still have functional impact, but a better way to study them is by genetic 
association, for which there is enough statistical power for common variants given reasonable 
sample size. Statistical association analysis of individual rare variants requires prohibitively 
large sample sizes to reach sufficient statistical power2,7. Therefore, prediction methods are 
needed to help identify those rare variants that are most likely to cause disease. 
 
Numerous methods have been developed to address the problem. These methods differ in several 
aspects, including the prediction features, the model architecture, how the features are 
represented in the model, the training data sets, and how the model is trained.  
 
Sequence conservation is the main prediction features for early computational methods such as 
GERP8, SIFT9, and phastCons10. PolyPhen211 and MVP12 also include protein local structural 
properties such as protein secondary structures. MPC13 and CCRs14 estimate sub-genic coding 
constraints from large human population sequencing data which provide additional information 
not captured by previous methods.   
 
Several machine learning-based methods have been developed to ensemble these features or 
existing scores. CADD15 is a meta method based on a support vector machine model, while 
REVEL16, ClinPred17, and M-CAP18 used decision tree-based machine learning models such as 
random forest and gradient boosting tree model. MVP is based on convolutional neural 
networks. 
 
Learning feature representations from raw data instead of engineered features or exiting scores is 
another trend in literature. For example, PrimateA19I learns protein context from sequences and 
local structural properties using deep representation learning instead of using the existing 
conservation scores such as SIFT and GERP. Representation learning can avoid using any 
previous prediction tools. On the one hand, the predicted scores from representation learning 



can be used as another independent feature source in the future ensemble predictors. On the 
other hand, the learned representations from raw data are more optimal for the machine 
learning model than the engineered features.  
 
A number of studies have reported evidence that functionally damaging missense variants are 
clustered in 3-dimensional protein structures. Coevolution can explicitly capture residue 
dependencies between positions and recent published methods EVmutation20 and PIVOTAL21 
have shown that coevolution helps to improve the prediction accuracy. PIVOTAL is a 
supervised ensemble predictor which combines coevolution between positions with prediction 
scores from other existing methods such as SIFT, and M-CAP, while EVmutation is an 
unsupervised model which learns coevolution and conservation using Markov Random Fields 
from MSAs. 
  



Supplementary Figure 1. The model architecture of gMVP. We first build a graph to 
represent a missense variant and its protein context defined as 128 amino acids flanking the 
amino acid of interest. The amino acid of interest is the center node (colored orange) and the 
flanking amino acids are the context nodes (colored light green). All context nodes are 
connected with the center node but not with each other. We use coevolution strength as edge 
features and used conservation and structural properties as features for both center node and 
context nodes. We additionally include amino acid substitution as features for center node and 
primary sequence and the expected and observed number of rare missense variants in the 
general population for context nodes. The input feature vectors for edges, center node, and 
context nodes are denoted as 𝑓!, 𝑥, and 𝑛!, respectively. We apply three 1-depth dense layers to 
encode the input feature vectors 𝑓!, 𝑥, and 𝑛! to latent vectors 𝑒!, ℎ, and 𝑡!, respectively. We 
next use a multi-head attention layer to learn a context vector c. We then use a gated recurrent 
neural layer to leverage the context vector c and the latent vector of the variant node ℎ. We 
finally used a sigmoid layer to perform classification. 
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Supplementary Figure 2. The distributions of gMVP scores of the damaging 
(labeled positives) and neutral variants (labeled negatives) on known disease genes, 
including TP53, PTEN, BRCA1, and MSH2.  The labels are determined by functional 
readout data of deep mutational scan experiments.   
  



 

 

Supplementary Figure 3. gMVP scores correlate with functional readout data 
from deep mutational scan experiments of known disease genes, including PTEN, 
TP53, BRCA1, and MSH2. The correlation depends on the assay performed. The functional 
scores for PTEN and BRCA1 correlate negatively, and the scores for TP53 and MSH2 correlate 
positively with the pathogenicity of the variants, respectively.  
  

 
 
 
  



 
 

Supplementary Figure 4. Evaluating gMVP and published methods in identifying 
damaging variants on known disease genes, including TP53, PTEN, BRCA1, and 
MSH2. The receiver operating characteristic curves (ROC) of gMVP and published methods 
are shown for each gene using functional readout data as ground truth. There are 432 positives 
and 1476 negatives in BRCA1, 258 positives and 1601 negatives in PTEN, 540 positives and 
1108 negatives in TP53, and 414 positives and 5439 negatives in MSH2.  
 

 
 
 
 



 
 

 

Supplementary Figure 5. Distributions of predicted scores of published methods 
of rare de novo missense variants from ASD and NDD cases and controls. We used 
two-sided Mann–Whitney U test to assess the statistical significance of the difference between 
cases and controls. NDD: neural developmental disorders; ASD: autism spectrum disorder; 
controls: unaffected siblings from the ASD study. Number of de novo missense variants 
compared: ASD: 2,913; NDD: 17,964; controls: 927. Number of trios in the data: ASD: 5,924; 
NDD: 31,058; controls: 31058. 
 
 
 
 
 
 



 

Supplementary Figure 6. Principal component analysis of de novo missense 
variants in ASD and controls. We performed principal component analysis (PCA) on the de 
novo variants from cases and controls. The input of the PCA is a score matrix where each row 
represents a variant and each column represents the predicted score of gMVP or other methods. 
The contours show the distribution of PC1/2 scores of the variants in cases and controls. The 
density curves along the axes show the distribution of PC1 or PC2 scores of cases and controls. 
(a) PC1 versus PC2 of de novo variants from NDD cases and controls. (b) PC1 versus PC2 of 
de novo variants from ASD cases and controls. 
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Supplementary Figure 7. gMVP scores correlate with evolutionary conservation 
and protein secondary structure. We show gMVP scores of all possible missense variants in 
BRCT2 domain of BRCA1. We measured the evolutionary conservation for each protein 
position with the Kullback–Leibler divergence between amino acid distribution among 
homologous sequences and amino acid distribution in nature. We obtained the secondary 
structures using the solved protein structure of BRCT2 domain. (a) gMVP scores versus 
evolutionary conservation. (b) Distributions of gMVP scores of variants located on the coils, 𝛼-
helices, and 𝛽-sheets, respectively. We used two-sided Mann–Whitney U test to assess the 
statistical significance of the difference between the gMVP score of variants on the β-sheet and 
on the coils and α-helix regions. 
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Supplementary Figure 8. The distribution of the length of the domains of human 
proteins. Here, we used 18,738 domains annotated with UniProtKB database. The average 
length of the domains is ~111 amino acids. 

  



 

Supplementary Figure 9. The distribution of the number of homologous of 
human proteins in Ensembl database.  

  



 

Supplementary Figure 10. The distribution of confidence scores of the predicted 
secondary structures. We predicted the secondary structures with NetSurfP2. 

 

 

  



 

Supplementary Figure 11. The distributions of conservation scores of the 
damaging (labeled positive) and neutral variants (labeled negatives) on known 
disease genes, including TP53, PTEN, BRCA1, and MSH2. The labels are determined 
by functional readout data of deep mutational scan experiments. The vertical dotted lines in the 
figures show the false predicted positives with the highest gMVP scores. We measured the 
evolutionary conservation for each protein position with the Kullback–Leibler divergence 
between amino acid distribution among homologous sequences and amino acid distribution in 
nature. 
  



 

Supplementary Figure 12. Physicochemical properties of amino acids are 
represented in the learned weights of the first layer of center node, visualized here 
with t-SNE. Residues are clustered into hydrophobic, polar, and aromatic groups and reflect 
overall organization by molecular charge. The submatrix (20×256) of the learned weights matrix 
which projects the input one-hot encoding of the alternate amino acids describes how the model 
represents the amino acids. We applied t-SNE only to this submatrix, each row representing 
embedding vector of an amino acid type.  
  



 

 



Supplementary Figure 13. The residue-residue distances between the pairs with 
maximum attention weights differs with residue-residue distances of other pairs. We 
first averaged the attention weights of all heads. For each gene, we selected top 10% variants 
with most damaging gMVP predictions. For each variant, we calculated the residue-residue 
distances between the position of interest and the neighbor positions. We then do the boxplots 
for the positions with highest attention weights and other positions, separately. We used two-
sided Mann–Whitney U test to assess the statistical significance of the difference between two 
groups. The number of pairs with maximum attention weights and the number of other pairs 
are 209 and 2170, 563 and 6014, 137 and 1460, and 188 and 1726 for PTEN, MSH2, BRCA1, 
and TP53, respectively. The box bounds the interquartile range (IQR) divided by the median, 
and Tukey-style whiskers extend to a maximum of 1.5× IQR beyond the box. 

 

Supplementary Figure 14. Evaluating gMVP and published methods only on the 
tumor suppressor genes using cancer somatic mutation hotspots and random 
variants in population. The ROC curves are evaluated on 422 cancer mutations located in 
hotspots and 713 rare variants from the DiscovEHR data. 
  



 

 

 

Supplementary Figure 15. gMVP scores correlate with protein secondary 
structures. We mapped the gMVP scores of MSH2, PTEN, TP53, and BRCA1 to 
the secondary structures calculated from the solved 3D structures. We plot 
distributions of gMVP scores of variants located on the coils, 𝛼-helices, and 𝛽-sheets, 
respectively. We used Mann–Whitney U test to assess the statistical significance of the 
difference between the gMVP score of variants on the coils, the β-sheets, and α-helices regions. 
 



Supplementary Table 11. Statistical testing on the differences between ROCs of gMVP 
and other methods with DMS data. 

 
 Gene PrimateAI MPC CADD M-CAP REVEL MVP BayesDel ClinPred EVmutation 
BRCA1 3.9E-36 2.8E-43 4.6E-26 8.4E-05 1.7E-04 3.0E-14 2.7E-02 4.7E-07 4.4E-19 
MSH2 1.6E-37 3.1E-52 1.1E-24 2.9E-13 8.1E-02 1.5E-20 2.1E-02 8.5E-05 8.9E-04 
PTEN 3.7E-38 1.6E-13 1.5E-42 2.3E-11 2.1E-07 1.9E-15 8.7E-09 3.3E-06 8.9E-06 
TP53 8.6E-27 1.8E-107 1.1E-38 2.8E-44 5.9E-12 7.1E-19 1.0E-09 1.1E-23 2.5E-16 

 

Supplementary Table 12. Evaluating additional published methods with DMS data. 
 

  BRCA1 MSH2 PTEN TP53 
  auPR auROC auPR auROC auPR auROC auPR auROC 
SIFT 0.65 0.75 0.28 0.83 0.62 0.88 0.69 0.77 
Polyphen2 0.62 0.84 0.3 0.79 0.4 0.77 0.71 0.82 
GERP++ 0.42 0.74 0.13 0.66 0.15 0.51 0.44 0.67 
phastCons100way 0.61 0.68 0.12 0.56 0.57 0.5 0.67 0.67 
Eigen-PC-raw 0.61 0.84 0.25 0.82 0.46 0.82 0.6 0.79 

 

Supplementary Table 13. Area under ROC curves (AUROC) and PR curves (AUPRC) of 
gMVP and other in-silico methods on the variants of uncertain significance in ClinVar 
overlapped with the deep mutational data. The best AUROC and AUPRC values are in bold. 
The difference between ROC curves of gMVP and the other methods is tested using DeLong 
test. P-values lower than 0.05, 0.01 or 0.001 are marked with *, **, or ***, respectively. 
 
Methods BRCA1  

(1451 B + 334 P) 
TP53  

(306 B + 247 P) 
PTEN  

(262 B + 54 P) 
MSH2  

(1587 B + 115 P)  
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

gMVP 0.896 0.765 0.906 0.859 0.952 0.845 0.855 0.372 

BayesDel 0.874 * 0.677 0.851 *** 0.772 0.896 *** 0.638 0.857 0.369 

REVEL 0.870 ** 0.658 0.833 *** 0.787 0.903 *** 0.586 0.863 0.359 

VEST4 0.890 *** 0.689 0.839 *** 0.788 0.882 ** 0.646 0.840 0.352 

ClinPred 0.845 *** 0.558 0.820 *** 0.753 0.908 ** 0.762 0.853 0.256 

SIFT 0.778 *** 0.366 0.832 *** 0.750 0.873 *** 0.533 0.835 0.214 

M-CAP 0.848 *** 0.620 0.739 *** 0.697 0.858 *** 0.558 0.787 *** 0.161 

MVP 0.815 *** 0.522 0.820 *** 0.745 0.869 *** 0.476 0.771 *** 0.204 

MPC 0.696 *** 0.349 0.545 *** 0.597 0.906 *** 0.677 0.742 *** 0.124 

PrimateAI 0.730 *** 0.369 0.791 *** 0.721 0.815 *** 0.411 0.712 *** 0.194 

CADD 0.799 *** 0.434 0.746 *** 0.613 0.805 *** 0.350 0.818 ** 0.178 



Polyphen2 0.810 *** 0.416 0.794 *** 0.680 0.789 *** 0.380 0.775 *** 0.158 

  

Supplementary Table 14. Hyperparameter settings in gMVP model.  

Description  Value 

The number of heads in attention layer 8 
The number of neuron units in attention layer 256 
The number of neuron units in GRU layer 256 
The activation function RELU 

 

Supplementary Table 15. Explained variances in the principal component analysis for de 
novo variants of NDD, ASD, and controls. We normalized the scores using the method of z-
score normalization. We used python package of scikit-learn to perform the PCA analysis.  
 

Component Explained variance 

1st component 60% 
2nd component 11% 

 

Supplementary Table 16. The number of overlapping variants between DMS data and 
DiscovEHR data. 

Gene Overlapping positives overlapping negatives Ratio of overlapping positives 
BRCA1 9 36 0.2 
TP53 24 21 0.53 
PTEN 3 26 0.1 
MSH2 6 215 0.03 
Total 42 298 0.12 

Supplementary Table 17.  
The differences of residue-residue distances between the pairs with maximum attention weights 
and other pairs. 

Gene 
PDB 
code 

Stuctural 
coverage 

Mean distance of 
Max-attn pairs 

Mean distance of 
other pairs p-value 

PTEN 1D5R 0.76 14.2 18.1 1.00E-21 
MSH2 3THX 0.93 17.3 21.4 3.00E-28 
TP53 1TSR 0.5 15.6 20 9.00E-17 

BRCA1 4IGK 0.11 14.5 17.7 5.00E-07 



 

Supplementary Table 18  
Evaluating gMVP on the variants located near 3’ or 5’ end with DMS data. 

Gene 
number of positives 
near the 3' or 5' end 

number of negatives 
near the 3' or 5' end auROC  

auROC for the variant 
on the entire protein 

BRCA1 136 508 0.92 0.91 
MSH2 13 724 0.78 0.87 
PTEN 61 468 0.96 0.94 
TP53 0 0  - 0.92 

 

Description of other supplementary tables  
S1. Summary statistics of training data sets. 
S2. Somatic mutations in cancer hotspots and random variants from DiscovEHR with 
annotations. 
S3-S6. Variants with functional readout data from deep mutational scan experiments of 
BRCA1, TP53, MSH2, and PTEN. 
S7. NDD de novo variants enrichment by various methods at rank percentile thresholds 
S8. ASD de novo variants enrichment by various methods at rank percentile thresholds 
S9. Pathogenetic and neutral variants in ion channel genes and the annotations. 
S10. GOF and LOF variants in ion channel genes and the annotations. 
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