Supplementary Material K-H Lin et al.

Supplementary Figure 1. KD efficiency of siRNA targeting NR1H3 and E2F7 in MEF cells. The mRNA expression level of (A) NR1H3, (B) GLUT5, (C) E2F7, and (D) CCNB1 was measured using RT-qPCR. 100 nM of NR1H3 siRNA and 150 nM of E2F7 siRNA was transfected in WT, p53-KO, p53^{R172H} MEF cells. Total RNA was extracted and reverse transcribed to cDNA. Fold changes in mRNA ($\Delta\Delta$ Ct) were calculated and the data represent the mean ± SD of three independent experiments. *p<0.05 and ***p < 0.001 indicate significant differences between scramble and siRNA transfected cells.

Supplementary Figure 2. p53 does not bind to intronic p53-RE in human ENPP2. Human WT HCT116 cells were starved in serum-free medium for 2 h followed by incubation with 20 μ M Nutlin-3A for 24 h. Cells were further subjected to ChIP-qPCR analysis using anti-p53 or non-specific control IgG antibodies. The primers targeting (A) p53-RE1, (B) p53-RE2, (C) p53-RE3, (E) p53-RE4 & p53-RE5, and (F) p53-RE6 in the second intron were used to quantify the p53-bound DNA. Enrichment of p53-binding was normalized to non-specific control IgG. Analyses represent the mean of three independent experiments. One-way ANOVA was performed to compare the data from multiple experiments to determine the significance of p53 binding at a given site.

Supplementary Figure 3. Human HCT116 WT and HCT116 p53^{-/-} cells were transfected with 150 nM TP53 siRNA for 24 h. TP53-KD cells were irradiated at 15 Gy and incubated for 24 h. Total RNA was extracted and 500 ng of total RNA was used for reverse transcription using random primers. mRNA expression of (A & E) p53, (B & F) p21, (C & G) E2F7, and (D & G) ENPP2 were detected by RT-qPCR. Fold changes in mRNA ($\Delta\Delta$ Ct) were calculated and the data represent the mean \pm SD of three independent experiments. *#p<0.05, ** ###p<0.01, and ***, ###p < 0.001 indicate significant differences between scramble and siTP53 transfected cells. # indicates the comparison between control and radiation.

Supplementary Figure 4. Human HCT116 WT and HCT116 p53^{-/-} cells were transfected with 150 nM E2F7 siRNA for 24 h. E2F7-KD cells were irradiated at 15 Gy and incubated for 24 h. Total RNA was extracted and 500 ng of total RNA was used for reverse transcription using random primers. mRNA expression of (A & E) p53, (B & F) p21, (C & G) E2F7, and (D & G) ENPP2 were detected by RT-qPCR. Fold changes in mRNA ($\Delta\Delta$ Ct) were calculated and the data represent the mean ± SD of three independent experiments. *#p<0.05, ** ###p<0.01, and ***, ###p < 0.001 indicate significant differences between scramble and siE2F7 transfected cells. # indicates the comparison between control (non-irradiated) versus irradiated cells.

a 1	11	1	C	1 .
Nunnlemen	tary table	I Primers	tor	cloning
Suppremen	iary taon	1.11111010	101	Cloning

Primer name	sequence
Full promoter to Dual luciferase	GTTTTTCGAACCTAGGATTTGCATCTCGAGATGGAAT
vector-F	
Full promoter to Dual luciferase	TGGCTGCTAGCCTAGGCTGAGGGCTGAGGCATT
vector-R	
Partial promoter to Dual	GTTTTTCGAACCTAGGATCTTCAGTTTCTGAGCTGTATT
luciferase vector-F	
Partial promoter to Dual	TGGCTGCTAGCCTAGGCCGAGGGATTCTTGGAAAACC
luciferase vector-R	
E2F7 to pEYFP-C1-F	CGAGCTCAAGCTTCGAAAGAGGTGAATTGTTTAACACTAAAA
E2F7 to pEYFP-C1-R	CTGGACTAGTGGATC TACGATTCATCTGCAGC
E2F7-R185A-F	GGAAAGGAGAGCCATCTATGACATCGTAAACGTGCTGGAGTC
E2F7-R185A-R	ACGCCGAGACTGACGGCG
E2F7-R334A-F	AAAGGTACGGGCCCTCTATGACATAG
E2F7-R334A-R	GTTTTGAATTTGCTGTGGTCCGGGG
E2F7-DD-del-1-F	TCGCTGCATCTGGTCAGC
E2F7-DD-del-1-R	TACGATGTCATAGATGCGTCTCCTTT
E2F7-DD-del-2-F	ACCAGCCTGGCTCTGATA
E2F7-DD-del-2-R	GGCTATGTCATAGAGCCTCCG
ATX promoter-E2F7RE-1-del-F	ACGCCGAGACTGACGGCG
ATX promoter E2F7RE-1-del-R	AAAGGTACGGGCCCTCTATGACATAG
ATX promoter E2F7RE-2-del-F	ACGCCGAGACTGACGGCG
ATX promoter E2F7RE-2-del-R	AAAGGTACGGGCCCTCTATGACATAG
ATX promoter-p53RE-del-F	GGGTTGTTAGGGTCATCTG
ATX promoter-p53RE-del-R	TCGGAAAGGCATTCTCAG
Bach2 to pGADT7-F	GCATGTCTGTGGATGAGAAGC
Bach2 to pGADT7-R	GGCAGAAGAACACCCAGATGA
Cebpβ to pGADT7-F	ACTACGGTTACGTGAGCCTC
Cebpβ to pGADT7-R	TTGCATCAAGTCCCGAAACC
Fos to pGADT7-F	CCCAAACTTCGACCATGATG
Fos to pGADT7-R	CTCCTCTGTAATGCACCA
Nr1h3 to pGADT7-F	AATGTCCAGGGCTCCAGGAA
Nr1h3to pGADT7-R	AGCAGTCAGTGAGCCTTCGC
E2F7 to pGADT7-F	CGACAATGGAGGTGAATTGTTTAAC
E2F7 to pGADT7-R	TAGATGACTCATGATATCGGGAAGT
ATX promoter to pABAi-F	AAGGTACC TGGCTTTTGTGCTATCGGGT
ATX promoter to pABAi-R	AAAGTCGAC ACTGTGTGGTGCCCTAAAACT

Supplementary table 2. siRNA sequence

Target gene	sequence
mNr1h3 J-040649-09	GGGAUCUACUAACGUUGUA
mNr1h3 J-040649-10	GCUCAAGCCACUUCGGUGU
mNr1h3 J-040649-11	GAGAGAGCCUUGCGUAGCA
mNr1h3 J-040649-12	CGUCCACAAAAGCGGAAAA
mE2f7 J-054889-25	CCACCUACUUGGAACGCUA
mE2f7 J-054889-26	GAUAAAGAAAGUUCACGUA
mE2f7 J-054889-27	GCAUCUAUGACAUCGUAAA
mE2f7 J-054889-28	GGGUAAGUGUCGGCGAUAU
hE2F7 J-026897-05	GCACACAUCGUGAGACGUU
hE2F7 J-026897-06	UGACUAACCUGCCGCUUUG
hE2F7 J-026897-07	CAAGGACGAUGCAUUUACA
hE2F7 J-026897-08	GCACUAUUCCGACCCAUUG
Non-targeting siRNA	UGGUUUACAUGUCGACUAA

Supplementary table 3. Primers for qPCR and ChIP-qPCR		
Primer name	sequence	
mE2F7-F	TCCGAAGCCGACTACCCCTCTT	
mE2F7-R	TTTGGCAGCTACATCCAGGGTG	
mNr1h3-F	TGGACACCTACATGCGGCGGAA	
mNr1h3-R	CACCGAAGTGGCTTGAGCCTGT	
mCcnb1-F	AAAGGGAAGCAAAAACGCTAGG	
mCcnb1-R	TGTTCAAGTTCAGGTTCAGGCTC	
mGLUT5-F	CGAAAAACCTACGAGGGGCT	
mGLUT5-R	CTGGCCAGCCATCCTCATTT	
mChIP-1-F	ACACTGAAATAACAGTGCAG	
mChIP-1-R	GAGATGCAAATCTGCTGTTC	
mChIP-2-F	ATCAGTTTAGCTTGGCATAC	
mChIP-2-R	CTCTTAGCTTTGGACTCTCG	
mChIP-3-F	CTATCGGGTTTTATGCGAGC	
mChIP-3-R	TTCAAATGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
mChIP-4-F	TTAAGCTGGCAGCCCCAGTA	
mChIP-4-R	CCAAAATTGCAACTCACACG	
mChIP-5-F	ATACAGGGTCATTCCAACTG	
mChIP-5-R	AGTTATTTGATGCCCTCAAC	
mChIP-6-F		
mChIP-6-R	TTCTTGTGTAGCTGTGGCCA	
mChIP-7-F	GGTCTTA AGCA ATGGCTTGG	
mChIP-7-R	TTGGTGTTTCTCTGTGTTTC	
m-intron-ChIP-1-F		
m-intron-ChIP-1-R	TCTGTTTTCACATTCTTTCT	
m-intron-ChIP-2-F		
m-intron-ChIP-2-R	TGAGGCATTACAAGTGACTT	
hChIP-1-F	GAGTTAACATCTTTTATAAG	
hChIP-1-R	AAAAGAAAATACACATACTG	
hChIP-2-F	CACTACTCTGTTACTAATTT	
hChIP-2-R	GAAAAAGATTTGTTTTTGGC	
hChIP-3-F	AGTGTGCTGGTTGCCAAATT	
hChIP-3-R	GCTTTATTAGCAATTGAATT	
hChIP-4-F	TCCGCCCCGCAAACAAG	
hChIP-4-R	AGATAACATTATTTTCCCCA	
hChIP-5-F	TGGAAAGCCCTTGCACAGCC	
hChIP-5-R		
hChIP-6-E	TAGGGGAGGGACCTGTAAGG	
hChIP-6-R	GGGTTTAGTCTATTAACTAT	
hChIP-7-E	TTCTGACCATTAGAAAAGCC	
hChIP-7-R	CCTTTGTGTTCCTTCTATTT	
h-intron-ChIP-1-F		
h-intron-ChIP-1-R		
h-intron-ChIP-2-F		
h-intron-ChIP-2-R		
h-intron-ChIP-3-F	AACAATAGCTGAGAATGTTC	
h-intron-ChIP-3-R	TTATGACAGTCTGTTTGCAC	
h-intron-ChIP-4-F	ACTTATA ATTCTGTTGGGTA	
h-intron-ChIP-4-R	ΤΑΑΑΤCACAGTTATGGCTTA	
h-intron-ChIP-5-F	ATCTTTTTCTCATATGTCTG	
h-intron-ChIP-5-R	TGCATA ACACCACA A ACATA	
hn21-F	AGGTGGACCTGGAGACTCTCAG	
hp21-R	TCCTCTTGGAGAAGATCAGCCG	

mp21-F	TCGCTGTCTTGCACTCTGGTGT
mp21-R	CCAATCTGCGCTTGGAGTGATAG
hE2F7-F	TCTGAACCCGACTGTCCCTCTT
hE2F7-R	TTTGGCAGCCACATCCAGAGTG
hENPP2-F	TATGCTGCGGAAACTCGTCAGG
hENPP2-R	GACGTTGACACCCGATGCAGT
hmGAPDH-F	CTGCACCAACTGCTTAG
hmGAPDH-R	GGGCCATCCACAGTCTTCT

Su	oplementary	table 4.	Primers	for 3C-qPCR
				-

Primer name	sequence
mPrimer#1	AGTTTCTGAGCTGTATTTTT
mPrimer#2	TACACTGAAATAACAGTGCA
mPrimer#3	AAGAGGCTTGTAGATAAATT
mPrimer#4	TCTCTTCTTCTTTCAATGA
mPrimer#5	TTTTGTGCTATCGGGTTTTA
mPrimer#6	GGGGCCCGGTAGGGGAAAGC
mPrimer#7	TACTGTCCTTTATGCCTGCG
mAnchor-1	CAAACACAACTAGATTAGAT
mAnchor-2	ACACAGAGAAACACCAAATT
hPrimer#1	TGTTTTGTTTTTAGAACAT
hPrimer#2	TCTCGTATTTGTTTACGCAC
hPrimer#3	AAACAATTCTTGACATTTCA
hPrimer#4	GACTGAAGTTATTTTGTCCG
hPrimer#5	GTATTTTGATAAAAGTTACT
hPrimer#6	ACTGCCAGCAAAATAAATAG
hPrimer#7	TTCTTTTGACAAACCATGT
hAnchor-H	ATATCAATACCCTTTGTGTT