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Referees’ reports, first round of review

Reviewer 1

In this manuscript, Sadler et al. perform an extensive enrichment analysis
comparing the genes that are implicated in GWAS and exome-sequencing studies
with genes that are the targets of existing therapeutics. This type of analysis has
been used as a proxy for the question of whether genetic evidence is useful for
finding novel therapeutics, as well. They also perform interesting enrichment
analyses involving the neighbors of GWAS- and exome-associated genes in
biological networks. Compared with previous analyses along these lines that | am
aware of, this study is much more extensive in the amount of data that was used
in every stage of the analysis, including different gene-prioritization strategies,
multiple drug target gene sets, and multiple biological network datasets.

Overall, the manuscript was interesting and well executed, and | have mostly
minor comments. | have one major comment about the section on transcript and
protein level heritability.

Major comment

1. The "Heritability and polygenicity of drug target transcripts" subsection feels
extraneous, and ituses problematic definitions/estimators of both heritability and
polygenicity, and it seems extraneous in the larger context of the paper. This
section relates to an interesting phenomenon, discussed in ref. 40 and in
Mostafavi et al. bioRxiv, that biologically important genes might be depleted of
eQTL effects. This phenomenon is tangentially related to this manuscript in that it
may explain the underwhelming performance of the eQTL-GWAS approach, but it
is not closely related to the main message of the paper. As it is currently written,
the text does not make these connections very clear, and the section feels
extraneous.

Moreover, the estimators (definitions?) of heritability and polygenicity in this
section are not appropriate. "Heritabilty" is estimated by adding up the effects of
significant effects, with LD clumping. This is not an appropriate estimator because
it only includes the effects of significant effects. "Polygencity" is quantified by
counting the number of significant effects, which has the same issue. | am not
aware of a good existing approach to robustly quantify polygenicity for cis-eQTL
data, and some researchers think polygenicity ought to mean something like "the
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number of significant hits," so maybe the definition is acceptable. For
"heritability", on the other hand, there exist methods to estimate cis-heritability
(e.g. GCTA), and nobody defines it as a property of the genome-wide significant
variants.

| think the manuscript would be improved either by extensively re-writing and re-
thinking this subsection, or by simply removing it.

Minor comments

2. For the "exome" strategy, a key parameter is the allele frequency threshold. In
general, variants with frequencies close to this threshold will dominate the test
statistics (this is the opposite behavior as in GWAS, where the threshold is a lower
bound). | assume the results would look quite different with a different threshold,
and | suggest to perform a sensitivity analysis of the main drug-target-enrichment
analysis looking at different allele frequencies, which might help to prioritize
genes with larger effect sizes.

3. What should we make of the fact that the STRING PPI network is so much more
successful at identifying drug targets compared with genetic approaches? Perhaps
this is related to, but distinct from, an observation in Kim et al. 2020 AJHG [?],
who showed that genes with high "network centrality" were highly enriched for
heritability. | think this finding is striking, and even though it has nothing to do
with the genetic data per se, it could use more discussion.

4. The example of APP in Alzheimer's disease is confusing. Rare APP mutations are
a known cause of AD, so if this gene is not highly ranked via the exome approach,
it suggests an issue with power rather than anything else (not surprising, since UK
Biobank skews young). APOE, on the other hand, should be the top GWAS hit by
far; why is it only top 5? | don't necessarily think this indicates a problem with the
approach, but maybe this example isn't the most reassuring.

Reviewer 2

A primary goal of genetic association studies is the identification of potential drug
targets for complex diseases; in this manuscript, the authors present a
comprehensive examination of the ability of contemporary methods to
successfully identify known drug mechanisms for a broad range of clinical
disorders. There are two inter-related major strengths of this manuscript: 1) it
addresses a question that lies at the heart of biomedical genetics; and 2) it does
so in an exhaustive fashion. Specifically, it examines: 1) a broad range of disorders
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(n=30); 2) a range of association strategies (GWAS, eQTL, pQTL, and Exome/rare
variant association); 3) a range of chemoinformatic databases for annotation of
drug targets; and 4) a range of potential degrees of "distance" between the
primary (genetically-identified) target and the drug target, with distance defined
in the context of protein interaction networks.

There is only two notable weaknesses in the manuscript:

1) A relatively minor weakness is that the discussion section could be more
strongly worded. For example, it appears that an important conclusion of this
work is that the STRING dataset is inappropriate for future work in this area, and
this should be stated clearly. Similarly, it should be stated clearly that genetic
association gives a 1.5-2-fold enrichment for drug targets, consistent with less
comprehensive prior reports. At the same time, the AUC is sufficiently low that
additional directions for improvement should be suggested.

2) A more significant weakness is that 4 association strategies that are compared
are substantially different in terms of available sample size and statistical power
at the present time. While the authors acknowledge the limitations specific to the
pQTL dataset, it is generally true that available exome studies are less well-
powered compared to GWAS. What would the results be if the GWAS were
downsampled to match the available exome data for each disease? Similarly,
eQTL are differentially powered relative to the tissue of interest that is available;
the authors utilize the tissue with the strongest association, but that might
advantage some disorders (e.g., those primarily expressed in blood) compared to
other disorders expressed in tissues less well represented in available eQTL
reference datasets.

Authors’ response to the first round of review
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Color code:

Answers to the reviewers are written in green.

Unchanged elements borrowed from the manuscript are in blue (italic),
and changed text quoted from the manuscript is in brown (italic).

Reviewer #1

In this manuscript, Sadler et al. perform an extensive enrichment analysis comparing the
genes that are implicated in GWAS and exome-sequencing studies with genes that are the
targets of existing therapeutics. This type of analysis has been used as a proxy for the
question of whether genetic evidence is useful for finding novel therapeutics, as well. They
also perform interesting enrichment analyses involving the neighbors of GWAS- and exome-
associated genes in biological networks. Compared with previous analyses along these lines
that | am aware of, this study is much more extensive in the amount of data that was used in
every stage of the analysis, including different gene-priaritization strategies, multiple drug
target gene sets, and multiple biclogical network datasets.

Overall, the manuscript was interesting and well executed, and | have mostly minor
comments. | have one major comment about the section on transcript and protein level
heritability.

We thank the reviewer for the positive assessment of our work and the constructive
feedback. We revised the transcript and protein level heritability section and addressed all
remaining comments. Please find our answers below.

Major comment

1. The "Heritability and polygenicity of drug target transcripts”" subsection feels extraneous,
and it uses problematic definitions/estimators of both heritability and polygenicity, and it
seems extraneous in the larger context of the paper. This section relates to an interesting
phenomenon, discussed in ref. 40 and in Mostafavi et al. bioRxiv, that biologically important
genes might be depleted of eQTL effects. This phenomenon is tangentially related to this
manuscript in that it may explain the underwhelming performance of the eQTL-GWAS
approach, but it is not closely related to the main message of the paper. As it is currently
written, the text does not make these connections very clear, and the section feels
extraneous.
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Moreover, the estimators (definitions?) of heritability and polygenicity in this section are not
appropriate. "Heritabilty" is estimated by adding up the effects of significant effects, with LD
clumping. This is not an appropriate estimator because it only includes the effects of
significant effects. "Polygencity” is quantified by counting the number of significant effects,
which has the same issue. | am not aware of a good existing approach to robustly quantify
polygenicity for cis-eQTL data, and some researchers think polygenicity ought to mean
something like "the number of significant hits," so maybe the definition is acceptable. For
"heritability”, on the other hand, there exist methods to estimate cis-heritability (e.g. GCTA),
and nobody defines it as a property of the genome-wide significant variants.

| think the manuscript would be improved either by extensively re-writing and re-thinking this
subsection, or by simply removing it.

We agree with the reviewer that summing up effects of significant QTLs is an approximate

method to estimate cis-heritability and more appropriate methods such as GCTA exists. We
believe that the “Heritability and polygenicity of drug target transcripts and proteins” result

¢? CellPress



Transparent Peer Review Record

section is of great interest to situate this work in the context of drug target genes having
lower RVIS, i.e. being less tolerant to change (Nelson et al. 2015, Nature Genetics, ref. 1)
and to relate to previous work that showed limited overlap between eQTL and GWAS hits
(Mostafavi et al. bioRxiv) as a consequence of biologically important genes being depleted of
QTLs.

We therefore revised this section by omitting polygenicities for which we don't have good
quantifications and by calculating cis-heritabilities using a restricted maximum likelihood
method (reml) with the LDAK-thin heritability model. Unlike the GCTA model which assumes
that all SNPs contribute equally, the LDAK-thin model assumes that the heritability
contributed by each SNP depends on its minor allele frequency (MAF) and linkage
disequilibrium (LD) structure. Heritability calculations were conducted with the LDAK
software and the corresponding method section was updated to read as follows:

Transcript and protein level cis-heritabilities were estimated from QTL effects using a restricted
maximum likelihood method (reml) with the L DAK-thin heritability model. The LDAK heritability
model assumes that the expected heritability contributed by each SNP depends on its MAF
and LD. The analysis was conducted with the LDAK software (v5.2; reml method \cite{
speed2020evaluating}) based on all SNPs in proximity of the transcript/protein (+ 500 kB) and
the UK10K reference panel \cite{uk10k2015uk10k}. We set the --power to -0.25 and the --
ignore-weights flag to YES to specify the LDAK-thin heritability model. The analysis was
restricted to high-quality SNPs which were defined as being non-ambiguous, having a sample
size > 5,000 and a MAF = 0.01.

Protein  herifabilities were based on the deCODE plasma protein dataset
\cite{ferkingstad2021large} and transcript heritabilities for whole blood on the eQTLGen
dataset \cite{vosa2021large}. Of the 14,022 protein-coding transcripts in eQTLGen, reml
converged for 12,218. Likewise, 3,716 of the 4,502 autosomal proteins in deCODE converged
(estimated cis-heritabilities are in Table S11-12). Genes not converging were omitted in cis-
heritability downstream analyses.

To calculate the difference in heritabilities between drug target and non-drug target genes, we
considered all transcripts and proteins measured in the respective study which were classified
accordingly. Per trait, the difference in heritability was then calculated through a two-sided t-
test. Heritability tests were only performed for traits with at least three drug targets within the
respective set of measured transcripts/proteins.

Since estimating heritabilities from summary statistics requires large sample sizes to obtain
meaningful estimates, we did not extend the analysis to eQTLs from the GTEx consortium.
Based on the new heritability estimates, we updated Supplementary Figure 5 that shows the
results of the “Heritability of drug target transcripts and proteins” section:
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Supplemental Figure 5. Difference in heritability of drug farget compared to non-drug target measured
transcript and protein levels. For each frait, the difference in heritability was calculated through a two-
sided t-fest. When the difference was negative (i.e., drug farget genes were less heritable), the -logio(p-
value) is plotted in blue, otherwise in red. Traits for which the difference was nominally significant (p-
value < 0.05), are indicated with a star. If less than three drug target genes could be tested for a trait, a
grey box is plotted.
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Unlike with the previous cis-heritability estimates, no consistent trend was observed for drug
target genes being less heritable than non-drug target genes. The result section was
updated accordingly, and we now also refer to the findings of Mostafavi et al. bioRxiv which
showed limited overlap between eQTLs and GWAS hits.

i ::!I_l_l'

Previous drug target enrichment analyses have shown that drug target genes are more likely
to have lower residual variance intolerance scores (RVIS), i.e., are less tolerant to change
\cite{nelson2015support). Furthermore, limited overlap between eQTL and GWAS hits has
been found and it has been suggested that GWAS and eQTL genes are under different
selective constraints (Mostafavi et al., 2022). Hence, under the assumption that drug target
genes are more likely to be key (core) GWAS genes, we expected that drug target genes are
less likely to harbor eQTLs. To fest this hypothesis, we assessed whether drug target
transcript or protein levels are less amenable to regulation by common genomic variations,
which could explain the lower than expected performance of QTL-GWAS approaches.

To this end, we compared the cis-heritability of drug target genes versus non-drug target
genes that were measured in the respective studies (i.e., also those with no reported e/pQTLs;
Methods) where lower heritability would point towards a negative selection
\cite{o2019extreme}. We conducted the analysis per trait and for each of the five drug target
gene definitions, however, could not observe a clear difference between cis-heritabilities of
drug target and non-drug target genes (Figure S5). While this means that we cannot explain
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why the QTL-GWAS approach does not perform better, it may also imply that drug target
genes are not necessarily typical GWAS genes or so-called core genes.

Since there was no strong support for drug target genes being protected from genomic
perturbations, we deleted the corresponding paragraph from the Discussion.

Minor comments

2. For the "exome" strategy, a key parameter is the allele frequency threshold. In general,
variants with frequencies close to this threshold will dominate the test statistics (this is the
opposite behavior as in GWAS, where the threshold is a lower bound). | assume the results
would look quite different with a different threshold, and | suggest to perform a sensitivity
analysis of the main drug-target-enrichment analysis looking at different allele frequencies,
which might help to prioritize genes with larger effect sizes.

As shown by Backman et al. Nature, 202, the allele frequency can indeed influence the
prioritization of genes, however, most associations (64.1%) were shown to be unaffected
when changing the MAF threshold from 1% to 0.1% (Extended Figure 6a in Backman et al.)
and only 11% of associations became stronger when setting the MAF threshold to 0.1%,
whereas 24.9% got weaker. In line, statistical power was shown to be the highest when
using a MAF of 1% (Result section “Effect of burden test composition” in Backman et al.). In
our analyses, we define the prioritized genes as those with the top 1% evidence of excess
burden, which certainly includes many false positive genes (as not all of those survive
family-wise error control). Since we wanted the top 1% to contain as many true positives as
possible we opted for the best-powered burden results. To this end we chose the 1% MAF
filter for all analyses. To further support this choice, we prepared the QQ-plots for the burden
test statistics (P-values) for various MAF filters (0.001%, 0.01%, 0.1% and 1% for LDL
cholesterol as outcome. Top 1% genes (which define the prioritized genes in our drug target
enrichment analysis) are colored in golden and for these we calculated the median chi-
square statistics. As the MAF filter decreases, less burden test associations become
significant as indicated by decreasing chi-square statistics and a deviation from the diagonal
at higher expected values.
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3. What should we make of the fact that the STRING PPI network is so much more
successful at identifying drug targets compared with genetic approaches? Perhaps this is
related to, but distinct from, an observation in Kim et al. 2020 AJHG [7], who showed that
genes with high "network centrality” were highly enriched for heritability. I think this finding is
striking, and even though it has nothing to do with the genetic data per se, it could use maore
discussion.
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We updated the discussion to better highlight the bias of the STRING network and its
implications in terms of drug target discovery. The concerned section now reads as follows:

Network diffusion was beneficial for prioritizing drug target genes with weaker genetic support.
A remarkable increase in drug target identification was achieved when using the STRING
protein-protein interaction network. However, this improvement may be due to a circularity in
the data generation process, whereby drug target genes are more researched, hence have
more chance to be found to interact with other proteins, i.e. tend to look more hub-like.
Although genetically-informed gene sets performed belter than random ones, the genes
prioritized by their node degree in the STRING network resulted in the highest AUC values
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overall. Thus, care has to be taken when relying on literature-derived gene-gene inferactions,
as aggressive diffusion will point to the same drug target genes, irrespective of the disease,
due to the intrinsic bias stemming from under- and over-studied. While the STRING network
resource remains of immense value to identify interacting proteins, non-random missing of
network edges leads to a biased nelwork sfructure which makes this resource less suitable as
input for discovering new drug targets. The improvements made with co-expression networks,
which do not suffer from publication/curation biases, were minor in comparison. Although
significant with the AUC melric, ORs were nol significantly increased with a diffusion of r = 0.6
as compared to no diffusion for any of the methods.

Indeed, the cbservation in Kim et al. AJHG, 2020 that high “network centrality” is enriched
for disease heritability is striking. We made a quick analysis correlating network connectivity
(i.e. gene node degrees) to the newly calculated transcript cis-heritabilities. While no
significant correlation was found with the STRING network, significant negative correlations
were found with the co-expression networks (p-values of 2.1e-6 and 3.9e-3 for the
CoXRNAseq and FAVA networks, respectively). These negative correlations as opposed to
the positive enrichments of network centrality with disease heritabilities may be in line with
the discrepant architectures of transcript cis-heritabilities and GWAS heritabilities as shown
by Mostafavi et al., 2022. However, proving this point would need further analyses. Given
that we no longer find that drug target genes have lower cis-heritabilities, we decided not to
include these results. Although, we believe that deeper analyses on heritabilities and
network connectivity would be a great addition to our current results, this exceeds the scope
of this work.

4. The example of APP in Alzheimer's disease is confusing. Rare APP mutations are a
known cause of AD, so if this gene is not highly ranked via the exome approach, it suggests
an issue with power rather than anything else (not surprising, since UK Biobank skews
young). APOE, on the other hand, should be the top GWAS hit by far; why is it only top 57 |
don't necessarily think this indicates a problem with the approach, but maybe this example
isn't the most reassuring.

To avoid confusion, we updated the description of this example in the result section. The
example only focuses on gene prioritization ranks of the eQTL-GWAS approach, before and
after diffusion on the STRING network. Prioritization ranks of the GWAS and Exome method
are not considered in this example per se, however, we now include them for completion. As
correctly guessed by the reviewer, APP was most likely not picked up by the Exome method
because of a bias towards young individuals in the UKBB. In fact, APP was among the top
1% for the GWAS method when using consortium data, but it was not at all prioritized when
restricting the analysis to the UKBB data. The paragraph has been updated as follows:

Amyloid-beta precursor protein (APP) targeted by the monoclonal antibody aducanumab in
the treatment of Alzheimer’s disease (AD) was ranked 506th (top 2.7%) prior and 152nd (top
0.8%) after diffusion on the STRING network (r = 0.6; Figure 6a) based on the eQTL-GWAS
method. Prioritization was largely influenced by its interacting neighbour Apolipoprotein E
(APOE) which was among the top 5 ranked genes for AD by the eQTL-GWAS method and
among the fop 6 genes (tied p-values) by the GWAS method. Although rare mutations in APP
are a known cause for AD (O'Brien and Wong, 2011), the Exome method did not highly
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prioritize this gene (= top 10%), likely because of low statistical power due to the younger and
healthier nature of the UKBE cohort. Indeed, APP was among the top 1% for the GWAS
method leveraging the AD consortium data, but did not reach the top 10% when restricting the
analysis to the UKBB.

Figure 6. Examples illustrating network diffusion to prioritize drug target genes. a Top ten network
neighbours of drug target APP (brown circle) and their prioritization values (i.e., normalized node
probabilities) of the eQTL-GWAS method for Alzheimer's disease are shown before (r = 1) and after
diffusion (r = 0.6) on the STRING network.
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Reviewer #2

A primary goal of genetic association studies is the identification of potential drug targets for
complex diseases; in this manuscript, the authors present a comprehensive examination of
the ability of contemporary methods to successfully identify known drug mechanisms for a
broad range of clinical disorders. There are two inter-related major strengths of this
manuscript: 1) it addresses a question that lies at the heart of biomedical genetics; and 2) it
does so in an exhaustive fashion. Specifically, it examines: 1) a broad range of disorders
(n=30); 2) a range of association strategies (GWAS, eQTL, pQTL, and Exome/rare variant
association); 3) a range of chemoinformatic databases for annotation of drug targets; and 4)
a range of potential degrees of "distance" between the primary (genetically-identified) target
and the drug target, with distance defined in the context of protein interaction networks.

We thank the reviewer for the positive evaluation of our work and appreciate the comments
to strengthen this work. Please find our answers below.

There is only two notable weaknesses in the manuscript:

1) A relatively minor weakness is that the discussion section could be more strongly worded.
For example, it appears that an important conclusion of this work is that the STRING dataset
is inappropriate for future work in this area, and this should be stated clearly. Similarly, it
should be stated clearly that genetic association gives a 1.5-2-fold enrichment for drug
targets, consistent with less comprehensive prior reports. At the same time, the AUC is
sufficiently low that additional directions for improvement should be suggested.

We updated the discussion 1) to put a stronger emphasis on the limitations of the STRING
data, 2) to iterate more explicitly that gene prioritization methods give a 1.3-2.2-fold
enrichment for drug target genes and 3) to explain relatively low AUC values and suggest
future directions for improvement.

Accordingly, the first paragraph of the discussion now reads as follows:
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We conducted a comprehensive benchmarking between different genetically informed
approaches (GWAS, QTL-GWAS and Exome) combined with network diffusion to prioritize
drug target genes. The strength of our analysis lies in the side-by-side comparison of gene
prioritization methods that individually have proven to be successful in identifying drug targets.
In line with previous reports, we find a 1.3 to 2.2-fold enrichment for drug targets among (the
top 1%) prioritized genes \cite{nelson2015support, king2019drug}. Recently, methods have
emerged that combine multiple genetic predictors to derive an aggregate score often using
machine-learning techniques \cite{fang2019genetics, mountjoy2021open,
forgetta2022effector}. These scores demonstrated high enrichment for drug targets but reveal
little about underlying molecular mechanisms. Our aim was to disentangle the importance of
the choice of the ground truth (i.e., drug target genes), the input data (such as molecular QTLs,
WES) in combination with different molecular networks to highlight added benefits while also
exposing weaknesses compared fo using GWAS data alone.

The paragraph about the bias in the STRING network was updated as follows:

Network diffusion was beneficial for prioritizing drug target genes with weaker genetic support.
A remarkable increase in drug target identification was achieved when using the STRING
protein-protein interaction network. However, this improvement may be due to a circularity in
the data generation process, whereby drug target genes are more researched, hence have
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more chance to be found to interact with other proteins, i.e. tend to look more hub-like.
Although genetically-informed gene sets performed better than random ones, the genes
priaritized by their node degree in the STRING network resulfed in the highest AUC values
overall. Thus, care has to be taken when relying on literature-derived gene-gene interactions,
as aggressive diffusion will point to the same drug farget genes, irrespective of the disease,
due to the intrinsic bias stemming from under- and over-studied. While the STRING network
resource remains of immense value to identify interacting proteins, non-random missing of
network edges leads to a biased network structure which makes this resource less suitable as
input for discovering new drug targets. The improvements made with co-expression networks,
which do not suffer from publication/curation biases, were minor in comparison. Although
significant with the AUC mefric, ORs were not significantly increased with a diffusion of r = 0.6
as compared to no diffusion for any of the methods.

We updated the paragraph about limitations to include future directions for improvement:

Several limitations should be considered. First, we do not take into account directionality of
therapeutic and genetic effects, i.e., whether the drug is an agonist or antagonist. Although
found to be less performant than GWAS, QTL-GWAS methods have the advantage of
specifying directionality, as opposed to gene scores from the GWAS approach which ignores
SNF effect directions. Second, the used molecular QTL dala sets cover only a small fraction
of possible intermediate traits through which SNPs exert their disease-inducing effects
\cite{yao2020quantifying}. Third, we only focus on common genetic variants when associating
transcript and protein levels. With the advent of coupled rare variant-protein level data, either
from populations enriched for rare variants or sequencing data \cite{ferkingstad2021large,
dhindsa2022influences}, more powerful QTL-GWAS methods are likely to emerge that
combine mechanistic insights gained from QTL approaches while capturing rare variant
associations previously missed. Fourth, drug target data are sparse which limits the statistical
power in benchmarking analyses. Given the required resources to test a drug target in clinical
settings, focusing on top ranking genes is of most interest. This scenario is best described
with a threshold that defines highly prioritized genes for enrichment analyses. However, ROC
curves that quantify the performance at all priorifization thresholds (i.e. use all data at hand)
were betler powered o detect subtle differences between methods. Resulting AUC values are
relatively low (51%-54%), which may be because ranks of genes with non-significant p-values
are likely unreliable, but these dominate most of the ROC curve. Related to this, even for low
false positive rates there is room for improvement of the gene prioritization methods.
Combining prioritization methods could increase AUC values as suggested by the distinct drug
target sets identified by GWAS and Exome methods as could the integration of additional
functional genomic annotations \cite{fang2019genetics, mountjoy20210pen}. Finally, our
analysis compares methods using historical drug discovery dala as the ground truth. This data
is highly biased with G-protein-coupled receptors being targets of a third of FDA-approved
drugs \cite{hauser2018pharmacogenomics}. Many other genes may be effective targets, but
have never been tested in clinical trials. Thus, our results may not reflect how well the tested
genetic approaches uncover true disease genes, but rather how well they identify targets that
were historically prioritized in drug development processes. Since the emergence of robust
GWAS, more and more clinical trials are motivated by genetically informed targets. Thus, drug
target databases will tend to overlap better with GWAS-inspired genes, leading to artificially
higher overlap.
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2) A more significant weakness is that 4 association strategies that are compared are
substantially different in terms of available sample size and statistical power at the present
time. While the authors acknowledge the limitations specific to the pQTL dataset, it is generally

true that available exome studies are less well-powered compared to GWAS. What would the
results be if the GWAS were downsampled to match the available exome data for each
disease? Similarly, eQTL are differentially powered relative to the tissue of interest that is
available; the authors utilize the tissue with the strongest association, but that might advantage
some disorders (e.g., those primarily expressed in blood) compared to other disorders
expressed in tissues less well represented in available eQTL reference datasets.

We acknowledge the difference in sample size and statistical power, and throughout our
comparisons we tried to adjust as well as possible individual methods to match each other in
terms of sample size, available tissues, and omics entities.

Regarding the difference in sample size between the GWAS and exome data, we conducted
sensitivity analyses where we downsampled GWAS to match exome case/control sample
sizes. Since we used the UKBB to get exome association results, we used UKBB GWAS (as
opposed to consortia GWAS) to conduct fair comparisons between the Exome and GWAS
method. While the GWAS method was superior to the Exome method on consortia GWAS
data, this was no longer the case when downsampled to UKBB GWAS (Pair = 0.06). We
made these adjustments for the GWAS method more explicit throughout the manuscript to
avoid confusion.

In the second paragraph of the result section “Overview of the analysis”, we made the following
changes:

If not specified otherwise, the eQTL-GWAS method refers to the tissue-wide analysis in which
the eQQTLGen and GTEXx data are combined by considering the tissue for which the MR effect
was the most significant (Methods). While the GWAS and QTL-GWAS methods focus on
common genetic variants, the Exome method considers only rare variants from WES data with
minor allele frequencies (MAF) below 1\%. Gene scores were based on gene burden tests
that aggregate putative loss-of-function and missense variants, and we used the resulting p-
values from the WES analysis in the UKBB \cite{backman2021exome}. To allow for a fair
comparison with the Exome method while also exploiting disease-specific consortia GWAS
summary statistics with maximized case counts, we calculated gene prioritization scores for
the GWAS and QTL-GWAS methods using both consortia GWAS and UKBB GWAS data that
matched Exome sample sizes (Table S1-3; Methods).
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In the Result section “Enrichment of prioritized genes for drug targets™ where we present our
main results, we more clearly define the rational behind conducting sensitivity analyses on
UKBB GWAS:

Since enrichment results can differ widely across traits and reference databases, we
calculated overall enrichment and AUC values across traits and drug databases, including
sensitivity analyses restricting GWAS to UKBB data to match Exome sample sizes and
common background genes (Table S9, Figure S4; Methods). The overall ORs were 2.17
(UKBB: 1.72), 2.04 (UKBB: 1.67), 1.81 and 1.31 (UKBB: 1.30) for the GWAS, eQTL-GWAS,
Exome and pQTL-GWAS methods, respectively.

Regarding the differences in power for different eQTL tissues, we now conducted an
additional sensitivity analysis where we exclude the eQTLGen dataset which by far has the
largest sample size (N = 31,684 compared to N = 65-573 for GTEx). This would
disadvantage disorders for which relevant genes are primarily expressed in blood and
overall lower enrichment values are therefore expected.

We added these results to the Supplementary Table 9 and report them in the result section
“Enrichment of prioritized genes for drug targets” which now reads as follows:

Judging by the AUC values, GWAS performed significantly better than eQTL-GWAS (Pan =
3.1e-5) also when only considering testable eQTL genes (Psx = 2.9e-4). When excluding
eQTLGen from the tissue-wide eQTL-GWAS, the performance of eQTL-GWAS slightly
dropped (AUC of 52.2% compared to 52.8%, Pan = 0.019). Significantly higher AUC values
were obtained for the GWAS compared to Exome on consortia data (Pax = 2.2e-4) which was
no longer the case on UKBB data (Pax = 0.06). The difference between eQTL-GWAS and
Exome was not significant on either dataset (Pax of 0.12 and 0.77 on consortia and UKBB
data, respectively). The number of testable genes was much lower for the pQTL-GWAS
method (~1,870 genes). With this set of background genes, GWAS still scored a higher overall
AUC (55.1%, P4y = 2.1e-3). No difference was observed between the pQTL-GWAS and
tissue-wide or whole blood eQTL-GWAS methods (Pur of 0.66 and 0.87, respectively).
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