YMTHE, Volume 31

Supplemental Information

A high-fidelity RNA-targeting Cas13 restores

paternal Ube3a expression and improves motor

functions in Angelman syndrome mice

Jinhui Li, Zhixin Shen, Yajing Liu, Zixiang Yan, Yuanhua Liu, Xiang Lin, Junjie Tang, Ruimin Lv, Guannan Geng, Zhi-Qi Xiong, Changyang Zhou, and Hui Yang

Fig. S1. Development of the Cas13x.1/crRNA system. A, Map of Cas13x.1-crRNA expression cassette in lentivirus or adeno-associated virus (AAV) backbone (not to scale). *U6* promoter, elongation factor 1 alpha short promoter (*EFS*), human synapsin-1 promoter (*hSyn1*), nuclear localization sequence (NLS), 3×Flag tag, T2A self-cleaving peptide, enhanced green fluorescent

protein (EGFP), woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), inverted terminal repeat (ITR), SV40 polyadenylation sequence element (SV40 PolyA), CRISPR RNA (crRNA). **B-E**, Western blot analysis (**B**, **D**) and band density quantification (**C**, **E**) of protein expression in WT or primary neurons of AS mice infected with *EFS*-Cas13x.1/*U6*-crRNA (**B**, **C**) or *hSyn1*-Cas13x.1/*U6*-crRNA (**D**, **E**) (n = 3 for all groups). **F**, Immunofluorescence staining for indicated proteins in lentivirus-infected primary neurons of WT or AS mice. Primary neurons of WT or AS mice were infected with lentivirus containing *hSyn1*-hfCas13x.1/*U6*-NT or *hSyn1*-hfCas13x.1/*U6*-cr9, scale bar, 100 µm. **G**, Differential expression analysis of total mRNA between *hSyn1*-hfCas13x.1/*U6*-cr9 and *hSyn1*-hfCas13x.1/*U6*-NT infected primary neurons of AS mice (n = 3 for all groups), paternal *Ube3a* (*patUbe3a*) is *Ube3a* mRNA with intact sequence expressed from paternal allele, but not *Ube3a* KO allele. Statistical significance was assessed by one-way ANOVA followed Tukey's multiple comparison test. *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. S2. In vivo detection of Ube3a expression and unsilencing efficiency. A, RT-qPCR analysis of mRNA expression of *Ube3a-YFP* in *Ube3a^{matYFP/p-}* or *Ube3a^{m-/patYFP}* mouse primary neurons. *Ube3a^{m-/patYFP}* primary neurons were infected with AAV containing *hSyn1*-hfCas13x.1/U6-NT or hSyn1-hfCas13x.1/U6-cr9. Ube3a^{matYFP/p-} primary neurons were infected with AAV containing hSyn1-hfCas13x.1/U6-NT as a control. **B**, **C**, Western blot analysis of protein expression in the cerebellum (Cblm.) and spinal cord of WT and AS mice at 4 weeks (n = 3 for all groups). **D**, **E**, Western blot (D) and quantification (E) of protein expression in the cerebral cortex (cor.) and hippocampus (hip.) of WT and AS mice with indicated treatment at 18 weeks (n = 3 for all groups). F, mRNA levels of Snord115 target genes in cortex of AS mice treated with hSyn1hfCas13x.1/U6-cr9 at 4 weeks relative to that in AS mice treated with hSyn1-hfCas13x.1/U6-NT (n = 7 for all groups). G, mRNA levels of *hfCas13x.1* in cortex or liver at 18 weeks after treatment (n=9). Statistical significance was assessed by one-way ANOVA followed with

Tukey's multiple comparison test. *P < 0.05; **P < 0.01; ***P < 0.001.

Fig. S3. The expression distribution of hfCax.1-Flag across cortex and hippocampus. A, The

coronal image of immunofluorescence staining for indicated proteins in WT mouse at 4 weeks after I.C.V. injection of AAV-PHP.eb carrying hSyn1-hfCas13x.1/U6-NT, scale bar, 500 μ m. **B**, The enlarged images (for Fig. 2G) of immunofluorescence staining for indicated proteins in cortex and hippocampus of AS mouse at 4 weeks after I.C.V. injection of AAV-PHP.eb carrying hSyn1-hfCas13x.1/U6-cr9, scale bar, 100 μ m.

Cortex and hippocampus

Fig. S4. AAV delivery of the CRISPR-hfCas13x system restores expression of paternal UBE3A in neurons. Representative images of immunofluorescence staining for indicated proteins in cortex and hippocampus of WT or AS mouse at 4 weeks after I.C.V. injection of AAV-PHP.eb carrying *hSyn1*-hfCas13x.1/U6-NT or *hSyn1*-hfCas13x.1/U6-cr9, scale bar, 500 μm.

Timeline of assays performed on WT and AS mice injected I.C.V. bilaterally at P0 with 2 μ L of 5 × 10¹³ vg/mL AAV-PHP.eb containing *hSyn1*-hfCas13x.1/*U6*-NT. **B**, Body weight of male and female mice was measured biweekly over 18 weeks (n = 12 for WT+NT Female; n = 10 for AS+NT Female; n = 13 for WT+NT Male; n = 9 for AS+NT Male). **C**, Marble burying test data in 5-week-old mice (n = 8 for WT+NT Female; n = 10 for AS+NT Female; n = 8 for WT+NT Male; n = 10

for AS+NT Male). **D**, Hindlimb clasping assays in 7-week-old mice. **E**, **F**, Open field tests in 12week-old mice, the distances traveled (**E**) and Center frequency data (**F**) are shown. **G**, Dowel tests in 13-week-old mice. **H**, **I**, Beam walking assays in 14-week-old mice, time to traverse the beam (**H**) and the number of foot slips (**I**) are shown. **J**, Accelerating rotarod test in 15-week-old mice. (**D**-**J**, n = 12 for WT+NT Female; n = 10 for AS+NT Female; n = 13 for WT+NT Male; n = 9 for AS+NT Male). **K**, Brain weight measured at 18 weeks of age (n = 8 for WT+NT Female; n = 9 for AS+NT Female; n = 5 for WT+NT Male; n = 7 for AS+NT Male). Statistical significance was assessed by one-way ANOVA followed by holm-sidak comparison test. *P < 0.05; **P < 0.01; ****P < 0.001.

Fig. S6. Additional behavioral tests. A, Hindlimb clasping assays in 7-week-old female mice. B,

Accelerating rotarod test data in 15-week-old male mice. C, D, The center frequency of open field

test in 12-week-old female (**C**) or male (**D**) mice. (**A**,**C**, n = 12 for WT+NT; n = 10 for AS+NT; n = 17 for AS+cr9). (**B**,**D**, n = 13 for WT+NT; n = 9 for AS+NT; n = 14 for AS+cr9). **E**, **F**, Marble burying test in 5-week-old female mice (**E**) (n = 8 for WT+NT; n = 10 for AS+NT; n = 10 for AS+cr9) and male mice (**F**) (n = 8 for WT+NT; n = 10 for AS+NT; n = 12 for AS+cr9). **G**, **H**, Brain weight measured at 18 weeks of age in female mice (**G**) (n = 8 for WT+NT; n = 9 for AS+NT; n = 13 for AS+cr9). **G**, **H**, Brain weight measured at 18 weeks of age in female mice (**G**) (n = 8 for WT+NT; n = 9 for AS+NT; n = 15 for AS+cr9) and male mice (**H**) (n = 5 for WT+NT; n = 7 for AS+NT; n = 13 for AS+cr9). (**I-K**), Fear conditioning test in 10-week-old mice. Freezing percent of shock training (**I**), contextual learning (**J**) and cue learning (**K**) were measured during the fear conditioning assay (n = 8 for WT and n = 7 for AS). **L**, **M**, The body weight of WT and WT+NT. Body weight of female mice was measured biweekly over 12 weeks (**L**) (n = 14 for WT; n = 15 for WT+NT). Body weight of male mice was measured biweekly over 12 weeks (**M**) (n = 11 for WT; n = 13 for WT+NT). Statistical significance was assessed by one-way ANOVA followed by holm-sidak comparison test. *P < 0.05; **P < 0.01; ***P < 0.001.

Table S1. CrRNA sequence and the knock-down efficiency.

crRNA	Sequence	Knock-down efficiency of <i>Ube3a-ATS</i> in N2a	Number of predicted target sites on pre-mRNA (<i>Ube3a-ATS</i>) with 0-2 base pair mismatches			
			with 0 mismatches	with 1 mismatches	with 2 mismatches	Total
cr1	GCUCUGUCCCUUGG GCCUUCUGUGUCAU GG	36.10%	1	0	0	1
cr2	CACAUAAGAAUCCA AGUAUGAGAUCCCA AC	36.80%	1	0	0	1
cr3	AGGCCAGCCUUGUU GGAUAUCAUAGAA UCC	47.60%	1	2	74	77
cr4	GAUCCAUUUGUGUU AAGCUGUAAUGGG UUG	36.90%	1	0	1	2
cr5	UCUCCACAUGGGUG AAUUCCCUGUGGGU UG	29.80%	1	0	0	1
cr6	CCGAAUGUAUAGGC CAUUGUUUCCUCAG UG	63.90%	1	0	0	1
cr7	CUGCUGGAUCAAAU UUGGGCCUUGGUGU CA	46.70%	1	0	0	1
cr8	AUUGCAUGACAGCA CUCACUGUGAAAUG UG	74.80%	1	1	2	4
cr9	GAUAGGUAUUUCG AGUGUGAUUAAAG UAAC	81.40%	1	95	23	119

Table S2. Differentially expressed genes

 Table S3. Predicted off-target sites

 Table S4. The behavioural test data

Table S5. RT-qPCR primer list

Primer name	Primer sequence	Species
Ube3a-ATS Q1-F 5-3'	CCAATGACTCATGATTGTCCTG	mouse
Ube3a-ATS Q1-R 5-3'	GTGATGGCCTTCAACAATCTC	mouse
Ube3a-ATS Q3-F 5-3'	GGCACCCTTGTTTGAAACTT	mouse
Ube3a-ATS Q3-R 5-3'	GCTCATGACCCTGTCCTTTC	mouse
Ube3a Q3-F 5-3'	CAAAAGGTGCATCTAACAACTCA	mouse
Ube3a Q3-R 5-3'	GGGGAATAATCCTCACTCTCTC	mouse
Snrpn Q1-F 5-3'	TGTGATTGTGATGAGTTCAGGAAGA	mouse
Snrpn Q1-R 5-3'	ACCAGACCCAAAACCCGTTT	mouse
Snord115 Q1-F 5-3'	CCATGTGACCATTCCTACTCTG	mouse
Snord115 Q1-R 5-3'	AGAATTCGGCTACATCTACTTGG	mouse
Snord116 Q1-F 5-3'	ATTGGTCCCACTGTAATCGG	mouse
Snord116 Q1-R 5-3'	GTTCGATGGAGACTCAGTTGG	mouse
Gapdh Q1-F 5-3'	CTCCCACTCTTCCACCTTCG	mouse
Gapdh Q1-R 5-3'	TAGGGCCTCTCTTGCTCAGT	mouse
Ipw-Q3 F 5-3'	CTGCTGGTAGAAGAAATGGCACC	mouse
Ipw-Q3 R 5-3'	CATGGGCCATGAGTGACATCC	mouse