## **Supplementary Material**

# Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns

Alexander E. Yarawsky<sup>1#</sup>, Andrea L. Ori<sup>1,2†</sup>, Lance R. English<sup>3‡</sup>, Steven T. Whitten<sup>3</sup>, and Andrew B. Herr<sup>1,4,5</sup>

#### Affiliations:

<sup>1</sup> Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

<sup>2</sup> Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA

<sup>3</sup> Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA

<sup>4</sup> Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA

<sup>5</sup> Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA

<sup>#</sup> Current affiliation: BioAnalysis, LLC, Philadelphia, PA 19134, USA

<sup>†</sup> Current affiliation: Graduate Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA

<sup>‡</sup> Current affiliation: Department of Physical Sciences, Temple College, Temple, TX 76502, USA

**Correspondence** to Andrew B. Herr: Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. <u>andrew.herr@cchmc.org</u>

#### Supplementary data files present in this document include:

- 1. Supplementary Figure S1
- 2. Supplementary Tables S1—S5

### **Supplementary Figure**



#### Figure S1. Domain organization of adhesin-like CWA protein families.

The major families and sub-families of staphylococcal adhesin-like CWA proteins are illustrated with the representative proteins from each family listed on the right. The gray S box represents the signal sequence. The purple St box is the stalk region, although the nature of this region varies per protein and may have distinct characteristics even within a family, as defined in Table 3. For example, CNA is in the Clf-Sdr family but it has a Pro-rich stalk region; likewise, Pls is in the G5-E family but is has a SD-rich stalk, unlike Aap and SasG. The LPXTG motif at the C-terminus of each protein is the sortase anchor sequence that is covalently attached to the cell wall of the staphylococcal cell. In the Clf-Sdr family, N1, N2, and N3 domains together form the A region; the N2 and N3 domains adopt Ig-like folds that interact with ligands via the 'dock, lock, and latch' mechanism. Lec stands for the lectin domains of Aap, SasG, Pls, and SraP. The B-repeat superdomain of Aap, SasG, and Pls is made up of tandem B-repeats, each of which comprises a G5 and E subdomain. The SRRP family (serine-rich repeat proteins) such as SraP contain serine-rich repeats (SRR), a lectin domain, a  $\beta$ -grasp ( $\beta$ G) fold domain, and two cadherin-like (CDHL) domains. The Other family contains FmtB (SasB) and SasC, which share a distinct domain arrangement with an adhesion domain followed by several DUF1542 repeats.

### **Supplementary Tables**

| Parameter         | Aap-PGR  | SasG-PGR | Aap-Arpts | SdrC-SD  | SD-30mer |
|-------------------|----------|----------|-----------|----------|----------|
| N                 | 135      | 69       | 189       | 62       | 30       |
| f-                | 0.15556  | 0.13043  | 0.22222   | 0.33871  | 0.50000  |
| f+                | 0.1037   | 0.23188  | 0.06878   | 0.08065  | 0        |
| FCR               | 0.25926  | 0.36232  | 0.29101   | 0.41935  | 0.50000  |
| NCPR              | -0.05185 | 0.10145  | -0.15344  | -0.25806 | -0.50000 |
| Карра             | 0.05825  | 0.09562  | 0.08655   | 0.30207  | 0.02324  |
| SCD               | 0.79     | 1.11     | 15.80     | 4.06     | 10.79    |
| FPR               | 0.28889  | 0.17391  | 0.09524   | 0.03226  | 0        |
| Omega             | 0.03234  | 0.07106  | 0.05146   | 0.00657  | 0.00096  |
| Hydropathy        | 3.09259  | 2.72899  | 3.08466   | 2.64839  | 2.35     |
| Phase Plot Region | 2        | 3        | 2         | 3        | 4        |

#### Table S1. Sequence parameters for IDP constructs.

The CIDER server <sup>1</sup> was used to calculate most parameters, including those required for the Das-Pappu Plot <sup>2</sup>; SCD was calculated as described <sup>3</sup>.

N: Number of residues

**f**-: Fraction of negative residues

f+: Fraction of positive residues

FCR: Fraction of charged residues

NCPR: Net charge per residue

**Kappa**:  $\kappa$  is a charge patterning parameter <sup>2</sup>. Highly mixed charged sequences approach  $\kappa = 0$ , while highly segregated charged sequences approach  $\kappa = 1$ .

**SCD**: Sequence charge decoration <sup>3</sup>. Well-mixed charged sequences approach SCD = 0, whereas highly segregated charged sequences show large values of SCD.

**FPR**: Fraction of proline residues (not a parameter provided by CIDER, but included here for relevance) **Omega**:  $\Omega$  is a charge/proline patterning parameter <sup>4</sup>. This parameter is similar to  $\kappa$ , but also incorporates proline residues. If prolines and charged residues are well mixed along a sequence (with respect to other amino acids), there will be a low  $\Omega$  value. If proline/charged residues are highly segregated,  $\Omega$  will approach 1.

**Hydropathy**: Based on the Kyte-Doolittle scale <sup>5</sup>, normalized from 0 (least hydrophobic) to 9 (most hydrophobic).

Phase Plot Region: Location on the Das-Pappu phase plot this sequence falls Phase Plot Annotation:

1: Weak polyampholytes and polyelectrolytes (Globules & Tadpoles)

2: Boundary region (Janus sequences)

3: Strong polyampholytes

4: Strong negatively charged polyelectrolytes

5: Strong positively charged polyelectrolytes

|           |     | Net    |              |                       |                              |                   |
|-----------|-----|--------|--------------|-----------------------|------------------------------|-------------------|
| IDP       | Ν   | charge | $R_h$ (coil) | R <sub>h</sub> (PPII) | R <sub>h</sub> (PPII charge) | f <sub>PPII</sub> |
| Aap-PGR   | 135 | -7     | 25.64        | 38.50                 | 37.84                        | 0.5350            |
| SasG-PGR  | 69  | +7     | 18.27        | 24.56                 | 24.43                        | 0.4761            |
| Aap-Arpts | 189 | -29    | 30.38        | 41.26                 | 44.06                        | 0.4190            |
| SdrC-SD   | 62  | -16    | 17.31        | 20.64                 | 22.15                        | 0.3294            |
| SD-30mer  | 30  | -15    | 12.01        | 13.45                 | 15.16                        | 0.2700            |

Table S2. Calculated and predicted parameters of IDP constructs.

The number of residues is listed in the N column.  $R_h$  is the predicted hydrodynamic radius (in Å) assuming complete random coil ( $R_h$  (coil)), considering intrinsic propensities for the polyproline type-II helix backbone conformation ( $R_h$  (PPII)) or contributions from both PPII propensity and the net charge ( $R_h$  (PPII charge)). The predicted fraction of PPII ( $f_{PPII}$ ) refers to the number of residues predicted to be in the PPII conformation divided by the total number of residues. All parameters were calculated using a program based on Tomasso, et al. <sup>6</sup>. Net charge contributions to the  $R_h$  were established empirically in English, et al. <sup>7</sup>

**Table S3. Sequence-based parameters of IDP dataset.** The dataset is reproduced from Tomasso, et al. <sup>6</sup>. Parameters listed here were calculated using a program provided by Steven Whitten, based on Tomasso, et al. <sup>6</sup>. Shaded IDPs are from the current study. IDPs are sorted by descending  $f_{PPII}$ .

|                |     | Net    | Rh     | Rh     | Rh            | $R_{h}^{a}$     |                          |
|----------------|-----|--------|--------|--------|---------------|-----------------|--------------------------|
| IDP            | Ν   | charge | (coil) | (PPII) | (PPII charge) | (experimental)  | <i>f</i> <sub>PPII</sub> |
| Aap-PGR        | 135 | -7     | 25.64  | 38.50  | 37.84         | 37.06           | 0.5350                   |
| p53(1-93)      | 93  | -15    | 21.24  | 29.51  | 30.56         | 32.4            | 0.4890                   |
| SasG-PGR       | 69  | +7     | 18.27  | 24.56  | 24.43         | 24.8            | 0.4761                   |
| p53(1-93) ALA- | 93  | -15    | 21.24  | 28.66  | 29.70         | 30.4            | 0.4581                   |
| p53 TAD        | 73  | -14    | 18.80  | 24.79  | 25.84         | 23.8            | 0.4500                   |
| Aap-Arpts      | 189 | -29    | 30.38  | 41.26  | 44.06         | 40.8            | 0.4190                   |
| Securin        | 202 | -1     | 31.41  | 42.57  | 40.45         | 39.7            | 0.4130                   |
| PDE-γ          | 87  | +4     | 20.54  | 26.51  | 25.70         | 24.8            | 0.4122                   |
| Cad136         | 136 | +9     | 25.73  | 33.77  | 33.45         | 28.1            | 0.4025                   |
| HIF1-α-403     | 202 | -29    | 31.41  | 42.13  | 44.86         | 44.3            | 0.4024                   |
| Tau-K45        | 198 | +19    | 31.10  | 41.52  | 42.53         | 45              | 0.3988                   |
| HIF1-α-530     | 170 | -10    | 28.80  | 37.81  | 37.44         | 38.3            | 0.3899                   |
| Fos-AD         | 168 | -16    | 28.62  | 37.17  | 37.84         | 35              | 0.3783                   |
| ShB-C          | 146 | -4     | 26.67  | 34.32  | 33.06         | 32.9            | 0.3764                   |
| α-synuclein    | 140 | -9     | 26.11  | 33.47  | 33.12         | 28.2            | 0.3744                   |
| Mlph(147-403)  | 260 | -28    | 35.68  | 47.00  | 49.24         | 49              | 0.3703                   |
| CFTR-R-region  | 189 | -5     | 30.38  | 39.18  | 37.82         | 32              | 0.3644                   |
| p57-ID         | 73  | -6     | 18.80  | 23.14  | 22.80         | 24              | 0.3636                   |
| prothymosin-α  | 110 | -43    | 23.12  | 29.02  | 34.77         | 33.7            | 0.3633                   |
| LJIDP1         | 94  | +4     | 21.36  | 26.46  | 25.59         | 24.52           | 0.3565                   |
| Mlph(147-240)  | 97  | -15    | 21.70  | 26.85  | 27.86         | 28              | 0.3528                   |
| SNAP25         | 206 | -14    | 31.73  | 40.60  | 40.70         | 39.7            | 0.3513                   |
| Hdm2-ABD       | 97  | -29    | 21.70  | 26.47  | 29.91         | 25.7            | 0.3345                   |
| SdrC-SD        | 62  | -16    | 17.31  | 20.64  | 22.15         | 21.1            | 0.3294                   |
| Vmw65          | 89  | -19    | 20.78  | 25.13  | 26.90         | 28              | 0.3278                   |
| p53(1-93) PRO- | 93  | -15    | 21.24  | 24.93  | 25.97         | 27.4            | 0.2832                   |
| SD-30mer       | 30  | -15    | 12.01  | 13.45  | 15.16         | ND <sup>b</sup> | 0.2700                   |

<sup>a</sup> Reported in Å. Values in gray cells were as determined in this manuscript or <sup>8</sup>; values in white cells are reproduced from <sup>6</sup>.

<sup>b</sup> ND, not determined.

**Table S4. The sequence of IDPs used in PPII and**  $R_h$  **predictions.** IDP sequences (other than those from the current study - shaded) are from Tomasso, et al. supplementary material <sup>6</sup>.

| IDP            | Sequence                                                                                                                                                                                                                                                                                 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p53(1-93)      | MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLS<br>PDDIEQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSW<br>PL                                                                                                                                                                                    |
| p53(1-93) ALA- | MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQGMDDLMLS<br>PDDIEQWFTEDPGPDEGPRMPEGGPPVGPGPGGPTPGGPGPGPS<br>WPL                                                                                                                                                                                    |
| p53(1-93) PRO- | MEEGQSDGSVEGGLSQETFSDLWKLLGENNVLSGLGSQAMDDLML<br>SGDDIEQWFTEDGGGDEAGRMGEAAGGVAGAGAAGTGAAGAGAG<br>SWGL                                                                                                                                                                                    |
| p53 TAD        | MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLS<br>PDDIEQWFTEDPGPDEAPRMPEAAPRV                                                                                                                                                                                                            |
| Vmw65          | GSAGHTRRLSTAPPTDVSLGDELHLDGEDVAMAHADALDDFDLDML<br>GDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDALGIDEYGG                                                                                                                                                                                            |
| Hdm2-ABD       | ERSSSSESTGTPSNPDLDAGVSEHSGDWLDQDSVSDQFSVEFEVE<br>SLDSEDYSLSEEGQELSDEDDEVYQVTVYQAGESDTDSFEEDPEIS<br>LADYWK                                                                                                                                                                                |
| prothymosin-α  | MSDAAVDTSSEITTKDLKEKKEVVEEAENGRDAPANGNANEENGEQ<br>EADNEVDEEEEEGGEEEEEEEGDGEEEDGDEDEEAESATGKRAA<br>EDDEDDDVDTKKQKTDEDD                                                                                                                                                                    |
| HIF1-α-403     | PAAGDTIISLDFGSNDTETDDQQLEEVPLYNDVMLPSPNEKLQNINLA<br>MSPLPTAETPKPLRSSADPALNQEVALKLEPNPESLELSFTMPQIQD<br>QTPSPSDGSTRQSSPEPNSPSEYCFYVDSDMVNEFKLELVEKLFAE<br>DTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLRSFDQLSPLESSSAS<br>PESASPQSTVTVFQ                                                               |
| Fos-AD         | GSHMSVASLDLTGGLPEVATPESEEAFTLPLLNDPEPKPSVEPVKSI<br>SSMELKTEPFDDFLFPASSRPSGSETARSVPDMDLSGSFYAADWEP<br>LHSGSLGMGPMATELEPLCTPVVTCTPSCTAYTSSFVFTYPEADSFP<br>SCAAAHRKGSSSNEPSSDSLSSPTLLAL                                                                                                     |
| Mlph(147-240)  | RLQGGGGSEPSLEEGNGDSEQTDEDGDLDTEARDQPLNSKKKKRL<br>LSFRDVDFEEDSDHLVQPCSQTLGLSSVPESAHSLQSLSGEPYSED<br>TTSLEP                                                                                                                                                                                |
| Tau-K45        | MSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSR<br>LQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQS<br>KCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGG<br>QVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENA<br>KAKTDHGAEIVY                                                                   |
| Mlph(147-403)  | RLQGGGGSEPSLEEGNGDSEQTDEDGDLDTEARDQPLNSKKKKRL<br>LSFRDVDFEEDSDHLVQPCSQTLGLSSVPESAHSLQSLSGEPYSED<br>TTSLEPEGLEETGARALGCRPSPEVQPCSPLPSGEDAHAELDSPAA<br>SCKSAFGTTAMPGTDDVRGKHLPSQYLADVDTSDEDSIQGPRAASQ<br>HSKRRARTVPETQILELNKRMSAVEHLLVHLENTVLPPSAQEPTVET<br>HPSADTEEETLRRRLEELTSNISGSSTSSE |
| p57-ID         | VRTSACRSLFGPVDHEELSRELQARLAELNAEDQNRWDYDFQQDM<br>PLRGPGRLQWTEVDSDSVPAFYRETVQV                                                                                                                                                                                                            |
| PDE-γ          | MNLEPPKAEIRSATRVMGGPVTPRKGPPKFKQRQTRQFKSKPPKK<br>GVQGFGDDIPGMEGLGTDITVICPWEAFNHLELHELAQYGII                                                                                                                                                                                              |

| LJIDP1        | MARSFTNIKAISALVAEEFSNSLARRGYAATAQSAGRVGASMSGKM<br>GSTKSGEEKAAAREKVSWVPDPVTGYYKPENIKEIDVAELRSAVLGK |
|---------------|---------------------------------------------------------------------------------------------------|
|               | N                                                                                                 |
| Cad136        | RLEQYTSAVVGNKAAKPAKPAASDLPVPAEGVRNIKSMWEKGNVFS                                                    |
|               | SPGGTGTPNKETAGLKVGVSSRINEWLTKTPEGNKSPAPKPSDLRP                                                    |
|               | GDVSGKRNLWEKQSVEKPAASSSKVTATGKKSETNGLRQFEKEP                                                      |
| α-synuclein   | MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTK                                                     |
|               | EGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAA                                                    |
|               | TGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDY                                                     |
|               | EPEA                                                                                              |
| CFTR-R-region | GAMESAERRNSILTETLHRFSLEGDAPVSWTETKKQSFKQTGEFGE                                                    |
|               | KRKNSILNPINSIRKFSIVQKTPLQMNGIEEDSDEPLERRLSLVPDSEQ                                                 |
|               | GEAILPRISVISTGPTLQARRRQSVLNLMTHSVNQGQNIHRKTTASTR                                                  |
|               | KVSLAPQANLTELDIYSRRLSQETGLEISEEINEEDLKECLFDDME                                                    |
| SNAP25        | MAEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIR                                                     |
|               | TLVMLDEQGEQLERIEEGMDQINKDMKEAEKNLTDLGKFCGLCVCP                                                    |
|               | CNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISGGFIRR                                                     |
|               | VTNDARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIME                                                   |
|               | KADSNKTRIDEANQRATKMLGSG                                                                           |
| ShB-C         | MTLGQHMKKSSLSESSSDMMDLDDGVESTPGLTETHPGRSAVAPF                                                     |
|               | LGAQQQQQPVASSLSMSIDKQLQHPLQQLTQTQLYQQQQQQQ                                                        |
|               | QQQNGFKQQQQQTQQQLQQQQSHTINASAAAATSGSGSSGLTMR                                                      |
|               | HNNALAVSIETDV                                                                                     |
| HIF1-α-530    | NEFKLELVEKLFAEDTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLR                                                   |
|               | SFDQLSPLESSSASPESASPQSTVTVFQQTQIQEPTANATTTTATTD                                                   |
|               | ELKTVTKDRMEDIKILIASPSPTHIHKETTSATSSPYRDTQSRTASPNR                                                 |
|               | AGKGVIEQTEKSHPRSPNVLSVALSQR                                                                       |
| Securin       | MATLIYVDKENGEPGTRVVAKDGLKLGSGPSIKALDGRSQVSTPRF                                                    |
|               | GKTFDAPPALPKATRKALGTVNRATEKSVKTKGPLKQKQPSFSAKK                                                    |
|               | MTEKTVKAKSSVPASDDAYPEIEKFFPFNPLDFESFDLPEEHQIAHLP                                                  |
|               | LSGVPLMILDEERELEKLFQLGPPSPVKMPSPPWESNLLQSPSSILS                                                   |
|               | TLDVELPPVCCDIDI                                                                                   |
| Aap-PGR       | AEPGKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAEP                                                     |
|               | GKPAEPGKPAEPGKPAEPGTPAEPGTPAEPGKPAEPGTPAEPGKP                                                     |
|               | AEPGTPAEPGKPAESGKPVEPGTPAQSGAPEQPNRSMHSTDNKNQ                                                     |
| SasG-PGR      | PKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSMD                                                     |
|               | KNDKVKKSKIAKESVANQEKKRAE                                                                          |
| Aap-Arpts     | NNEAPQMSSTLQAEEGSNAEAPQSEPTKAEEGGNAEAAQSEPTKA                                                     |
|               | EEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEEGSNVKAAQSEP                                                     |
|               | TKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEAAQ                                                     |
|               | SEPTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAE                                                     |
|               | APNVPTIKA                                                                                         |
| SdrC-SD       | SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                          |
|               | PAKPMSTVKDQHKTAKA                                                                                 |
| SD-30mer      | SDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                    |

**Table S5: The sequence of low-complexity regions from Staphylococcal CWA proteins from Table 5.** Sequences start at the beginning of the consensus LCR region identified by the PlaToLoCo server <sup>9</sup> and extend through the sequence immediately upstream of the LPXTG sortase motif. See Materials and Methods for further details.

| Protein                   | Sequence                                                                                                                                                                   |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SD-rich L                 | CRs                                                                                                                                                                        |
| SdrC                      | TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                                                                                    |
| SdrD                      | TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                                                                                    |
| SdrE                      | TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                                                                                    |
| SdrF<br>( <i>S. epi</i> ) | TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                                                                                    |
| SdrG<br>( <i>S. epi</i> ) | TSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD                                                                                                                                    |
| Pls                       | DSDADSDSDADSDSDADSDSDADSDSDADSDSDSDSDSD                                                                                                                                    |
| ClfA                      | VPEQPDEPGEIEPIPEDSDSDPGSDSGSDSNSDSGSDSGSDSTSDSGSDSASDS<br>DSASDSDSASDSDSDSDSDSDSDSDSDSDSDS                                                                                 |
| ClfB                      | VDPEPSPDPEPEPTPDPEPSPDPEPEPSPDPDPDSDSDSDSGSDSDSGSDSDSE<br>SDSDSDSDSDSDSDSDSSDSDS                                                                                           |
| SesJ<br>(S. epi)          | FEDSESDSSSESESDSESHSDSESHSDSESTSESDSESHSDSESTSESDSESHS<br>DSESDSDSESTSESDSESHSDSESDSDSESTSESDSESHSDSESHSDSESTSES<br>DSESHSDSESDSDSESTSESDSESHSDSESHSDSESTSESDSESHSDSESDSDS |

|                  | ESTSESDSESHSDSESDSDSESTSESDSESHSDSESDSDSESTSESGSESHSNS<br>E |
|------------------|-------------------------------------------------------------|
| Pro-rich         | LCRs                                                        |
| Aap <sup>a</sup> | PTKAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAEPGKPAEP      |
| (S. epi)         | GKPAEPGKPAEPGTPAEPGTPAEPGKPAEPGTPAEPGKPAEPGTPAEPGKPAES      |
|                  | GKPVEPGTPAQSGAPEQPNRSMHSTDNKNQ                              |
| SasG             | PKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSMDKNDKVKKS       |
|                  | KIAKESVANQEKKRAE                                            |
| CNA              | PEKPNKPIYPEKPKDKTPPNKPDHSNKVRPTPPDEPSKVDKVDQPKDNKTKPENP     |
|                  | LKE                                                         |
| FnbpA            | PPIVPPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPA   |
|                  | EPGKPVPPAKEEPKKPSKPVEQGKVVTPVIEINEKVKAVAPTKKPQSKKSE         |
| FnbpB            | PPIVPPTPPTPEVPSEPETPTPPTPEVPSEPETPTPPTPEVPTEPGKPIPPAKEEPK   |
|                  | KPSKPVEQGKVVTPVIEINEKVKAVVPTKKAQSKKSE                       |
| Other LC         | Rs                                                          |
| SraP             | MSGSQSISDSTSTSMSGSTSTSESNSMHPSDSMSMHHTHSTSTSRLSSEATTST      |
| (SasA)           | SESQSTLSATSEVTKHNGTPAQSEKR                                  |
| FmtB             | NNKATQNDGANASPATVSNGSNSANQDMLNVTNTDDHQAKTKSAQQGKVNKAK       |
| (SasB)           | QQAKT                                                       |
| SasC             | DTAIGQIDQDRSNAQVDKTASLNLQTIHDLDVHPIKKPDAEKTINDDLARVTALVQN   |
|                  | YRKVSDRNKADALKAITALKLQMDEELKTARTNADVDAVLKRFNVALSDIEAVITEK   |
|                  | ENSLLRIDNIAQQTYAKFKAIATPEQLAKVKVLIDQYVADGNRMIDEDATLNDIKQH   |
|                  | TQFIVDEILAIKLPAEATKVSPKEIQPAPKVCTPIKKEETHESRKVEKE           |

<sup>a</sup> The Aap sequence listed here is based on the consensus identification of the LCR region by the PlaToLoCo server <sup>9</sup>, as for all other sequences in Table 5. This sequence differs slightly from the Aap construct used for experimental approaches (compare to Figure 1).

### References

- 1. Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. *Biophys J* **112**, 16-21 (2017).
- Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. *Proc Natl Acad Sci U S A* 110, 13392-13397 (2013).
- 3. Sawle L, Ghosh K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. *The Journal of chemical physics* **143**, 085101 (2015).
- 4. Martin EW, Holehouse AS, Grace CR, Hughes A, Pappu RV, Mittag T. Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation. *J Am Chem Soc* **138**, 15323-15335 (2016).
- 5. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. *J Mol Biol* **157**, 105-132 (1982).
- 6. Tomasso ME, Tarver MJ, Devarajan D, Whitten ST. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities. *PLoS computational biology* **12**, e1004686 (2016).

- 7. English LR, Tilton EC, Ricard BJ, Whitten ST. Intrinsic alpha helix propensities compact hydrodynamic radii in intrinsically disordered proteins. *Proteins* **85**, 296-311 (2017).
- 8. Yarawsky AE, English LR, Whitten ST, Herr AB. The Proline/Glycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. *J Mol Biol* **429**, 261-279 (2017).
- 9. Jarnot P, *et al.* PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. *Nucleic Acids Res* **48**, W77-W84 (2020).