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Web Appendix for
Sample size calculation for randomized trials via inverse probability of response weighting when

outcome data are missing at random
Linda J Harrison and Rui Wang

WEB APPENDIX A: DERIVATION OF EQUATIONS (1), (2), (5), (10), (11) AND (12), AND
DEFINITION OF �C-KNOWN AND �C-APPROX

Derivation of Equation (1)
Let Yi represent the outcome for participant i and Zi indicate the randomized intervention, such that,

Zi =

{

1 if participant i is randomized to the intervention group
0 if participant i is randomized to the control group

Suppose that g {E(Yi|Zi = 1)
}

= g(�1) = �1 and g
{

E(Yi|Zi = 0)
}

= g(�0) = �0, where �1 is the population mean of the
outcome Yi under intervention and �0 is the population mean of the outcome Yi under control. Define � =

(

�1, �0
)⊺ and consider

g to be the identity or logit function. An M-estimator �̂1 solves,
n
∑

i=1
ui(Yi, Zi;�) = 0

Taking,
ui(Yi, Zi;�) =

(

Zi(Yi − �1)
(1 −Zi)(Yi − �0)

)

we will obtain the following estimates of the mean of the outcome in the two groups of the randomized trial:

�̂1 =

{ n
∑

i=1
Zi

}−1{ n
∑

i=1
ZiYi

}

, �̂0 =

{ n
∑

i=1
(1 −Zi)

}−1{ n
∑

i=1
(1 −Zi)Yi

}

Assuming our primary interest is the contrast between randomized intervention groups defined by g(�1)−g(�0) = �1−�0, from
M-estimation theory we know,

var(�̂) = n−1−1(−1)⊺

where
 = E

(

−
)ui
)�⊺

)

= E

(

Zi
)�1
)�1

0

0 (1 −Zi)
)�0
)�0

)

 = E
(

uiu
⊺
i
)

= E
(

Zi(Yi − �1)2 0
0 (1 −Zi)(Yi − �0)2

)

Therefore,

var{(�̂1, �̂0)} = 1
n

⎛

⎜

⎜

⎜

⎝

�−1E{(Yi − �1)2|Zi = 1}
(

)�1
)�1

)−2
0

0 (1 − �)−1E{(Yi − �0)2|Zi = 0}
(

)�0
)�0

)−2

⎞

⎟

⎟

⎟

⎠

leading to

var(�̂1 − �̂0) = n−1
[

�−1E{(Yi − �1)2|Zi = 1}
(

)�1
)�1

)−2

+ (1 − �)−1E{(Yi − �0)2|Zi = 0}
(

)�0
)�0

)−2
]

where � = E(Zi) = P (Zi = 1).
When Yi is a continuous outcome with E{(Yi − �1)2|Zi = 1} = E{(Yi − �0)2|Zi = 0} = �2y and g is the identity function,

var(�̂1 − �̂0) = var(�̂1 − �̂0) = n−1 {�(1 − �)}−1 �2y
When Yi is a binary outcome and g is the identity function,

var(�̂1 − �̂0) = var(�̂1 − �̂0) = n−1
{

�−1�1(1 − �1) + (1 − �)−1�0(1 − �0)
}
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When Yi is a binary outcome and g is the logit function,
var{logit(�̂1) − logit(�̂0)} = var(�̂1 − �̂0) = n−1

[

{��1(1 − �1)}−1 + {(1 − �)�0(1 − �0)}−1
]

The power of the Wald test for the contrast of primary interest is approximated by,

1 − � = Φ

[

g(�1) − g(�0)
√var{g(�̂1) − g(�̂0)}

− z1−�∕2

]

Therefore, the number of participants needed to be observed is,

ncomplete =
�
(

z1−� + z1−�∕2
)2

{

g(�1) − g(�0)
}2

where

� =

⎧

⎪

⎨

⎪

⎩

{�(1 − �)}−1 �2y if Yi continuous and g identity
�−1�1(1 − �1) + (1 − �)−1�0(1 − �0) if Yi binary and g identity
{��1(1 − �1)}−1 + {(1 − �)�0(1 − �0)}−1 if Yi binary and g logit

These three sample size formulas have previously been derived; see for example Chow et al2 Sections 3.2, 4.2 and 4.6. The
formulas are rederived in this Web Appendix to unify notation within the M-estimation framework.
Derivation of Equation (2)
Define Ri to be an indicator of whether the outcome Yi is observed, as follows,

Ri =

{

1 if Yi is observed
0 if Yi is missing

The naive complete-case analysis leads to the following estimating equations,
n
∑

i=1
ui(Yi, Ri, Zi;�) = 0

ui(Yi, Ri, Zi;�) =
(

RiZi(Yi − �1)
Ri(1 −Zi)(Yi − �0)

)

and estimators of the mean of the outcome in the two groups of the randomized trial, as follows,

�̂1 =

{ n
∑

i=1
RiZi

}−1{ n
∑

i=1
RiZiYi

}

, �̂0 =

{ n
∑

i=1
Ri(1 −Zi)

}−1{ n
∑

i=1
Ri(1 −Zi)Yi

}

Again, from M-estimation theory,
var(�̂) = n−1−1(−1)⊺

where
 = E

(

−
)ui
)�⊺

)

= E

(

RiZi
)�1
)�1

0

0 Ri(1 −Zi)
)�0
)�0

)

 = E
(

uiu
⊺
i
)

= E
(

RiZi(Yi − �1)2 0
0 Ri(1 −Zi)(Yi − �0)2

)

Assuming the probability of the outcome being observed is the same in the intervention and control group, we have E(RiZi) =
E(Ri|Zi = 1)P (Zi = 1) = �� and E{Ri(1 −Zi)} = E(Ri|Zi = 0)P (Zi = 1) = �(1 − �) where � = P (Ri = 1) = E(Ri|Zi =
1) = E(Ri|Zi = 0). Therefore,

var(�̂1 − �̂0) = n−1
[

�−2�−1E{Ri(Yi − �1)2|Zi = 1}
(

)�1
)�1

)−2

+ �−2(1 − �)−1E{Ri(Yi − �0)2|Zi = 0}
(

)�0
)�0

)−2
]

Further assumingRi ⟂⟂ Yi|Zi, we have E{Ri(Yi−�1)2|Zi = 1} = E(Ri|Zi = 1)E{(Yi−�1)2|Zi = 1} = �E{(Yi−�1)2|Zi = 1}
and E{Ri(Yi − �0)2|Zi = 0} = E(Ri|Zi = 0)E{(Yi − �0)2|Zi = 0} = �E{(Yi − �0)2|Zi = 0}, so

var(�̂1 − �̂0) = (n�)−1
[

�−1E{(Yi − �1)2|Zi = 1}
(

)�1
)�1

)−2

+ (1 − �)−1E{(Yi − �0)2|Zi = 0}
(

)�0
)�0

)−2
]
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The two assumptions imply Ri ⟂⟂ Zi and Ri ⟂⟂ Yi, so outcome data are missing completely at random (MCAR)3. Therefore,
the number of participants needed to be recruited is4,5,

nstandard =
�
(

z1−� + z1−�∕2
)2

�
{

g(�1) − g(�0)
}2
=
�standard

(

z1−� + z1−�∕2
)2

{

g(�1) − g(�0)
}2

where

�standard =
⎧

⎪

⎨

⎪

⎩

�−1 {�(1 − �)}−1 �2y if Yi continuous and g identity
�−1

{

�−1�1(1 − �1) + (1 − �)−1�0(1 − �0)
} if Yi binary and g identity

�−1
[

{��1(1 − �1)}−1 + {(1 − �)�0(1 − �0)}−1
] if Yi binary and g logit

Derivation of Equation (5)
Let Xi represent a vector of fully observed baseline covariates. Suppose that logit{P (Ri = 1|Xi, Zi = 1)} = logit(e1i) = X⊺

i �1and logit{P (Ri = 1|Xi, Zi = 0)} = logit(e0i) = X⊺
i �0. Now defining � = (

�1, �0, �1, �0
)⊺ and assuming the outcome Yi is

missing at random, i.e. Ri ⟂⟂ Yi|(Xi, Zi), leads to the following estimating equations,
n
∑

i=1
ui(Yi, Ri, Zi,Xi;�) = 0

ui(Yi, Ri, Zi,Xi;�) =

⎛

⎜

⎜

⎜

⎜

⎝

RiZie−11i (Yi − �1)
Ri(1 −Zi)e−10i (Yi − �0)

ZiXi(Ri − e1i)
(1 −Zi)Xi(Ri − e0i)

⎞

⎟

⎟

⎟

⎟

⎠

The latter two estimating equations follow from the score equations, ∑n
i=1D

⊺
1iV

−1
1i (Ri − e1i) and

∑n
i=1D

⊺
0iV

−1
0i (Ri − e0i) from

logistic regression models where, D1i =
)e1i
)�1

= e1i(1 − e1i)ZiX
⊺
i , V1i = e1i(1 − e1i),D0i =

)e0i
)�0

= e0i(1 − e0i)(1 −Zi)X
⊺
i , V0i =

e0i(1 − e0i). The Hájek ratio estimators of the mean of the outcome in the two groups of the randomized trial are, as follows,

�̂1 =

{ n
∑

i=1
RiZiê

−1
1i

}−1{ n
∑

i=1
RiZiê

−1
1i Yi

}

, �̂0 =

{ n
∑

i=1
Ri(1 −Zi)ê−10i

}−1{ n
∑

i=1
Ri(1 −Zi)ê−10i Yi

}

Again, from M-estimation theory,
var(�̂) = n−1−1(−1)⊺

where = E
(

− )ui
)�⊺

)

and  = E
(

uiu
⊺
i
).

The expression for is:

E

⎛

⎜

⎜

⎜

⎜

⎝

RiZie−11i
)�1
)�1

0 RiZi(Yi − �1)e−11i (1 − e1i)X
⊺
i 0⊺

0 Ri(1 −Zi)e−10i
)�0
)�0

0⊺ Ri(1 −Zi)(Yi − �0)e−10i (1 − e0i)X
⊺
i

0 0 Zie1i(1 − e1i)XiX
⊺
i 0

0 0 0 (1 −Zi)e0i(1 − e0i)XiX
⊺
i

⎞

⎟

⎟

⎟

⎟

⎠

The expression for  is:

E
⎛

⎜

⎜

⎜

⎝

RiZie−21i (Yi − �1)
2 0 RiZi(Yi − �1)e−11i (Ri − e1i)X

⊺
i 0⊺

0 Ri(1 −Zi)e−20i (Yi − �0)
2 0⊺ Ri(1 −Zi)(Yi − �0)e−10i (Ri − e0i)X

⊺
i

RiZi(Yi − �1)e−11i (Ri − e1i)Xi 0 Zi(Ri − e1i)2XiX
⊺
i 0

0 Ri(1 −Zi)(Yi − �0)e−10i (Ri − e0i)Xi 0 (1 −Zi)(Ri − e0i)2XiX
⊺
i

⎞

⎟

⎟

⎟

⎠

Considering the parameters of interest, var{(�̂1, �̂0)} can be simplified to,

1
n

⎛

⎜

⎜

⎜

⎝

�−1
[

E{Rie−21i (Yi − �1)
2
|Zi = 1} − A

]

(

)�1
)�1

)−2
0

0 (1 − �)−1
[

E{Rie−20i (Yi − �0)
2
|Zi = 0} − B

]

(

)�0
)�0

)−2

⎞

⎟

⎟

⎟

⎠

where
A =E{Ri(Yi − �1)e−11i (1 − e1i)X

⊺
i |Zi = 1}

[

E{e1i(1 − e1i)XiX
⊺
i |Zi = 1}

]−1 E{Ri(Yi − �1)e−11i (1 − e1i)Xi|Zi = 1}
B =E{Ri(Yi − �0)e−10i (1 − e0i)X

⊺
i |Zi = 0}

[

E{e0i(1 − e0i)XiX
⊺
i |Zi = 0}

]−1 E{Ri(Yi − �0)e−10i (1 − e0i)Xi|Zi = 0}
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Therefore,

var{g(�̂1) − g(�̂0)} = n−1
(

�−1
[

E{Rie−21i (Yi − �1)
2
|Zi = 1} − A

]

(

)�1
)�1

)−2

+(1 − �)−1
[

E{Rie−20i (Yi − �0)
2
|Zi = 0} − B

]

(

)�0
)�0

)−2
)

= n−1
(

�−1
[

E{e−11i (Yi − �1)
2
|Zi = 1} − A

]

(

)�1
)�1

)−2

+(1 − �)−1
[

E{e−10i (Yi − �0)
2
|Zi = 0} − B

]

(

)�0
)�0

)−2
)

Derivation of Equation (10)
Let there be k = 1,… , K independent clusters each with i = 1,… , m participants. Let Yki represent the outcome in cluster k
for participant i and Zk indicate the randomized intervention for cluster k, such that,

Zk =

{

1 if cluster k is randomized to the intervention group
0 if cluster k is randomized to the control group

Suppose that g {E(Yki|Zk = 1)
}

= g(�1) = �1 and g
{

E(Yki|Zk = 0)
}

= g(�0) = �0, where �1 is the population mean of
the outcome Yki under intervention and �0 is the population mean of the outcome Yki under control. Define � =

(

�1, �0
)⊺ and

consider g to be the identity or logit function. Adopting a working independence correlation structure for estimating the means
in each randomized group, an M-estimator �̂1 solves,

K
∑

k=1
uk(Yki, Zk;�) = 0

with,

uk(Yki, Zk;�) =
(

Z⊺
k(Yk − �k)

(1 −Z⊺
k)(Yk − �k)

)

=

⎛

⎜

⎜

⎜

⎝

m
∑

i=1
Zk(Yki − �1)

m
∑

i=1
(1 −Zk)(Yki − �0)

⎞

⎟

⎟

⎟

⎠

where Z⊺
k = Zk1

⊺
m with 1m a vector of ones of length m, Yk = (Yk1,… , Ykm)⊺ the outcome vector for cluster k, and �k = �11m

if cluster k is randomized to intervention and �k = �01m if cluster k is randomized to control.
Assuming the true underlying correlation structure is exchangeable, from M-estimation theory we can derive,

var(�̂) = K−1−1(−1)⊺

where
 = E

(

−
)uk
)�⊺

)

= mE

(

Zk
)�1
)�1

0

0 (1 −Zk)
)�0
)�0

)

 = E
(

uku
⊺
k

)

=E

⎛

⎜

⎜

⎜

⎜

⎝

{ m
∑

i=1
Zk(Yki − �1)

}2

0

0
{ m
∑

i=1
(1 −Zk)(Yki − �0)

}2

⎞

⎟

⎟

⎟

⎟

⎠

=m{1 + (m − 1)�}
(

E{Zk(Yki − �1)2} 0
0 E{(1 −Zk)(Yki − �0)2}

)

with � = corr(Yki, Ykj|Zk = 1) = corr(Yki, Ykj|Zk = 0) for i ≠ j.
Therefore,

var{(�̂1, �̂0)} =(mK)−1{1 + (m − 1)�}
⎛

⎜

⎜

⎜

⎝

�−1E{(Yki − �1)2|Zk = 1}
(

)�1
)�1

)−2
0

0 (1 − �)−1E{(Yki − �0)2|Zk = 0}
(

)�0
)�0

)−2

⎞

⎟

⎟

⎟

⎠
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leading to

var(�̂1 − �̂0) = (mK)−1{1 + (m − 1)�}
[

�−1E{(Yki − �1)2|Zk = 1}
(

)�1
)�1

)−2

+ (1 − �)−1E{(Yki − �0)2|Zk = 0}
(

)�0
)�0

)−2
]

where � = E(Zk) = P (Zk = 1).
So, the number of participants needed to be observed is6,

nC =
�C

(

z1−� + z1−�∕2
)2

{

g(�1) − g(�0)
}2

where

�C =
⎧

⎪

⎨

⎪

⎩

{1 + (m − 1)�} {�(1 − �)}−1 �2y if Yki continuous and g identity
{1 + (m − 1)�}{�−1�1(1 − �1) + (1 − �)−1�0(1 − �0)} if Yki binary and g identity
{1 + (m − 1)�}

[

�{�1(1 − �1)}−1 + {(1 − �)�0(1 − �0)}−1
] if Yki binary and g logit

and for Yki continuous �2y = E
{

(Yki − �1)2|Zk = 1
}

= E
{

(Yki − �0)2|Zk = 0
}.

Derivation of Equation (11)
Define Rki to be an indicator of whether the outcome Yki is observed, as follows,

Rki =

{

1 if Yki is observed
0 if Yki is missing

The naive complete-case analysis leads to the following estimating equations,
K
∑

k=1
uk(Yki, Rki, Zk;�) = 0

uk(Yki, Rki, Zk;�) =
(

Z⊺
kRk(Yk − �k)

(1 −Z⊺
k)Rk(Yk − �k)

)

=

⎛

⎜

⎜

⎜

⎝

m
∑

i=1
RkiZk(Yki − �1)

m
∑

i=1
Rki(1 −Zk)(Yki − �0)

⎞

⎟

⎟

⎟

⎠

where Rk = diag(Rki).
Again, from M-estimation theory,

var(�̂) = K−1−1(−1)⊺

where
 = E

(

−
)uk
)�⊺

)

= mE

(

RkiZk
)�1
)�1

0

0 Rki(1 −Zk)
)�0
)�0

)

= m�

(

� )�1
)�1

0

0 (1 − �) )�0
)�0

)

 = E
(

uku
⊺
k

)

= E

⎛

⎜

⎜

⎜

⎜

⎝

{ m
∑

i=1
RkiZk(Yki − �1)

}2

0

0
{ m
∑

i=1
Rki(1 −Zk)(Yki − �0)

}2

⎞

⎟

⎟

⎟

⎟

⎠

= m�{1 + (m − 1)��}
(

�E{(Yki − �1)2|Zk = 1} 0
0 (1 − �)E{(Yki − �0)2|Zk = 0}

)

with � = E(Zi), � = corr(Yki, Ykj|Zk = 1) = corr(Yki, Ykj|Zk = 0), and assuming outcome data are MCAR, i.e. � = P (Rki =
1) = P (Rki = 1|Zk = 1) = P (Rki = 1|Zk = 0), Rki ⟂⟂ Yki and Rki ⟂⟂ Rkj for i ≠ j.
Therefore,

var(�̂1 − �̂0) = (mK�)−1{1 + (m − 1)��}
[

�−1E{(Yki − �1)2|Zk = 1}
(

)�1
)�1

)−2
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+ (1 − �)−1E{(Yki − �0)2|Zk = 0}
(

)�0
)�0

)−2
]

and, the number of participants needed to be recruited is,

nC-standard =
�C-standard

(

z1−� + z1−�∕2
)2

{

g(�1) − g(�0)
}2

where

�C-standard =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{�−1 + (m − 1)�} {�(1 − �)}−1 �2y if Yki continuous and g identity
{�−1 + (m − 1)�}{�−1�1(1 − �1) + (1 − �)−1�0(1 − �0)} if Yki binary and g identity
{�−1 + (m − 1)�}

[

{��1(1 − �1)}−1 + {(1 − �)�0(1 − �0)}−1
] if Yki binary and g logit

Derivation of Equation (12)
The estimating equations for the population means are,

K
∑

k=1

(

Z⊺
kRkW1k(Yk − �k)

(1 −Z⊺
k)RkW0k(Yk − �k)

)

=
K
∑

k=1

⎛

⎜

⎜

⎜

⎝

m
∑

i=1
ZkRkie−11ki(Yki − �1)

m
∑

i=1
(1 −Zk)Rkie−10ki(Yki − �0)

⎞

⎟

⎟

⎟

⎠

= 0

whereW1k = diag(e−11ki) with e1ki = P (Rki = 1|Xki, Zk = 1),W0k = diag(e−10ki) with e0ki = P (Rki = 1|Xki, Zk = 0), and Xki is
a vector of fully observed baseline covariates.
If we assume there is no clustering of missingness, e1ki and e0ki can be estimated by the following equations,

K
∑

k=1

m
∑

i=1

(

ZkXki(Rki − e1ki)
(1 −Zk)Xki(Rki − e0ki)

)

= 0

this leads to,

K
∑

k=1
uk(Yki, Rki, Zk,Xki;�) =

K
∑

k=1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m
∑

i=1
ZkRkie−11ki(Yki − �1)

m
∑

i=1
(1 −Zk)Rkie−10ki(Yki − �0)
m
∑

i=1
ZkXki(Rki − e1ki)

m
∑

i=1
(1 −Zk)Xki(Rki − e0ki)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0

From M-estimation theory,
var(�̂) = K−1−1(−1)⊺

where = E
(

− )uk
)�⊺

)

and  = E
(

uku
⊺
k

).
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Th

ee
xp
res

sio
nf

or


is:

m
E

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

R
ki
Z
ke
−
1
1k
i)�

1

)�
1

0
R
ki
Z
k(
Y k
i
−
� 1
)e
−
1
1k
i(1
−
e 1
ki
)X

⊺ ki
0⊺

0
R
ki
(1
−
Z
k)
e−
1
0k
i)�

0

)�
0

0⊺
R
ki
(1
−
Z
k)
(Y
ki
−
� 0
)e
−
1
0k
i(1
−
e 0
ki
)X

⊺ ki

0
0

Z
ke
1k
i(1
−
e 1
ki
)X

ki
X

⊺ ki
0

0
0

0
(1
−
Z
k)
e 0
ki
(1
−
e 0
ki
)X

ki
X

⊺ ki

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

Th
ee

xp
res

sio
nf

or

is:

m
E
⎛ ⎜ ⎜ ⎜ ⎝

R
ki
Z
ke
−
2
1k
i(Y

ki
−
� 1
)2
+
(m
−
1)
�Z

k(
Y k
i
−
� 1
)2

0
R
ki
Z
k(
Y k
i
−
� 1
)e
−
1
1k
i(R

i
−
e 1
ki
)X

⊺ ki
0⊺

0
R
ki
(1
−
Z
k)
e−
2
0k
i(Y

ki
−
� 0
)2
+
(m
−
1)
�(
1
−
Z
k)
(Y
ki
−
� 0
)2

0⊺
R
ki
(1
−
Z
k)
(Y
ki
−
� 0
)e
−
1
0k
i(R

ki
−
e 0
ki
)X

⊺ i
R
ki
Z
k(
Y k
i
−
� 1
)e
−
1
1k
i(R

ki
−
e 1
ki
)X

ki
0

Z
k(
R
ki
−
e 1
ki
)2
X
ki
X

⊺ ki
0

0
R
ki
(1
−
Z
k)
(Y
ki
−
� 0
)e
−
1
0k
i(R

ki
−
e 0
ki
)X

ki
0

(1
−
Z
k)
(R

ki
−
e 0
ki
)2
X
ki
X

⊺ ki

⎞ ⎟ ⎟ ⎟ ⎠

Co
nsi

der
ing

the
par

am
ete

rso
fin

ter
est

,va
r[(
�̂ 1
,�̂
0)
]c

an
be

sim
pli

fie
dt

o,
1 K
m

⎛ ⎜ ⎜ ⎜ ⎝

�−
1
[

E{
R
ki
e−
2
1k
i(Y

ki
−
� 1
)2
|
Z
k
=
1}
+
(m
−
1)
�E
{(
Y k
i
−
� 1
)2
|
Z
k
=
1}
−
A
]

(

)�
1

)�
1

)

−
2

0

0
(1
−
�)
−
1
[

E{
R
ki
e−
2
0k
i(Y

ki
−
� 0
)2
|
Z
k
=
0}
+
(m
−
1)
�E
{(
Y k
i
−
� 0
)2
|
Z
k
=
0}
−
B
]

(

)�
0

)�
0

)

−
2⎞ ⎟ ⎟ ⎟ ⎠

wh
ere

A
=
E{
R
ki
(Y
ki
−
� 1
)e
−
1
1k
i(1
−
e 1
ki
)X

⊺ ki
|
Z
k
=
1}

[

E{
e 1
ki
(1
−
e 1
ki
)X

ki
X

⊺ ki
|
Z
k
=
1}
]

−
1
E{
R
ki
(Y
ki
−
� 1
)e
−
1
1k
i(1
−
e 1
ki
)X

ki
|
Z
k
=
1}

B
=
E{
R
ki
(Y
ki
−
� 0
)e
−
1
0k
i(1
−
e 0
ki
)X

⊺ ki
|
Z
k
=
0}

[

E{
e 0
ki
(1
−
e 0
ki
)X

ki
X

⊺ ki
|
Z
k
=
0}
]

−
1
E{
R
ki
(Y
ki
−
� 0
)e
−
1
0k
i(1
−
e 0
ki
)X

ki
|
Z
k
=
0}
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Therefore,
var{g(�̂1) − g(�̂0)}

=(Km)−1
(

�−1
[

E{Rkie−21ki(Yki − �1)
2
|Zk = 1} + (m − 1)�E{(Yki − �1)2|Zk = 1} − A

]

(

)�1
)�1

)−2

+(1 − �)−1
[

E{Rkie−20ki(Yki − �0)
2
|Zk = 0} + (m − 1)�E{(Yki − �0)2|Zk = 0} − B

]

(

)�0
)�0

)−2
)

=(Km)−1
(

�−1
[

E{e−11ki(Yki − �1)
2
|Zk = 1} + (m − 1)�E{(Yki − �1)2|Zk = 1} − A

]

(

)�1
)�1

)−2

+(1 − �)−1
[

E{e−10ki(Yki − �0)
2
|Zk = 0} + (m − 1)�E{(Yki − �0)2|Zk = 0} − B

]

(

)�0
)�0

)−2
)

Definition of �C-known and �C-approx
If the variance reduction from estimating the IPRWs from the data is ignored for CRTs, we arrive at the following definition for
�C-known

�C-known =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�−1E{e−11ki(Yki − �1)
2
|Zk = 1}

+(1 − �)−1E{e−10ki(Yki − �0)
2
|Zk = 0}

+(m − 1)� {�(1 − �)}−1 �2y if Yki continuous and g identity
�−1E{e−11ki(Yki − �1)

2
|Zk = 1}

+(1 − �)−1E{e−10ki(Yki − �0)
2
|Zk = 0}

+(m − 1)�
{

�−1�1(1 − �1) + (1 − �)−1�0(1 − �0)
} if Yki binary and g identity

�−1E{e−11ki(Yki − �1)
2
|Zk = 1}

{

�1(1 − �1)
}−2

+(1 − �)−1E{e−10ki(Yki − �0)
2
|Zk = 0}

{

�0(1 − �0)
}−2

+(m − 1)�
[

{

��1(1 − �1)
}−1 +

{

(1 − �)−1�0(1 − �0)
}−1

]

if Yki binary and g logit
Based on a similar approach to Shook-Sa and Hudgens7 in the context of confounding adjustment by weighting, �C-approx is
defined as follows:

�C-approx =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�2y
[

�−1E(e−11i ) + (1 − �)
−1E(e−10ki) + (m − 1)� {�(1 − �)}

−1] if Yi continuous and g identity
�−1�1(1 − �1)

{

E(e−11ki) + (m − 1)�
}

+(1 − �)−1�0(1 − �0)
{

E(e−10ki) + (m − 1)�
} if Yi binary and g identity

{��1(1 − �1)}−1
{

E(e−11ki) + (m − 1)�
}

+{(1 − �)�0(1 − �0)}−1
{

E(e−10ki) + (m − 1)�
} if Yi binary and g logit
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WEB APPENDIX B: DERIVATION OF EQUATION (14) AND (18), APPROXIMATION OF
var(�̂1 − �̂0) UNDER EQUATION (5) AND DERIVATION OF EQUATION (19) AND (21), AND
DEFINITIONS OF COMPONENTS IN EQUATIONS (22) AND (23)

Derivation of Equation (14)
In the scenario where the covariates consist of one baseline categorical variable with c = 1,… , C categories, we can write

X⊺
i =

(

I(Xi = 1),… , I(Xi = C)
)

, �1 =
(

�11,… , �C1
)⊺ , �0 =

(

�10,… , �C0
)⊺

E{e−11i (Yi − �1)
2
|Zi = 1} = EXi

[

EYi{(Yi − �1)
2
|Xi = c, Zi = 1}

expit(�c1)
]

=
C
∑

c=1

�c{�2c1 + (�c1 − �1)
2}

expit(�c1)

E{e−10i (Yi − �0)
2
|Zi = 0} = EXi

[

EYi{(Yi − �0)
2
|Xi = c, Zi = 0}

expit(�c0)
]

=
C
∑

c=1

�c{�2c0 + (�c0 − �0)
2}

expit(�c0)

where �c = P (Xi = c) = P (Xi = c|Zi = 1) = P (Xi = c|Zi = 0), �2c1 = var(Yi|Xi = c, Zi = 1), �2c0 = var(Yi|Xi = c, Zi = 0),
�c1 = E(Yi|Xi = c, Zi = 1) and �c0 = E(Yi|Xi = c, Zi = 0). Note that, if Yi is binary, �2c1 = �c1(1−�c1) and �2c0 = �c0(1−�c0).We have assumed Xi is a fully observed covariate that is measured at baseline.
Furthermore,

E
{

Ri(Yi − �1)e−11i (1 − e1i)I(Xi = c)|Zi = 1
}

= �c{1 − expit(�c1)}(�c1 − �1)
E
{

Ri(Yi − �1)e−10i (1 − e0i)I(Xi = c)|Zi = 0
}

= �c{1 − expit(�c0)}(�c0 − �0)
E{e1i(1 − e1i)I(Xi = c)|Zi = 1} = �cexpit(�c1){1 − expit(�c1)}
E{e0i(1 − e0i)I(Xi = c)|Zi = 0} = �cexpit(�c0){1 − expit(�c0)}

Therefore,
E{e−11i (Yi − �1)

2
|Zi = 1} − A

=
C
∑

c=1

�c{�2c1 + (�c1 − �1)
2}

expit(�c1) −
C
∑

c=1

�c(�c1 − �1)2{1 − expit(�c1)}
expit(�c1)

=
C
∑

c=1
�c

{

�2c1
expit(�c1) + (�c1 − �1)

2

}

Similarly,
E{e−10i (Yi − �0)

2
|Zi = 0} − B

=
C
∑

c=1

�c{�2c0 + (�c0 − �0)
2}

expit(�c0) −
C
∑

c=1

�c(�c0 − �0)2{1 − expit(�c0)}
expit(�c0)

=
C
∑

c=1
�c

{

�2c0
expit(�c0) + (�c0 − �0)

2

}

So,

var{g(�̂1) − g(�̂0)} = n−1
C
∑

c=1

[

�−1�c

{

�2c1
expit(�c1) + (�c1 − �1)

2

}

(

)�1
)�1

)−2

+(1 − �)−1�c

{

�2c0
expit(�c0) + (�c0 − �0)

2

}

(

)�0
)�0

)−2
]
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Derivation of Equation (18)
For a single categorical variable, E(e−11i ) =

∑

c �cexpit(�c1)−1 and E(e−10i ) =
∑

c �cexpit(�c0)−1. Plugging these expressions into
�approx in Section 2.2 gives the result in Equation (18).
Approximation of var(�̂1 − �̂0) under Equation (5) and derivation of Equation (19)
In the scenario where Xi = (1, Xi)⊺ and (Yi, Xi)|Zi has a bivariate normal distribution, we can write

X⊺
i = (1, Xi), �1 = (�01, �11)⊺, �0 = (�00, �10)⊺

{(Xi, Yi)|Zi = 1} ∼ N
((

�x
�1

)

,
(

�2x ��x�y
��x�y �2y

))

{(Xi, Yi)|Zi = 0} ∼ N
((

�x
�0

)

,
(

�2x ��x�y
��x�y �2y

))

E(Yi|Xi = xi, Zi = 1) = �1 +
��y
�x
(xi − �x), E(Yi|Xi = xi, Zi = 0) = �0 +

��y
�x
(xi − �x)

var(Yi|Xi = xi, Zi = 1) = var(Yi|Xi = xi, Zi = 0) = �2y (1 − �
2)

We have assumedXi is a fully observed covariate that is measured at baseline, so �x = E(Xi) = E(Xi|Zi = 1) = E(Xi|Zi = 0).
Using moment generating functions,

E{e−11i (Yi − �1)
2
|Zi = 1} = EXi

[

EYi{(Yi − �1)
2
|Xi = xi, Zi = 1}

expit(�01 + �11xi)
]

= �2y
{

1 + exp (−�01 − �x�11 + �211�2x∕2
) (

1 + �2x�
2�211

)}

E{e−10i (Yi − �0)
2
|Zi = 0} = EXi

[

EYi{(Yi − �0)
2
|Xi = xi, Zi = 0}

expit(�00 + �10xi)
]

= �2y
{

1 + exp (−�00 − �x�10 + �210�2x∕2
) (

1 + �2x�
2�210

)}

A = E{Ri(Yi − �1)e−11i (1 − e1i)X
⊺
i |Zi = 1}

[

E{e1i(1 − e1i)XiX
⊺
i |Zi = 1}

]−1 E{Ri(Yi − �1)e−11i (1 − e1i)Xi|Zi = 1} and B =
E{Ri(Yi − �0)e−10i (1 − e0i)X

⊺
i |Zi = 0}

[

E{e0i(1 − e0i)XiX
⊺
i |Zi = 0}

]−1 E{Ri(Yi − �0)e−10i (1 − e0i)Xi|Zi = 0} represent the
reduction in the variance associated with estimating the inverse probability of response weights from the data, and are not
available in closed-form as they involve integration over the expit function. However, they can be approximated by Gauss-
Hermite quadrature, as follows,

E{Ri(Yi − �1)e−11i (1 − e1i)X
⊺
i |Zi = 1}

= EXi

[

EYi{(Yi − �1)|Xi = xi, Zi = 1}{1 − expit(x⊺i �1)}x⊺i
]

= EXi

{�y�
�x
(Xi − �x)X

⊺
i |Zi = 1

}

− EXi

{�y�
�x
(Xi − �x)expit(X⊺

i �1)X
⊺
i |Zi = 1

}

=
(

0, �y�x�
)

−
�y�
�x

(

EXi

{

(Xi − �x)expit(�01 + �11Xi)|Zi = 1
}

,EXi

{

(Xi − �x)Xiexpit(�01 + �11Xi)|Zi = 1
})

≈ �y�
[

(

0, �x
)

−
√

2
�

J
∑

j=1

(

xjexpit
{

�01 + �11(
√

2�xxj + �x)
}

wj , xj (
√

2�xxj + �x)expit
{

�01 + �11(
√

2�xxj + �x)
}

wj

)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
C1

E{e1i(1 − e1i)XiX
⊺
i |Zi = 1}

≈ 1
√

�

J
∑

j=1
expit

{

�01 + �11(
√

2�xxj + �x)
}[

1 − expit
{

�01 + �11(
√

2�xxj + �x)
}]

(

1
√

2�xxj + �x
√

2�xxj + �x (
√

2�xxj + �x)2

)

wj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
D1

E{Ri(Yi − �0)e−10i (1 − e0i)X
⊺
i |Zi = 0}

≈ �y�
[

(

0, �x
)

−
√

2
�

J
∑

j=1

(

xjexpit
{

�00 + �10(
√

2�xxj + �x)
}

wj , xj (
√

2�xxj + �x)expit
{

�00 + �10(
√

2�xxj + �x)
}

wj

)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
C0
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E{e0i(1 − e0i)XiX
⊺
i |Zi = 0}

≈ 1
√

�

J
∑

j=1
expit

{

�00 + �10(
√

2�xxj + �x)
}[

1 − expit
{

�00 + �10(
√

2�xxj + �x)
}]

(

1
√

2�xxj + �x
√

2�xxj + �x (
√

2�xxj + �x)2

)

wj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
D0

where xj are the quadrature points on the Hermite polynomial and wj the associated weights for J quadrature points.
var(�̂1 − �̂0) is approximated by,

n−1�2y
(

�−1expit (�01 + �x�11 − �211�2x∕2
)−1 + (1 − �)−1expit (�00 + �x�10 − �210�2x∕2

)−1

+�2
[

�−1�2x�
2
11exp

{

−
(

�01 + �x�11 − �211�
2
x∕2

)}

+(1 − �)−1�2x�
2
10exp

{

−
(

�00 + �x�10 − �210�
2
x∕2

)}

−�−1C1D−1
1 C1 − (1 − �)

−1C0D
−1
0 C0

])

If you ignore the reduction in the variance from estimation of the inverse probability of response weights from the data, var(�̂1−
�̂0) simplifies to Equation (19),

n−1�2y
(

�−1expit (�01 + �x�11 − �211�2x∕2
)−1 + (1 − �)−1expit (�00 + �x�10 − �210�2x∕2

)−1

+�2
[

�−1�2x�
2
11exp

{

−
(

�01 + �x�11 − �211�
2
x∕2

)}

+(1 − �)−1�2x�
2
10exp

{

−
(

�00 + �x�10 − �210�
2
x∕2

)}])

Derivation of Equation (21)
For a single continuous normally distributed variable, E(e−11i ) = 1 + exp

(

−�01 − �x�11 + �211�
2
x∕2

) and E(e−10i ) = 1 +
exp

(

−�00 − �x�10 + �210�
2
x∕2

). Plugging these expressions into �approx in Section 2.2 gives the result in Equation (21).
Definition of Components in Equation (22)
For IRTs, ̂ and ̂ are defined, as follows:

̂ = n−1pilot

npilot
∑

i=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

RiZiê−11i
)�1
)�1

|

|

|�̂1
0 RiZi(Yi − �̂1)ê−11i (1 − ê1i)X

⊺
i 0⊺

0 Ri(1 −Zi)ê−10i
)�0
)�0

|

|

|�̂0
0⊺ Ri(1 −Zi)(Yi − �̂0)ê−10i (1 − ê0i)X

⊺
i

0 0 Ziê1i(1 − ê1i)XiX
⊺
i 0

0 0 0 (1 −Zi)ê0i(1 − ê0i)XiX
⊺
i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

̂ = n−1pilot

npilot
∑

i=1
ûiû

⊺
i , ûi =

⎛

⎜

⎜

⎜

⎜

⎝

RiZiê−11i (Yi − �̂1)
Ri(1 −Zi)ê−10i (Yi − �̂0)

ZiXi(Ri − ê1i)
(1 −Zi)Xi(Ri − ê0i)

⎞

⎟

⎟

⎟

⎟
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Definition of Components in Equation (23)
For CRTs, ̂C and ̂C are defined, as follows:

̂C = K−1
pilot

Kpilot
∑

k=1

m
∑

i=1

⎛

⎜

⎜
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⎜

⎜

⎝
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⊺
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|
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⊺
ki
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⊺
ki 0
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⊺
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⎞
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⎟

⎟

⎠

̂C = K−1
pilot
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∑

k=1
ûkû

⊺
k, ûk =

m
∑

i=1

⎛

⎜

⎜

⎜

⎜

⎝

RkiZkê−11ki(Yki − �̂1)
Rki(1 −Zk)ê−10ki(Yki − �̂0)

ZkXki(Rki − ê1ki)
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⎞

⎟
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⎟
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⎠
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WEB APPENDIX C: ADDITIONAL SIMULATION SCENARIOS AND RESULTS

Dataset Generation
Additional Parameters Varied for the Single Baseline Binary Covariate Scenarios
Six of the scenarios in Table 1, labeled as scenario 1 and 2 for each combination of outcome type and function (g), were altered
to observe simulation results when missingness per intervention group, the association between the covariate and the probability
of missingness, the proportion randomized to the intervention group and the sample size was varied, as follows:

• The amount of missingness by intervention group was varied by varying P (Ri = 1|Zi = 1) from 0.7 to 0.9 with the
constraint 0.5 ∗ {P (Ri = 1|Zi = 1) + P (Ri = 1|Zi = 0)} = � = 0.8, so P (Ri = 1|Zi = 0) = 1.6 − P (Ri = 1|Zi = 1),
along with expit(�11) = P (Ri = 1|Zi = 1) − 0.1, expit(�21) = P (Ri = 1|Zi = 1) + 0.1, expit(�10) = P (Ri = 1|Zi =
0) − 0.05 and expit(�20) = P (Ri = 1|Zi = 0) + 0.05. Two figures with six panels for the six scenarios with different
P (Ri = 1|Zi = 1) were produced. In each panel of the first figure, P (Ri = 1|Zi = 1) was varied on x-axis, and on the
y-axis the sample size calculated by each method (nstandard, nIPRW, nknown and napprox) was displayed. In each panel of the
second figure, the empirical power for each analysis method [standard (IPRW estimator), IPRW (IPRW estimator), known
(IPRW estimator), approx (IPRW estimator)] was displayed.

• This approach was repeated for varying the association between the covariate and the probability of missingness. On the
x-axis of each of the six panels, P (Ri = 1|Xi = 1, Zi = 1) = expit(�11) was varied from 0.7 to between 0.6 and 0.9. As
the probability of the outcome being observed in the intervention group should remain at P (Ri = 1|Zi = 1) = 0.8 and
P (Zi = 1) = � held at 0.5, P (Ri = 1|Xi = 2, Zi = 1) = expit(�21) was varied between 1 and 0.6 as P (Ri = 1|Xi =
1, Zi = 1) = expit(�11) varied between 0.6 and 1.

• This approach was repeated for varying the probability of being randomized to the intervention group � = P (Zi = 1)
from 0.5 to be between 0.2 and 0.8.

• This approach was repeated for smaller n. This was achieved by varying either �21 or �11 to change the intervention effect
to be larger so a lower sample size was required. In scenario 1, �11 was fixed at 0.9 and �21 varied from 0.3 to 0.6, so
nstandard varied from 1314 to 184. In scenario 2, �21 was fixed at 0.95 and �11 varied from 0.62 to 0.77 so nstandard varied
from 1314 to 290.

Single Baseline Continuous Covariate Scenarios
For the scenarios with a continuous outcome where missingness depends on a single baseline continuous variable and the
randomized intervention group, �IPRW was approximated by Gauss-Hermite quadrature with 100 quadrature points and �1 − �0
was set as 0.1. The baseline continuous covariate Xi was generated by random draws from a standard normal distribution.
Ri|(Xi, Zi) was generated by random draws from a Bernoulli distribution, such that Ri|(Xi = xi, Zi = 1) ∼ Ber{expit(�01 +
�11xi)} = Ber{expit(1.4 + 0.21xi)} and Ri|(Xi = xi, Zi = 0) ∼ Ber{expit(�00 + �10xi)} = Ber{expit(2 + 1.64xi)}. The
� coefficients were chosen so the overall probability of the outcome being observed was � = P (Ri = 1) = 0.8. Yi was
generated by random draws from a normal distribution, such that Yi|(Xi = xi, Zi = 1) ∼ N(�1 + ��yxi, �2y (1 − �2)) =N(0.475−
0.75

√

0.245xi, 0.245(1 − 0.752)) and Yi|(Xi = xi, Zi = 0) ∼ N(�0 + ��yxi, �2y (1 − �2)) =N(0.375 − 0.75
√

0.245xi, 0.245(1 −
0.752)).
This scenario was altered to observe simulation results when the amount of missingness, missingness per intervention group,

the association between the covariate and the probability of missingness, the proportion randomized to the intervention group
and the sample size was varied, as follows:

• The amount of missingness � = P (Ri = 1) was varied from 0.8 to be between 0.75 and 0.8. This was done by varying
�11 and �10, so that P (Ri = 1|Zi = 1) = ∫ expit(1.4 + �11xi) e

−x2i ∕2
√

2�
dxi = � and P (Ri = 1|Zi = 0) = ∫ expit(2 +

�10xi)
e−x

2
i ∕2

√

2�
dxi = �. Two figures for the scenario were produced, where � was varied on the x-axis, and on the y-axis of

the first figure the sample size calculated by each method (nstandard, nIPRW, nknown and napprox) was displayed. On the y-axis
of the second figure, the empirical power for each analysis method [standard (IPRW estimator), IPRW (IPRW estimator),
known (IPRW estimator), approx (IPRW estimator)] was displayed.
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• This approach was repeated for varying the amount of missingness per intervention group. On the x-axis, P (Ri = 1|Zi =
1) was varied from 0.75 to 0.8 with the constraint 0.5 ∗ {P (Ri = 1|Zi = 1) + P (Ri = 1|Zi = 0)} = � = 0.8, so
P (Ri = 1|Zi = 0) = 1.6 − P (Ri = 1|Zi = 1). Along with �01 = 1.4 and �00 = 2 and varying �11 and �10.

• This approach was repeated for varying the association between the covariate and the probability of missingness. On the
x-axis, �11 was varied from 0.21 to 2.21 and �01 was set so that P (Ri = 1|Zi = 1) = ∫ expit(�01 + �11xi) e

−x2i ∕2
√

2�
dxi = 0.8.

• This approach was repeated for varying the probability of being randomized to the intervention group � = P (Zi = 1) to
be between 0.2 and 0.8.

• This approach was repeated for smaller n. This was achieved by varying �1 so the intervention effect was larger so a lower
sample size was required. �1 was varied from 0.475 to 0.675, so nstandard varied from 1288 to 144.

CRT Scenarios
For CRTs, the intercluster correlation � was set at 0.05 and the cluster size m was set at 5. The number of clusters was calculated
as 2⌈(nC-standard∕2)∕m⌉, 2⌈(nC-IPRW∕2)∕m⌉, 2⌈(nC-known∕2)∕m⌉ and 2⌈(nC-approx∕2)∕m⌉, respectively, where ⌈ ⌉ is the ceiling
function. Half the clusters were assigned to the intervention group. The overall probability of the outcome being observed was
set at � = P (Rki = 1) = 0.8.
For a single baseline binary covariate (Xki = 1, 2), the probability of the outcome being observed was generated from

Bernoulli distributions as follows: Rki|(Xki = 1, Zk = 1) ∼ Ber(0.7), Rki|(Xki = 2, Zk = 1) ∼ Ber(0.9), Rki|(Xki = 1, Zk =
0) ∼ Ber(0.75) and Rki|(Xki = 2, Zk = 0) ∼ Ber(0.85). In the scenarios where Yki is a continuous outcome, Yki was generated
by Yki|(Xki = c, Zk = 1) = �c1+�k+�c1ki and Yki|(Xki = c, Zk = 0) = �c0+�k+�c0ki with �k ∼ N(0, ��2y ), �c1ki ∼ N(0, �2c1−��2y )and �c0ki ∼ N(0, �2c0 − ��2y ) for c = 1, 2, where �2y =

∑

c �c{�
2
c1 + (�c1 − �1)

2} =
∑

c �c{�
2
c0 + (�c0 − �0)

2}. When Yki is a binary
outcome, Yki was generated using the method of Qaqish8, such that the mean outcome in each category in the intervention group
was �c1 and each category in the control group was �c0, and the correlation between outcomes in each cluster was �. These
scenarios are displayed in Table 2(a).
For a single baseline continuous covariate,Xki was generated by random draws from a standard normal distribution, and Rki

from a Bernoulli distribution such that Rki|(Xki = xki, Zk = 1) ∼ Ber(expit(1.4 + 0.21xki)) and Rki|(Xki = xki, Zk = 0) ∼
Ber(expit(2+1.64xki)). Yki was generated by Yki|(Xki = xki, Zk = 1) = �1+��yxki+�k+�ki = 0.475−0.75

√

0.245xki+�k+�ki
and Yki|(Xki = xki, Zk = 0) = �0+��yxki+�k+�ki = 0.375−0.75

√

0.245+�k+�ki with �k ∼ N(0, ��2y ) = N(0, 0.05×0.245)and �ki ∼ N(0, �2y (1 − � − �2)) = N(0, 0.245(1 − 0.05 − 0.752)).Each of the six scenarios in Table 2 and the one scenario for a baseline continuous covariate were altered to observe simulation
results when the intercluster correlation (�) and cluster size (m) was varied, as follows:

• The intercluster correlation (�) was varied from 0.03 to 0.07 on the x-axis.
• The cluster size (m) was varied from 2 to 10 on the x-axis.

Dataset Analysis
The IPRW empirical sandwich variance estimator for IRTs was:

n−1IPRW
{

̂−1̂
(

̂−1)⊺
[1,1] + ̂−1̂

(

̂−1)⊺
[2,2]

}

where ̂ and ̂ are defined as in Equation (22) with npilot replaced with nIPRW.
The IPRW empirical sandwich variance estimator for CRTs was:

K−1
C-IPRW

{

̂−1
C ̂C

(

̂−1
C
)⊺

[1,1] + ̂−1
C ̂C

(

̂−1
C
)⊺

[2,2]

}

, KC-IPRW = nC-IPRW∕m

where ̂C and ̂C are defined as in Equation (23) with Kpilot replaced with KC-IPRW.
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Additional Results
Additional Parameters Varied for a Single Baseline Binary Covariate Scenarios
The simulation results when missingness per intervention group was varied are in Web Figure 1, when the association between
the covariate and the probability of missingness was varied are in Web Figure 2, when the proportion randomized to the
intervention group was varied are in Web Figure 3 and when the sample size was varied are in Web Figure 4.
Single Baseline Continuous Covariate Scenarios
For IRTs with weighting based on the single continuous covariate, nstandard was calculated to be 1288, nIPRW to be 1480, nknown
to be 1836 and napprox to be 1428. �̂1 − �̂0 based on nstandard, nIPRW, nknown or napprox participants by Equation (4) was correctly
estimated as 0.10. The empirical power with nIPRW using the IPRW estimator in Equation (4) was at the target of 90%. The
empirical power with nstandard, nknown and napprox using the IPRW estimator in Equation (4) was 87, 94 and 90%, respectively.
For CRTs, nC-standard was calculated to be 1494 (KC-standard = 300), nC-IPRW to be 1686 (KC-IPRW = 338), nC-known to be 2042
(KC-known = 410) and nC-approx to be 1634 (KC-approx = 328). Results were similar to IRTs, �̂1 − �̂0 based on nC-standard, nC-IPRW
nC-known or nC-approx participants and the IPRW estimator was correctly estimated as 0.10. The empirical power with nC-IPRW
using the IPRW estimator was at the target of 90%. The empirical power with nC-standard, nC-known and nC-approx using the IPRW
estimator was 88, 94 and 90%, respectively.
The simulation results when the amount of missingness was varied are in Web Figure 5, when missingness per intervention

group was varied are in Web Figure 6, when the association between the covariate and the probability of missingness was varied
are in Web Figure 7, when the proportion randomized to the intervention group was varied are in Web Figure 8 and when the
sample size was varied are in Web Figure 9.
CRT Scenarios
The simulation results when the intercluster correlation was varied are in Web Figure 10 and 11 for a single baseline binary and
continuous covariate, respectively. The results when the cluster size was varied are in Web Figure 12 and 13 for a single baseline
binary and continuous covariate, respectively.
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WEB APPENDIX D: CLUSTER RANDOMIZED TRIAL (CRT) TUTORIAL AND
INDIVIDUALLY RANDOMIZED TRIAL (IRT) CASE STUDY

Estimating the Intercluster Correlation from Pilot Data for the Cluster Randomized Trial (CRT) Tutorial
An IPRW estimator of the intercluster correlation assuming an exchangeable correlation structure was constructed by consider-
ing the following estimating equation,

K
∑

k=1

∑

i≠j

[

ZkRkiRkje
−1
1kie

−1
1kj

{ (Yki − �1)(Ykj − �1)
�1(1 − �1)

− �
}

+ (1 −Zk)RkiRkje−10kie
−1
0kj

{ (Yki − �0)(Ykj − �0)
�0(1 − �0)

− �
}]

= 0

So,

�̂ =

K
∑

k=1

∑

i≠j
RkiRkj

{

Zke−11kie
−1
1kj (Yki−�̂1)(Ykj−�̂1)

�̂1(1−�̂1)
+

(1−Zk)e−10kie
−1
0kj (Yki−�̂0)(Ykj−�̂0)

�̂0(1−�̂0)

}

K
∑

k=1

∑

i≠j
RkiRkj

{

Zke−11kie
−1
1kj + (1 −Zk)e−10kie

−1
0kj

}

Individually Randomized Trial (IRT) Case Study of Sample Size for the IPRW versus the Standard Approach
To illustrate how different patterns of missing outcome data can influence the required variance inflation or reduction under an
IPRWestimator compared to the standard approach, we explore outcomemeasures from theAIDSClinical Trials Group (ACTG)
A5273 IRT9. ACTGA5273 evaluated second-line antiretroviral therapy (ART) for treatment of HIV in resource-limited settings.
It randomized half the participants to second-line ART consisting of lopinavir/ritonavir plus raltegravir (the intervention group)
and half to second-line ART consisting of lopinavir/ritonavir plus nucleos(t)ide reverse transcriptase inhibitors (the control
group). In this case study, we consider CD4 count and triglyceride levels measured at 96 weeks post-initiation of second-line
ART as potential outcome measures. We estimate the mean and variance components relevant to each sample size formula for
each outcome measure from the trial data, set the proportion of participants with an observed outcome at 90% in the intervention
group and 70% in the control group, and explore the impact of the association between the fully observed baseline covariate and
the probability of the outcome being observed by varying the � coefficients in the missingness model.
For CD4 count, we considered a binary outcome of CD4 > 400 cells/mm3 and a continuous outcome of log(CD4). We

considered the primary outcome to beMAR given the randomized intervention group and the baseline CD4 count measurement;
either dichotomized as baseline CD4 > 100 versus ≤ 100 cells/mm3 or as a continuous measure of log(baseline CD4). The
relative efficiency of the IPRW versus the standard approach, defined as �IPRW∕�standard, was evaluated. When weighting by
dichotomized baseline CD4, the difference in relative efficiency was small; �IPRW∕�standard ranged from a minimum of 0.976 to
a maximum of 1.02 (Web Figure 16A, B and C). This small difference is because the within-category variability of CD4 count
was similar for all categories as shown in the �IPRW calculation underneath Web Figure 16. For the log(CD4) outcome weighting
by log(baseline CD4), �IPRW∕�standard had a large range from a minimum of 0.8 to a maximum of 1.6 as the odds ratio for the
association between a one unit increase in log(baseline CD4) and the outcome being observed ranged from 0.25 to 4 (Web Figure
16D). The IPRW estimator is less efficient compared to the standard approach when the strength of the association between
log(baseline CD4) and the outcome being observed is weaker. This calculation assumed log(baseline CD4) and log(CD4) are
both normally distributed.
For triglyceride levels, we considered a binary outcome of triglyceride > 200 mg/dL and a continuous outcome of

log(triglyceride). We considered the primary outcome to be MAR given the randomized intervention group and the baseline
triglyceride level; either dichotomized as baseline triglyceride > 150 versus ≤ 150 mg/dL or as a continuous measure of
log(baseline triglyceride). When weighting by dichotomized baseline triglyceride, the difference in the relative efficiency of
the IPRW versus standard approach was larger than for the CD4 count outcome; �IPRW∕�standard ranged from a minimum of
0.96 to a maximum of 1.14 (Web Figure 17A, B and C). The difference in magnitude compared to the CD4 count outcome is
explained by the fact that in the control group the within-category variability of triglycerides is higher for participants with a
baseline triglyceride level ≥ 150 mg/dL than for participants with a baseline triglyceride level < 150 mg/dL. Indeed, the rela-
tive efficiency would differ even more for an outcome measure with a greater discrepancy in within-category variances. For the
log(triglyceride) outcome weighting by log(baseline triglyceride), �IPRW∕�standard had a large range from a minimum of 0.8 to a
maximum of 1.5 (Web Figure 17D), with a similar pattern as for the CD4 count outcome.
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WEB APPENDIX E: SIMPLE G-COMPUTATION

Let Yi represent the outcome for participant i and Zi indicate the randomized intervention, such that,

Zi =

{

1 if participant i is randomized to the intervention group
0 if participant i is randomized to the control group

Suppose that g {E(Yi|Zi = 1)
}

= g(�1) = �1 and g
{

E(Yi|Zi = 0)
}

= g(�0) = �0, where �1 is the population mean of the
outcome Yi under intervention and �0 is the population mean of the outcome Yi under control. Define Ri to be an indicator of
whether the outcome Yi is observed, as follows,

Ri =

{

1 if Yi is observed
0 if Yi is missing

LetXi represent a vector of fully observed baseline covariates. Suppose that E(Yi|Xi, Zi = 1) = m1i = X
⊺
i �1 and E(Yi|Xi, Zi =

0) = m0i = X
⊺
i �0. Defining � =

(

�1, �0, �1, �0
)⊺ and assuming the outcome Yi is missing at random, i.e. Ri ⟂⟂ Yi|(Xi, Zi), leads

to the following simple g-computation estimating equations,
n
∑

i=1
ui(Yi, Ri, Zi,Xi;�) = 0

ui(Yi, Ri, Zi,Xi;�) =

⎛

⎜

⎜

⎜

⎜

⎝

Zi(m1i − �1)
(1 −Zi)(m0i − �0)
ZiRiXi(Yi − m1i)

(1 −Zi)RiXi(Yi − m0i)

⎞

⎟

⎟

⎟

⎟

⎠

and single regression imputation estimators of the mean of the outcome in the two groups of the randomized trial, as follows,

�̂1 =

{ n
∑

i=1
Zi

}−1{ n
∑

i=1
Zim̂1i

}

, �̂0 =

{ n
∑

i=1
(1 −Zi)

}−1{ n
∑

i=1
(1 −Zi)m̂0i

}

From M-estimation theory,
var(�̂) = n−1−1(−1)⊺

where = E
(

− )ui
)�⊺

)

and  = E
(

uiu
⊺
i
).

The expression for is:

E

⎛

⎜

⎜

⎜

⎜

⎝

Zi
)�1
)�1

0 −ZiX
⊺
i 0

0 (1 −Zi)
)�0
)�0

0 −(1 −Zi)X
⊺
i

0 0 ZiRiXiX
⊺
i 0

0 0 0 (1 −Zi)RiXiX
⊺
i

⎞

⎟

⎟

⎟

⎟

⎠

The expression for  is:

E

⎛

⎜

⎜

⎜

⎜

⎝

Zi(m1i − �1)2 0 0 0
0 (1 −Zi)(m0i − �0)2 0 0
0 0 RiZi(Yi − m1i)2XiX

⊺
i 0

0 0 0 Ri(1 −Zi)(Yi − m0i)2XiX
⊺
i

⎞

⎟

⎟

⎟

⎟

⎠

Considering the parameters of interest, var{(�̂1, �̂0)} can be simplified to,

1
n

⎛

⎜

⎜

⎜

⎝

�−1
(

)�1
)�1

)−2
[

E{(m1i − �1)2|Zi = 1} + A
]

0

0 (1 − �)−1
(

)�0
)�0

)−2
[

E{(m0i − �0)2|Zi = 0} + B
]

⎞

⎟

⎟

⎟

⎠

where
A = E(X⊺

i |Zi = 1)E(e1iXiX
⊺
i |Zi = 1)−1E{e1i(Yi − m1i)2XiX

⊺
i |Zi = 1}E(e1iXiX

⊺
i |Zi = 1)−1E(Xi|Zi = 1)

B = E(X⊺
i |Zi = 0)E(e0iXiX

⊺
i |Zi = 0)−1E{e0i(Yi − m0i)2XiX

⊺
i |Zi = 0}E(e0iXiX

⊺
i |Zi = 0)−1E(Xi|Zi = 0)

e1i = P (Ri = 1|Xi, Zi = 1), e0i = P (Ri = 1|Xi, Zi = 0)
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Therefore,

var{g(�̂1) − g(�̂0)} = n−1
(

�−1
(

)�1
)�1

)−2
[

E{(m1i − �1)2|Zi = 1} + A
]

+ (1 − �)−1
(

)�0
)�0

)−2
[

E{(m0i − �0)2|Zi = 0} + B
]

)

In the scenario where the covariates consist of one baseline categorical variable with c = 1,… , C categories, we can write
X⊺
i =

(

I(Xi = 1),… , I(Xi = C)
)

, �1 =
(

�11,… , �C1
)⊺ , �0 =

(

�10,… , �C0
)⊺

E{(m1i − �1)2|Zi = 1} =
C
∑

c=1
�c(�c1 − �1)2, E{(m0i − �0)2|Zi = 0} =

C
∑

c=1
�c(�c0 − �0)2

E{I(Xi = c)|Zi = 1} = E{I(Xi = c)|Zi = 0} = E{I(Xi = c)} = �c
E{e1iI(Xi = c)|Zi = 1} = P (Ri = 1|Xi = c, Zi = 1)�c , E{e0iI(Xi = c)|Zi = 0} = P (Ri = 1|Xi = c, Zi = 0)�c

E{e1i(Yi − m1i)2I(Xi = c)|Zi = 1} = P (Ri = 1|Xi = c, Zi = 1)�2c1�c ,
E{e0i(Yi − m0i)2I(Xi = c)|Zi = 0} = P (Ri = 1|Xi = c, Zi = 0)�2c0�c

where �c = P (Xi = c) = P (Xi = c|Zi = 1) = P (Xi = c|Zi = 0), �2c1 = var(Yi|Xi = c, Zi = 1), �2c0 = var(Yi|Xi = c, Zi = 0),
�c1 = E(Yi|Xi = c, Zi = 1) and �c0 = E(Yi|Xi = c, Zi = 0).

A =
C
∑

c=1

�c�2c1
P (Ri = 1|Xi = c, Zi = 1)

, B =
C
∑

c=1

�c�2c0
P (Ri = 1|Xi = c, Zi = 0)

Therefore,
E{(m1i − �1)2|Zi = 1} + A =

C
∑

c=1
�c(�c1 − �1)2 +

C
∑

c=1

�c�2c1
P (Ri = 1|Xi = c, Zi = 1)

Similarly,
E{(m0i − �0)2|Zi = 0} + B =

C
∑

c=1
�c(�c0 − �0)2 +

C
∑

c=1

�c�2c0
P (Ri = 1|Xi = c, Zi = 0)

So,

var{g(�̂1) − g(�̂0)} = n−1
C
∑

c=1

[

�−1�c

{

�2c1
P (Ri = 1|Xi = c, Zi = 1)

+ (�c1 − �1)2
}

(

)�1
)�1

)−2

+(1 − �)−1�c

{

�2c0
P (Ri = 1|Xi = c, Zi = 0)

+ (�c0 − �0)2
}

(

)�0
)�0

)−2
]
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WebFigure 1. a) Datasets generatedwith the sample size calculated to have 90% power at a two-sided 5% significance level using
the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline binary covariate in an IRT, where the probability
of the outcome being observed in the intervention group P (Ri = 1|Zi = 1) is varied on the x-axis. (b) Simulation results
displaying the empirical power for each sample size with the IPRW estimator.
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WebFigure 2. a) Datasets generatedwith the sample size calculated to have 90% power at a two-sided 5% significance level using
the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline binary covariate in an IRT, where the probability
of being observed in the intervention group when Xi = 1[i.e. P (Ri = 1|Xi = 1, Zi = 1) = expit(�11)] is varied on the x-axis.
(b) Simulation results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 3. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline binary covariate in an IRT, where the prob-
ability of being randomized to the intervention group � = P (Zi = 1) is varied on the x-axis. (b) Simulation results displaying
the empirical power for each sample size with the IPRW estimator.
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Web Figure 4. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline binary covariate in an IRT, where the sample
size is varied on the x-axis by varying �21 or �11. (b) Simulation results displaying the empirical power for each sample size
with the IPRW estimator.
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Web Figure 5. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of the outcome being observed � = P (Ri = 1) is varied on the x-axis. (b) Simulation results displaying the empirical
power for each sample size with the IPRW estimator.
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Web Figure 6. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of the outcome being observed in the intervention group P (Ri = 1|Zi = 1) is varied on the x-axis. (b) Simulation
results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 7. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline continuous covariate in an IRT, where �11 is
varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 8. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of being randomized to the intervention group � = P (Zi = 1) is varied on the x-axis. (b) Simulation results
displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 9. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nIPRW, nknown, napprox and nstandard formulas when weighting by a baseline continuous covariate in an IRT, where the
sample size is varied on the x-axis by varying �1. (b) Simulation results displaying the empirical power for each sample size
with the IPRW estimator.
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Web Figure 10. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nC-IPRW, nC-known, nC-approx and nC-standard formulas when weighting by a baseline binary covariate in a CRT, where the
intercluster correlation � is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with
the IPRW estimator.
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Web Figure 11. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nC-IPRW, nC-known, nC-approx and nC-standard formulas when weighting by a baseline continuous covariate in a CRT, where
the intercluster correlation � is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size
with the IPRW estimator.
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Web Figure 12. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nC-IPRW, nC-known, nC-approx and nC-standard formulas when weighting by a baseline binary covariate in a CRT, where the
cluster size m is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the IPRW
estimator.
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Web Figure 13. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nC-IPRW, nC-known, nC-approx and nC-standard formulas when weighting by a baseline continuous covariate in a CRT, where
the cluster size m is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the
IPRW estimator.
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Individually Randomized Trial (IRT), Yi continuous, g identity, scenario 3

Individually Randomized Trial (IRT), Yi continuous, g identity, scenario 4

Web Figure 14. R shiny app illustration to calculate the sample size by the nIPRW, nknown, napprox and nstandard formulas. Note,
sample sizes were rounded up to the nearest even number to enable simulation of half the participants in each randomized
intervention group.
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Cluster Randomized Trial (CRT) Tutorial

Web Figure 15. R shiny app CRT tutorial to calculate sample size by nIPRW[KIPRW], nknown[Kknown], napprox[Kapprox] and
nstandard[Kstandard] for the example in Section 4.1.
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CD4, Relative Efficiency: τIPRW τstandard

Web Figure 16. Relative efficiency based on the inverse probability of response weighted (IPRW) versus standard approach
for a CD4 count outcome. The contours display the ratio �IPRW∕�standard for different magnitudes of the association between the
fully observed baseline covariate (Xi) and the probability of the outcome being observed {P (Ri|Xi, Zi)}.
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D. no closed-form, based on Gauss-Hermite quadrature with 100 quadrature points
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Triglyceride, Relative Efficiency: τIPRW τstandard

Web Figure 17. Relative efficiency based on the inverse probability of response weighted (IPRW) versus standard approach
for a triglyceride outcome. The contours display the ratio �IPRW∕�standard for different magnitudes of the association between the
fully observed baseline covariate (Xi) and the probability of the outcome being observed {P (Ri|Xi, Zi)}.
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