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SUPPLEMENTAL METHODS 

Additional approaches for clinical and genomic sensitivity analysis 

As described in the main text, we used two additional analytical approaches to detect 

somatic variant calls. In the first approach, we used downsampling to compensate for the 

absence of matched normal germline samples. Germline variants were called from 

downsampled ORS sequence data to facilitate identification of candidate somatic variants in 

ORS samples using VarScan 2 “somatic” functions (1). The ORS data were downsampled to 

the same sequencing depth as the matched fresh-frozen OSCC. The somatic calling 

parameters were set to “--min-var-freq 0.05”. The called variants were first filtered by VarScan 2 

“processSomatic” function with parameters “--p-value 0.01” to obtain high confidence somatic 

calls and then were annotated using ANNOVAR version 521 (2). Only somatic variants that 

have known COSMIC annotations were selected for downstream analysis. Synonymous 

variants and variants with known SNV annotations in the dbSNP138 database (3-5) were 

removed, unless they also have known COSMIC annotations (6). For ORS, variants with VAF 

>40% were also removed, and we applied the same filtering criterion for COSMIC and dbSNP 

annotations as for fresh frozen OSCC. 

In the second additional approach, we used an alternative analytical pipeline to account 

for a possible high false-positive rate based upon a VAF cutoff alone. We applied a prediction 

model to distinguish true variants from possible sequencing errors. High confidence tumor 

variants were defined as variants that have known COSMIC annotations. We developed a naïve 

Bayesian classifier to model the probability of a specific variant being a true positive vs. a call  

due to sequencing error, using a combined set of features from behavioral and genomic 

characteristics. These included measures of tobacco and alcohol exposure (e.g., never, former, 

current use) as possible contributors to low VAF due to field cancerization, genomic site-specific 

nucleotide changes, functional amino acid changes, and the gene-specific characteristics for 

genes in the target panel. Variants in the ORS that were classified as false positives by this 

naïve Bayesian model were further excluded before applying the VAF cutoff to detect somatic 

variants in matched fresh-frozen OSCC. Assay performance (as measured by VAF cutpoint, 

sensitivity, specificity, AUC, precision) with and without application of the Bayesian model was 

compared.  
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Supp. Fig. S1. Sequencing coverage in samples. Shown here are median depths of sequencing coverage (y-axis) across the 

targeted region for 120 patient sample pairs (x-axis): (A) Fresh-frozen OSCC samples; (B) ORS. Sample pairs from two patients 

with the lowest ORS sequencing coverage (i.e., GS18190 and GS18032) were excluded from further analysis, resulting in 118 

OSCC sample pairs analyzed further.  

 



 

Supp. Fig. S2. Distribution of VAFs in fresh-frozen OSCC. Histogram displays the counts of 

all detected variants (log10 scale, y-axis) with indicated VAFs (percentages, x-axis). A total of 

1,308,131 variants were identified across 118 OSCC samples. Most variants’ VAFs were < 1%.  
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Supp. Fig. S3. Distribution of VAFs in ORS. Histogram displays the counts of all 5,046,099 

variants (log10 scale, y-axis) identified across 118 OSCC samples, with indicated VAFs 

(percentages, x-axis).  Most variants’ VAFs were < 1%.  
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Supp. Fig. 4. Association between sequencing depth of coverage and detection of true-
positive variant calls in ORS. Box-and-whiskers plot shows that the distribution of sequencing 
depths of coverage per variant in ORS samples for true-positive variants (right), as detected with 
VAF > 0.10%, is significantly higher overall than that for false-negative calls (left; p = 0.040). Thick 
horizontal line, median; box, first and third quartiles; whiskers, minimum and maximum.  
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Supp. Fig. S5. Gene-level sensitivity, specificity, and precision in ORS. Bar graphs show (A) 
overall optimized sensitivity, (B) specificity, and (C) precision (y-axis) for each of the 32 targeted 
genes (x-axis) in which somatic variants were detected in any of the ORS. X-axis, left to right, genes 
ordered by frequency of detected somatic variants in OSCC. 
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Supp. Fig. S6. Optimized ORS sample-level sensitivity, specificity, and precision per ORS sample annotated by anatomic 
subsite. (A-C) Bar graphs show (A) sensitivity, (B) specificity, and (C) precision for each of the 118 paired ORS samples. X-axis, left to 
right, individual ORS samples, annotated by (key, panel A) anatomic subsites. See Fig. 3B.   
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Supp. Fig. S7. Lack of impact of clinical factors in optimization of ORS mutation 
detection. Box and whiskers plots display a lack of significant associations between 
sensitivities of ORS variant detection and the presence or absence of various patient 
characteristics including (A) tobacco exposure; (B) alcohol consumption; (C) primary tumor site 
involving the oral tongue vs. other sites; (D) nodal status; and (E) status of disease recurrence. 
Red dots, mean of sensitivity of detection for all variants in individual patients. 
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Supp. Fig. S8. Downsampling of ORS sequence reads in assay optimization. (A) ROC and 
(B) PR (precision-recall) curves for assay optimization based on downsampling of ORS 
sequence reads to assess impacts on sensitivity, specificity, and precision of somatic variant 
detection. From the ROC curve, with VAF cutoff 0.1%, the optimal sensitivity was 0.73, the 
specificity was 0.94, and the AUC was 0.76. From the PR curve, with cutoff = 1.40, the optimal 
sensitivity was only 0.19 and precision was 0.0099.  
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Supp. Fig. S9. Bayesian modeling for optimization of mutation detection in ORS. (A) Results of 
Bayesian models including (top) different subset combinations of variables: alcohol status, smoking 
status, functional change, nucleotide change, and host genes. Solid dots: inclusion of variable(s) in 
models. Bottom, bar graphs (from top to bottom): sensitivity, specificity, precision, AUC, and optimal 
cutoffs. (B) ROC curve for Bayesian model involving optimization of functional change, nucleotide 
change, host genes, and smoking status, for which AUC was 0.58. At a VAF cutoff of 0.03%, 
sensitivity was only 0.62, specificity was ~0.996, and precision was 0.00068. (C) Optimization of 
assay precision in a PR curve based on Bayesian model at cutoff 2.57: sensitivity was only 0.13 and 
precision was 1.0.  
 
 



 13 

gene MutSig q-value oncodrive adj p-value oncoclust adj p-value drgap adj p-value 
AJUBA 0.00E+00 5.45E-07 1.15E-01 9.72E-20 
ARID2 1.00E+00 2.84E-06 NA 5.33E-05 
ASXL1 1.00E+00 5.47E-02 8.11E-02 5.11E-05 
BIRC6 1.00E+00 1.72E-01 NA 5.16E-01 
CASP8 0.00E+00 1.09E-10 3.53E-02 2.29E-67 

CDKN2A 0.00E+00 1.09E-10 3.65E-04 5.13E-190 
CHEK2 1.00E+00 9.08E-01 3.55E-06 7.91E-08 
CTCF 1.49E-02 3.89E-05 NA 2.69E-06 

EIF2S2 9.69E-02 9.08E-01 NA 2.04E-05 
EP300 5.76E-01 1.44E-06 NA 3.10E-04 
EPHA2 1.26E-06 9.13E-04 1.15E-01 1.80E-13 
FAT1 0.00E+00 1.09E-10 2.85E-01 2.23E-125 
FAT2 1.00E+00 1.82E-05 NA 3.96E-07 

FBXW7 1.25E-05 1.09E-10 1.93E-01 8.55E-22 
FN1 1.00E+00 1.08E-01 NA 3.14E-01 

FOSL2 8.66E-03 3.43E-01 NA 9.90E-07 
HERC1 1.00E+00 1.60E-01 NA 4.36E-02 
HLA-A 1.00E+00 3.51E-04 7.23E-03 3.92E-28 
HLA-B 0.00E+00 1.58E-04 2.64E-02 2.55E-15 
HRAS 0.00E+00 7.36E-01 6.96E-04 3.67E-36 

KDM6A 1.00E+00 8.50E-02 NA 5.05E-02 
KMT2C 1.00E+00 1.72E-01 NA NA 
KMT2D 1.35E-03 9.08E-01 NA NA 
KRT5 8.90E-01 8.69E-01 NA 3.48E-06 

MB21D2 1.00E+00 9.08E-01 4.58E-02 2.99E-01 
MYCBP2 1.00E+00 8.30E-02 NA 2.20E-01 

MYH9 1.00E+00 4.21E-06 1.14E-01 2.48E-01 
NF2 5.23E-03 1.53E-01 NA 6.01E-03 

NFE2L2 5.69E-02 1.44E-06 1.39E-02 1.35E-09 
NOTCH1 5.88E-10 1.09E-10 4.01E-01 7.98E-46 
NOTCH2 9.69E-02 1.25E-02 NA 3.73E-06 

NSD1 3.03E-05 1.09E-10 4.35E-01 1.47E-13 
PARG 1.00E+00 9.08E-01 2.02E-06 3.65E-06 

PIK3CA 2.66E-08 5.01E-03 1.35E-02 3.68E-51 
POM121 1.00E+00 9.18E-01 1.73E-03 1.31E-01 
PSIP1 5.82E-02 1.70E-01 NA 5.79E-06 
RAC1 7.24E-02 8.18E-02 7.23E-03 2.16E-06 

RASA1 5.76E-04 2.84E-06 3.31E-01 1.33E-09 
SMAD4 5.69E-02 5.86E-03 NA 4.44E-08 

SMARCA4 1.00E+00 1.49E-01 3.60E-01 4.43E-01 
TGFBR2 0.00E+00 9.23E-07 1.15E-01 6.16E-14 

TP53 0.00E+00 1.09E-10 4.85E-02 0.00E+00 

Supplemental Table S1. Highly mutated genes in OSCC probed by custom hybrid capture 
baits. As described in the text, sequencing data from 4 genes (HLA-A, HLA-B, KMT2C and 
KMT2D) were not reliable and therefore were excluded from further analysis. Also shown are 
adjusted p-values (q-values) for enrichment of mutations in each of the 42 genes as called by 
MutSig, OncoDrive, OncoClust and DrGap (cf. Methods).  
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(Table included as separate Excel file.) 
 
Supplemental Table S2. List of somatic variants in fresh-frozen OSCC. Shown for each 
variant (rows) is sample ID name, gene name, chromosomal coordinates, variant allele fraction 
in ORS, VAF in OSCC, functional impact of variant, presence in COSMIC database, known 
status as a germline variant, and population allele frequency in GnomAD database.  
 
 
 


