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WEB APPENDIX A: DERIVATION OF EQUATIONS (1), (2), (5), (10), (11) AND (12), AND
DEFINITION OF 7 xnown AND T spprox

Derivation of Equation (1)
Let Y; represent the outcome for participant i and Z; indicate the randomized intervention, such that,

Z. =

{ 1 if participant i is randomized to the intervention group
1

0 if participant i is randomized to the control group

Suppose that g {E(Yilzl- = 1)} = g(u;) = A, and g {E(Y,-lZ,- = 0)} = g(uy) = Ay, where p, is the population mean of the
outcome Y; under intervention and g, is the population mean of the outcome Y; under control. Define 8 = (ll, /10) T and consider
g to be the identity or logit function. An M-estimator " solves,

n

Z u(Y,zZ;0)=0
i=1
Taking,
Z,(Y, — uy) )
uw, (Y, Z;;0) = et
% 250 <<1 — Z)(Y, o)

we will obtain the following estimates of the mean of the outcome in the two groups of the randomized trial:

n -1 n n -1 n
m={22,} {sz},ﬁo={2<1—z,-)} {2(1—2,-)14}
i=1 i=1 i=1 i=1

Assuming our primary interest is the contrast between randomized intervention groups defined by g(u,) — g(yy) = A, — 4, from
M-estimation theory we know,
var(0) = n~' A7 BT

where 2
ou; Ziﬁ 0
A — [E __l = [E al{l 0,14
00T 0 (A-2)=>"
792,
Z,(Y, — pu,)? 0
B=E u,'lLT =E < o !
( i ) 0 (l - Z,)(YI - MO)Z
Therefore,
o \ 2
A A 1 K‘l[E{(K_M1)2|Zi=1}(0_T) 0
var{(4;, 4p)} = - ] o)
n 0 (1_,<)-1[E{(Y,-—u0)2IZ,-=0}(TZS)
leading to

) -2
var(i, = Jo) = n”! lK-IrEuY[ ~ w1z =1) <%) + (=) B = w12, = 0) <%> ]
1 0

where k = E(Z;) = P(Z, = 1).
When Y; is a continuous outcome with E{(Y; — #,)*|Z; = 1} = E{(Y; — 4#9)*| Z; = 0} = o, and g is the identity function,

var(fi, — flg) = var(4; = 4g) = n” {x(1 =)} ' &2
When Y; is a binary outcome and g is the identity function,

var(fi, — fig) = var(i; — Ag) = n™ {7 iy (1 = ) + (1 = 1) (1 — )}
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When Y, is a binary outcome and g is the logit function,

var{logit(4;) — logit(fy)} = var(d, — Ag) = n™" [{xcp;(1 — u)} ™"+ {(1 = ©)pp(1 = pg)} ']

The power of the Wald test for the contrast of primary interest is approximated by,

I—p=o gu)—8lm)
arlgGn — gy

Therefore, the number of participants needed to be observed is,

T (zl—ﬂ + Zl—a/2)2

n =

complete D)
{g(uy) — g(up) }
where
{k(1 —x)}! ai if Y; continuous and g identity
=9k (1= p) + (1= ) (1 = pg) if Y, binary and g identity

(e (1= 1)) ™ 4+ (1= ©)po(1 = )}~ if Y binary and g logit
These three sample size formulas have previously been derived; see for example Chow et al? Sections 3.2, 4.2 and 4.6. The
formulas are rederived in this Web Appendix to unify notation within the M-estimation framework.

Derivation of Equation (2)
Define R; to be an indicator of whether the outcome Y; is observed, as follows,

{ 1 ifY; is observed

0 ifY; is missing

R. =

1

The naive complete-case analysis leads to the following estimating equations,

Y u Y, R, Z;;0)=0
i=1
R Z,(Y, — py)
uj(Yi? Ri’ Z,';e) = < BRI
Ri(1 = Z)(Y; = py)
and estimators of the mean of the outcome in the two groups of the randomized trial, as follows,

n -1 n n -1 n
ﬁlz{ZRizi} {ZRiZiYi}’ﬁoz{th(l_Zi)} {ZRi(l_Zi)Yi}
i=1 i=1 i=1 i=1

Again, from M-estimation theory,
var(0) = n”' AT B(AT!)T

y ou. R,z,.% 0
=Fl—-——L)=FE 1
< 091) 0 R(1-2Z)%k
0

R,Z(Y, — u)? 0 >
B=FE(uu')=E( "7 ™
( i 1) < 0 Rl«(l - Z,)(Y, - ”0)2

Assuming the probability of the outcome being observed is the same in the intervention and control group, we have E(R; Z;) =
ER/|Z, =1DP(Z, =1)=¢x and E{R,(1 - Z))} = E(R,|Z, =0)P(Z, = 1) = ¢(1 — k) where ¢ = P(R; = 1) = E(R,| Z;
1) = E(R;|Z; = 0). Therefore,

where

2 -2
Var(jl _20)=n—1 l¢—2K—1E{Ri(n_”l)2|2i= 1} <g—l;> +¢_2(1—K‘)_II]E{R[(Y[_ﬂo)2|Z[=O} (3_/;0> ]
1 0

Further assuming R; L Y;|Z,, we have E{ R,(Y; — ;)*| Z; = 1} = E(R,| Z; = DE{(Y; — pu,)*| Z; = 1} = ¢E{(Y; — pu))*| Z; = 1}
and E{R,(Y; — 4)*| Z; = 0} = E(R,|Z; = OE{(Y; — up)*| Z; = 0} = PE{(Y; — up)*| Z; = 0}, s0

~ A a -2 a -2
var(; = 4) = (ng)™" lK*[E«Yi ~ )1z, =1} (a—’m + (1 = ) E(Y, - Pl Z; = 0) (a—’;"> ]
1 0
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The two assumptions imply R, L Z; and R; L Y, so outcome data are missing completely at random (MCAR)-. Therefore,
the number of participants needed to be recrulted is

T (21—;3 + zl—a/2)2 _ Tsandard (Zl—ﬂ + Zl—a/2)2

Ngtandard = 2 = P
b {g(m) — glup) } {8(u) — g(up)}
where
o k(1 =)}t 63 if Y; continuous and g identity
Tstandard = ¢_1 {K_]/’ll(l - /’ll) + (1 - K)_l/’lo(l - /40)} 1fY1 binary and g identity

¢! [y (1= )}~ + {(1 = (1 = u)}™'|  if ¥; binary and g logit

Derivation of Equation (5)

Let X, represent a vector of fully observed baseline covariates. Suppose that logit{ P(R; = 1|X;, Z; = 1)} = logit(e;;) = Xl.T B
and logit{ P(R; = 1|X;, Z; = 0)} = logit(ey;) = X/ . Now defining 6 = (il,ﬁo,ﬁl,ﬁo)T and assuming the outcome Y; is
missing at random, i.e. R; 1L Y;|(X;, Z,), leads to the following estimating equations,

> u (Y, R, Z,, X;;0) =0

i=1

R. Zlel‘ll(Y Up)
R;(1 - Z)e (Y Ho)
ZX(R e

(1 - Z)X(R — eOi)

de, WV (R - elaz) and 3, D,V (R; — ey;) from
logistic regression models where, D; = ﬁ =e,(l-e)ZX], V;; = eli(l e,). Do, = Z‘Z — eg(1 = eg)(1 = Z)XT, Vyy =
ey (1 — eg;). The Hajek ratio estimators of the mean of the outcome in the two groups of the randomized trial are, as follows,

n -1 n
{ZRZ“‘} {ZRz,ér,'Y},ﬁo={ZRi(l—Zoéa,-l} {ZR,(l—Z,-)é&lYi}
i=1 i=1

Again, from M-estimation theory,

ui(Y," Ri7 Z,’v Xi; 0) =

The latter two estimating equations follow from the score equations, Z D’

var(§) = ! A7 B(AT)T
where A = [E( )andB E (u;u!).
The expression for .A is:

_10 -
R, Ze}! d;" 0 R Z(Y, — e (1 —e ) X] o7
_10 -
E 0 R,(1 - Z,)eol.la—’ﬁ)’ 01 R(1—-Z)Y, - /40)90,~1(1 —eo)X]
0 0 Ziey(1—e )X, X! 0
0 0 0 (1 = Z)ey(1 — eg) X, X]
The expression for 13 is:
R, Ze? (Y ) 0 RZ,(Y, = e (R, — e )X] 01
E Ri(1 = Z)e? (Y, = uo)’ or Ri(1 = Z)(Y; = Hodey! (R, — eg) X[
R Z,(Y, - yl)e“ (R, — e X; 0 Z(R; — €’ X, X] 0
0 Ri(1 = Z)(Y; = pode! (R, — eg)X, 0 (1= Z)(R; = )’ X; X]

Considering the parameters of interest, var{(4,, ;lo)} can be simplified to,
-2
L [ECR 20, = w212, = 1) - ](%) 0

-1 ) 2 oy \
0 (1= [E(R 20— 12, = 0) — B] (%)

S

where

A=E{R(Y, = upe;} (1 —e )X Z, =1} [E{e,;(1 - eli)XiXiTlZiz1}]:1[E{R,-(Y[—yl)el_il(l—eli)XilZi=1}
B =E{R,(Y, - yo)eol(l—eOI)XlTlZ—O} [E{eq(1 — eg) X, X1 Z, = 0} E{R,(Y; — up)ey, (1 — eg)X;|Z, = 0}
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Therefore,

0 -2
var(g(in) = g(ig)) = n”! <K-1 [E{R 7Y, = )12, = 1) = 4] (T’f)
1

-2
(1 =07 [E{Reg’ (Y, ~ w12, = 0) ~ B] <%> )
0

_ _ _ ou -2
=n! (K HELe (Y = w12 = 1) = A] <a_/1j>

_ _ g\~
+(1 = )" [Efeg (¥ = up)’1Z, = 0} = B] { ==
Derivation of Equation (10)
Let there be k = 1, ..., K independent clusters each with i = 1, ..., m participants. Let Y}; represent the outcome in cluster k
for participant i and Z, indicate the randomized intervention for cluster &, such that,

k=

1 if cluster k is randomized to the intervention group
0 if cluster k is randomized to the control group

Suppose that g { E(Y;|Z, = 1)} = g(u;) = 4, and g { E(Y;;|Z, = 0)} = g(uy) = Ay, where p, is the population mean of
the outcome Y); under intervention and 4, is the population mean of the outcome Y; under control. Define 0 = (/11 , AO)T and
consider g to be the identity or logit function. Adopting a working independence correlation structure for estimating the means
in each randomized group, an M-estimator 0! solves,

K
> u (¥, Z,;0) =0
k=1

with,
Z[I(Yk _ ﬂk) igl Zk(Yki - /’ll)
e A AR A
k7N Tk k 2= Z) Y — 1)
i=1
where Z ]I = Z, 1], with 1,, a vector of ones of length m, ¥, = (Y4, ..., Y,,,)T the outcome vector for cluster k, and p, = p;1,,

if cluster k is randomized to intervention and p; = 1, if cluster k is randomized to control.
Assuming the true underlying correlation structure is exchangeable, from M-estimation theory we can derive,

var(0) = K~' A7 B(A~)T

ou,
e e Fan ©
A_[E< aeT>_m[E< 0 (1-2z)%
m 2
{lek(Yki_M)} 0
i= . )
0 {2(1 - Z)Y; — ﬂo)}

where

B=E (uu;)=E

i=1

_ B E{Z, (Y — 1)} 0
=m{l+ (m—1)6} ( 0 E{(1 —Zk)(Yk,-—//lo)z}
with 6 = corr(Yy;, Y| Z, = 1) = corr(Yy;, ¥y,;1 Z, = 0) for i # j.
Therefore,
4 ) ouy -
P _1 kT E{(Yy — my) |Zk=1}(ﬁ) !
var{(4;, 49)} =(mK)™" {1 + (m — 1)6} |

-2
0 (1= ) E(, = 1P 17, = 0) (22



leading to

2 s -1 -1 2 o, 2
var(A, — Jg) = mK)™ {1+ (m — D8} |k "E{(Y,, — 1y) |zk=1}<ﬁ>
1

P -2
+a—mﬂmm—%ﬂa:m<£ﬁ ]
0

where k = E(Z,) = P(Z, = 1).
So, the number of participants needed to be observed is

Tc (Zl—ﬂ + Zl—a/2)2

nC = >
{g(u) — g(up) }
where
{(1+@m—=18}{x(1 —x)}™" o} if Y,, continuous and g identity
Te=3{1+m—= D8} {x (1 = uy) + (1= ) pp(1 = )} if Y, binary and g identity

{1+ (m=135} [xc{p, (1 = u)}™ 4+ {(1 = )pp(1 — pp)}~'] if ¥, binary and g logit

and for Y;; continuous 67 = E {(Yy; — #)*| Z = 1} = E{(Y}; — #y)’| Z; = 0}.
Derivation of Equation (11)
Define R,; to be an indicator of whether the outcome Y}; is observed, as follows,

1 if Y}, is observed

Ry = . L

0 ifY}; is missing

The naive complete-case analysis leads to the following estimating equations,

K
w (Y. Ryi» Z,:0) = 0
k=1

m
:1 R Z (Y — my)
i=

m

Z R, (1 = Z)(Yy; — 1o)

i=1

Z'R, (Y, — )
u(Y,.,R,.,Z;e)=< kR B =
e e (1= ZDR (Y, — my)
where R, = diag(R;).
Again, from M-estimation theory,
var(@) = K~ A7 B(A™YYT

ou, o,
Juy ReiZi 53, 0 Ko O
A:[E<_09T>:m[E 0 R.1-zpk ) =" o (2 e
ki k)oao ( K)oao

where

" 2
{Z R Z, (Y _/41)} 0
B=E (wu])=E| ‘= " 2
0 {;1 R, (1-Z)(Y,, - /"0)}
K[E{(Yki_ﬂ1)2|zk=1} 0 >
= 1 — D6
mp{l+(m = 1o} < 0 (1 = OE{(Y,, — 4?1 Z, = 0}

with k = E(Z)), 6 = cort(Y;, Yy;|1 Z, = 1) = corr(Yy;, Yy ;| Z, = 0), and assuming outcome data are MCAR, i.e. ¢ = P(R,; =
D=PR,=1Z,=1)=P(R,; =1|Z,=0),R;; LY, and Ry; L R, fori # j.
Therefore,

A A -1 -1 2 o, E
var(A; — A4g) = mK@p)™ {1+ (m—1)¢o} ll{ E{(Y,, —u)1Z, =1} <J>
1
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+ (1= 1) "E{(Yy, — o)’ | Z, = 0}
and, the number of participants needed to be recruited is,

2
TC-standard (zl—ﬂ + zl—a/Z)

{gu) — gup)}’

R standard =

where
(¢~ + (m— 15} {x(1 —x)} 65 if Y,; continuous and g identity
Testandard = 3 1O+ (m = DSy (1 — py) + (1= ) (1 = pag)} if Y,, binary and g identity

{¢7" + (m =15} [{xu;(1 — u)}~" + {(1 = ©)ue(1 — ue)} '] if ¥}, binary and g logit

Derivation of Equation (12)
The estimating equations for the population means are,

K K Z.R Y,
Z( leliku/lk(Yk - M) > 2 2 K lkl( b =) =0
A -Z)H)RWy Y, — ) & 2(1 — Z)Rye; ) (Vi — o)

i=1

where Wy, = diag(e], )Wlth ei=PR,=11X,,,Z, =1), Wy, = d1ag(e D with eg; = P(Ry; = 11X}, Z, = 0), and X, is
a vector of fully observed baseline covariates.
If we assume there is no clustering of missingness, e and e, can be estimated by the following equations,

Z i < Zi Xy (Ry; = eqy) > -0
(I = Z) X (Ry; = )

k=1 i=1 €oki
this leads to,

m
;Zk ki 1k,(Yk1 )
i=

K K Z(l - Zk)Rkieakli(Yki = Ho)
Z w, (Yo Ryin Zy, X3 0) = Z = =0
k=l k=1 2 Zi Xu(Ry; —ey)

i=1

2= Z)X, (R — eor)
=1

From M-estimation theory,
var(@) = K1 A B(A™)T

where A = E ( 0:k> and B = E (uu}).
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Tz x M x (M0 — M2} 3] {0 = TZ1[x ("% — )% — ")y 3= g

{0="ZI"x("% - % = "™y }3 _[{0

(1="z"x("2 - pla(" ="My }3 _[{1 ="ZI"[x"x("2 - D™2}3] (1 ="ZI'[x("2 - Lo = "Dy }3= v
aroym
N-Ammv [g = {0="Z1, = "0}30(1 —w) + {0 = Tz = ") Loy }3] - — 1) 0 wy
0 N‘Amv [V = (1 ="Z1,(" = 0}30(1 —w) + {1 = Y7| (1 = 0oy 7] x| !

‘01 payrduis aq ued [(Oy ‘ly)laea “saroiur jo siojowrered oY) Suropisuo))

Tx"x (02 — )z - 1) ~ 0 X (M0 — y)' (0 — M)z — 1)y 0
_ 0 .M\N.&NNE_N — hyly 0 ~ By (Ml — .&Mv._«u_mx I — Pty Py Ju
(XM = ) a0t = D)7 — )M 10 L0 =0z = D1 — w) + (O = 1) 20z — 1)y 0 ‘
10 Tx (o — ) — Pp) 1z My 0 (=0 70(1 —w) + (= )T a7y
'S g 10] uoIssardxa oy,
e
(X Tx (M0 — (M7 — 1) 0 0 0
2
0 pMW.&NA.c:ml :.c:m«N 0 0
0
2 70 e 10 Ju
(X (M0 — 1) 2o = (M7 = DY 10 e 1-20Z = DY 0
2 1 've iy
10 XM —p-a(t = x) 1z My 0 e 1-2 2

:SI 1 Joj uoIssa1dxa oy,
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Therefore,

Var{g(ﬁ]) - g(ﬁo)}

a -2
—(Km)™! (;f' [E{Rye;2(Yy — w21 Z, = 1) + (m = DSE{(Yy — 21 Z, = 1) — 4] <a—;‘1>
1

P -2
+(1 = &) [E{Ryeg2 (Yes — 1o)*1 Zy = 0} + (m — DSE{(Y; — pp)*| Z, = 0} — B] <a—ﬁ[0> )
0

a -2
—(Km)~! <K—1 [Efe; (Y — 121 Z = 1)+ (m = DSE{(Yy, — i 21 Z, = 1} — 4] (TT)
1

P -2
+(1 =)™ [l (Ve = 11 Zy = 0} + (m = DSE((Yy, = jy)’| Z, = 0} = B] <a_;40> )
0

Definition of ¢ y,oun aNd 7¢.approx
If the variance reduction from estimating the IPRWs from the data is ignored for CRTs, we arrive at the following definition for

TC-known

c'E{er L (Y, — 1) Z, = 1}

1ki
+(1 - K)_I[E{eakli(Yki — )1 Z, =0}
+(m—1)6 {x(1 — K‘)}_l 63 if Y}; continuous and g identity
Kk 'E{e] (Y — u)*Z, = 1)

Texnown = 3 (1 = ) Efe (Y, — 1p)* |1 Z, = 0}
+(m =16 {7 (1= ) + (1= ) (1 = pp) } if Y, binary and g identity

K E(e), OV = P12 = 1) {1 =}~
+(1 =) Efeg) (Y — 121 Z4 = 0) {uo(1 = )}

1

+(m — 1)8 [{K/,ll(l )} {0 = k) (1 — ,40)}“] if Y, binary and g logit

Based on a similar approach to Shook-Sa and Hudgens” in the context of confounding adjustment by weighting,
defined as follows:

TC—approx 18

-

05 [K‘I[E(el'il) +(1— ) 'Eeyl) + (m = 1)6 {x(1 — K‘)}_l] if Y; continuous and g identity

k7 (1= ) {ECey) + (m — D}

1

Teapprox = 3+ = )7 (1 — ) {E(eg) + (m — 1)5} if Y; binary and g identity

{xp (1= pu)} " {E(er)) + (m— )5}
+H{(1 = pp(l — ue)}y ' {Eey) + (m — 1)8} if Y; binary and g logit

“



WEB APPENDIX B: DERIVATION OF EQUATION (14) AND (18), APPROXIMATION OF
var(f, — fi,) UNDER EQUATION (5) AND DERIVATION OF EQUATION (19) AND (21), AND
DEFINITIONS OF COMPONENTS IN EQUATIONS (22) AND (23)

Derivation of Equation (14)
In the scenario where the covariates consist of one baseline categorical variable with ¢ = 1, ..., C categories, we can write

X' =(IX,=1,...0X;=O), By = (Br1s--»Bc1)"s Bo=(Broy -+ Pco)’

Ex{(K_#1)2|Xi=C’Zi=1} _ C ”5{531"'(%1_#1)2}
expit(f,) ] - ; expit(f,;)

[EY,{(YI'_#O)2|X1'=C’ZI‘=O} _ C 7[8{6020-'-(“60_”0)2}
expit(B.) ] Bl expit(f,)

E{e; (Y, = w)*1Z; = 1} = Ey, l

™M

E{ep (Y = o)*1Z; = 0} = Ey, l

c=1
where 7, = P(X; = ¢) = P(X; =¢|Z, = 1) = P(X, = ¢|Z, = 0), 6}, =var(Y;| X, = ¢, Z, = 1), o) = var(Y}| X, = ¢, Z, = 0),
e = EY|X; = ¢, Z; = 1) and p o = E(Y;| X, = ¢, Z; = 0). Note that, if Y; is binary, 67, = ., (1 = p,1) and 62 = p.o(1 = p10)-
We have assumed X is a fully observed covariate that is measured at baseline.

Furthermore,
E{R,(Y; = puper (1 —e)I(X; = O Z; = 1} = z{1 = expit(B.)} ey — 1y)
E{R(Y; = ppey! (1 = eg)I(X; = ©)| Z; = 0} = 7 {1 = expit(Bo)} (eo — Ho)
E{e,;(1 —e)I(X; =0)|Z, = 1} = zexpit(,){1 — expit(f,,)}
Efep(1 — ep)I(X; = ¢)| Z; = 0} = m expit(Bo){1 — expit(B.y)}
Therefore,
E{ey, (VG —m)*|Z; =1} - A
_ i 7, {0' + (e — 1y)*} _ i 7 (U — py)*{1 — expit(B,,)}
B o expit(f,;) o expit(f,;)
c o 2
- ;ﬂc {expit(ﬂcl) + Uty = 1) }
Similarly,
Efey! (Y, — Y1 Z, = 0} —
o melo + (o = m)*) i 7, (Hao — Ho)*{ 1 — expit(Bo)}
B g expit(f,q) expit(f,o)
c 2
_ PRY
= ; {explt(ﬂco) + (o — Ho) }
So,

~ o —1 c -1 0.021 2 oy -
var{g(4,) — g(fy)} = n 2‘1 KU} oy e ) <a_/11>

+(1-x)"'x O-CZO + (i, — Hy)* % B
“\ xpitB) T T\ Ga,
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Derivation of Equation (18)
For a single categorical variable, [E(el‘il) =).7 zexpit(f,;)~" and Ee,, = .7 .expit(f.)~". Plugging these expressions into

Tapprox 11 Section 2.2 gives the result in Equation (18).

Approximation of var(ji; — /i) under Equation (5) and derivation of Equation (19)
In the scenario where X; = (1, X;)T and (Y}, X;)| Z; has a bivariate normal distribution, we can write

XT=(1,X,), By = Bor, i)"s By = (Boo» Bro)

Hy 62 PO O'
xome=0=N((0)- (5"
_ e o} po,o,
{(XI? 1)|Z 0} <<H0> <p0'0' O_i >>

po
EY X, =x,Z,=1)=pu + y(xi —u), EY X, =x,Z,=0) = py +

var(Y;| X, = x;, Z, = 1) = var(Y,| X, = x;, Z; = 0) = o-i(l )
We have assumed X is a fully observed covariate that is measured at baseline, so u, = E(X,) = E(X;|Z; = 1) = E(X,|Z; = 0).
Using moment generating functions,

po—y
(x[ - Mx)
o

ﬂEYi{(Yi _ﬂ1)2|Xi =x,2Z; =1}
expit(fy; + By1x;)
= 0)2) {1 + exp (—ﬂm —u Py + ﬂlzlai/2 (1 +0° P ﬂ“)}

E(e;' (Y, — w12, = 1) = Ey, l

)
IE Y_ 2X'= ',Zl-=0
IE{eall(Yl — ”0)2|Z,' — 0} - F l Y;{( i /’IO) | i X; }]

expit(foo + f1ox;)
= 65 {1+ exp (—Boo — uPro + By02/2) (1+02p7B1,) }
= E{R,(Y; — upe; (1 — e, )X]|Z; = 1} [E{e,;(1 — ¢, )X, X]|Z, = 1}]‘1 E{R(Y, — p))e;'(1 —¢;)X;|Z; = 1} and B =
[E{Ri(Yi ﬂo)ea,»l(l - eOi)Xilei = 0} [E{eoz‘(l - eOi)XiXilei = 0}]_1 E{R,(Y; — Ho)ea,-l(l — ¢p))X;|Z; = 0} represent the
reduction in the variance associated with estimating the inverse probability of response weights from the data, and are not
available in closed-form as they involve integration over the expit function. However, they can be approximated by Gauss-

Hermite quadrature, as follows,
E{R,(Y; = upe; (1 — e, )X Z, = 1)
=Ex [Ey {(Y; — u)IX; = x;, Z, = 1}{1 — expit(x] f;) } x| |
= Ey, {g(xi -u)X!Z; = 1} —Ex {?(xi — uexpit(X] )X Z, = 1}

X X

= (0.0,0,p)
p
— (Ex. {(X; = mexpit(By; + B XD Z; =1} Ex, {(X; = ) Xexpit(Byy + P11 XD Z; = 1})

X

J
[2 . .
~ Gyp |:(0, o'x) -V l; (xjexplt {/301 + ﬂ”(\/ao'xxj + ;/X)} wj,xj(\/zaxxj + p, )expit {/301 + ﬁll(\/zaxxj + ux)} wj>]

G
E{e,;(1 - eli)X,.Xl.T|Z,- =1}

~

. . 1 WX+ Uy
xplt{ﬂm +ﬁ11(\/§o'xxj +;4X)} [l —explt{ﬂ01 +ﬂ”(\/§cfxxj +4y) }] (\/_axxj . (\/\/_—;;/+:X )wj

HM\

L
V7

D,
E{R,(Y, - g)ej (1 - e)X]1 Z, = 0)

J
R Ooyp |:(0, zrx) - \/gzl (xjexpit {ﬂoo + ﬂlo(\/zaxxj + yx)} w/,x/(\/ao'xxj + u,Jexpit {ﬂoo + ﬂlo(\/io'xxj + ,ux)} wj>]
j=

&)
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E{ey(1 — e()i)XiXI.T|Zi =0}

J
1 . . 1 \/_a X, +u
N — 26 x 1- 20,x; AR »

77 2ot V2o o [1 =i+ V2o + 0 (f 20, + e (V20,3 + )w’

D()
where x; are the quadrature points on the Hermite polynomial and w; the associated weights for J quadrature points.
var(fl; — fi,) is approximated by,
n_lai (K_lexpit (,30] + upi - ﬂlzlai/Z)_l + (1 — k)~ expit (ﬁoo + u, By — ﬁlzoof/Z)
+0* [k o2 B exp { = (Bor + mebiy = F7107/2) }
+(1 =) o7 froexp { = (oo + 1uBro — Bro02/2) }
—x~'C,D'C, — (1 - x)7'CyD;'Cy|)

-1

If you ignore the reduction in the variance from estimation of the inverse probability of response weights from the data, var(j, —
fiy) simplifies to Equation (19),

-1 2 -1

no (K_lexpit (Boi + meByy — ﬁfla§/2)_l + (1 = k)~ 'expit (Boo + mBio — i 62/2)
+p” [k 027 exp { = (Boy + mobiy — B1102/2) }
+(1 =) o2 hexp {= (Boo + mbro = Foer/2) )

Derivation of Equation (21)
For a single continuous normally distributed variable, [E(el_[l) = 1+ exp (—ﬂol - upy + 11 x/2) and E(e, 1) 1+

exp (_ﬁoo U P + ﬁl() < 2/ 2) Plugging these expressions into 7, in Section 2.2 gives the result in Equation (21)

Definition of Components in Equation (22)
For IRTs, A and B are defined, as follows:

R Ze % 0 R,Z,(Y, — i))é7 (1 — ¢, ) X! 01
; i oA I 1i i
pilot A~ ~ A~ N
A=mt Y 0 R(1 - Z)e;! j’;* o Ri(1 = Z)(Y, = fi)é; (1 = &) X]
pilot
i=1 0 0 Z8,(1 - 6,)X,X] 0
0 0 0 (1 = Z)ey,(1 = e0) X, X!

RZ,&N(Y, — )

n 171
pilot A—1 A
A _ AT A R.(1 - Z)e.(Y—,u)
— 1 T — i i’7%0; \i 0
B=n Euiui,ui— X(R,—é,)
(1 - Zi)Xi(Ri - éOi)

i=1

Definition of Components in Equation (23)
For CRTs, A and B are defined, as follows:

Kpitor m Rk,-Zkéfkl,-%: 0 Ry Z (Y = ﬂl)é?l:i(l - élki)X}Ii o
A = Kpﬂlol Z 0 Rki(l - Zk)é(;kliij%; fo v Rk[(l - Zk)(Yk‘ - ﬂO)éakli(l B éOM)X’L
=i 0 0 Z2(1 = &)X, X, 0
0 0 0 (1= Z)8gi(1 = &) X1 X,

A1 A
1 Rkizkelk,—(Yki - )
plol

m A— A
Z uk'\]' ﬁk — Z Rki(l - Zk)e()kli(Yki - #0)
pllm i= Zkai(Rki - élki)

(1 = Z) X, (R — éoi)
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WEB APPENDIX C: ADDITIONAL SIMULATION SCENARIOS AND RESULTS

Dataset Generation

Additional Parameters Varied for the Single Baseline Binary Covariate Scenarios

Six of the scenarios in Table 1, labeled as scenario 1 and 2 for each combination of outcome type and function (g), were altered
to observe simulation results when missingness per intervention group, the association between the covariate and the probability
of missingness, the proportion randomized to the intervention group and the sample size was varied, as follows:

e The amount of missingness by intervention group was varied by varying P(R; = 1|Z; = 1) from 0.7 to 0.9 with the
constraint 0.5 * {P(R, =1|Z,=1)+ P(R,=1|Z;=0)} =¢ =08,50 P(R; =1|Z; =0)=1.6 — P(R, = 1|Z, = 1),
along with expit(f;;) = P(R; = 1|Z;, = 1) — 0.1, expit(f,;) = P(R, = 1|Z; = 1) + 0.1, expit(f,y) = P(R;, = 1|Z; =
0) — 0.05 and expit(f,;) = P(R; = 1|Z; = 0) + 0.05. Two figures with six panels for the six scenarios with different
P(R; = 1|Z; = 1) were produced. In each panel of the first figure, P(R; = 1|Z; = 1) was varied on x-axis, and on the
y-axis the sample size calculated by each method (n,ngaras MipPRW> Pinown a0d Mypprox) Was displayed. In each panel of the
second figure, the empirical power for each analysis method [standard (IPRW estimator), IPRW (IPRW estimator), known
(IPRW estimator), approx (IPRW estimator)] was displayed.

o This approach was repeated for varying the association between the covariate and the probability of missingness. On the
x-axis of each of the six panels, P(R; = 1|X; = 1, Z, = 1) = expit(f,,) was varied from 0.7 to between 0.6 and 0.9. As
the probability of the outcome being observed in the intervention group should remain at P(R; = 1|Z; = 1) = 0.8 and
P(Z, =1) =k heldat 0.5, P(R;, = 1|X, = 2,Z, = 1) = expit(f,;) was varied between 1 and 0.6 as P(R; = 1|X; =
1,Z; = 1) = expit(f,;) varied between 0.6 and 1.

o This approach was repeated for varying the probability of being randomized to the intervention group k = P(Z; = 1)
from 0.5 to be between 0.2 and 0.8.

o This approach was repeated for smaller n. This was achieved by varying either y,; or u;; to change the intervention effect
to be larger so a lower sample size was required. In scenario 1, y;, was fixed at 0.9 and y,, varied from 0.3 to 0.6, so
Agandara Varied from 1314 to 184. In scenario 2, u,, was fixed at 0.95 and y;, varied from 0.62 to 0.77 s0 By, 4. Varied
from 1314 to 290.

Single Baseline Continuous Covariate Scenarios
For the scenarios with a continuous outcome where missingness depends on a single baseline continuous variable and the
randomized intervention group, Tipgy Was approximated by Gauss-Hermite quadrature with 100 quadrature points and p; — g,
was set as 0.1. The baseline continuous covariate X; was generated by random draws from a standard normal distribution.
R;|(X;, Z;) was generated by random draws from a Bernoulli distribution, such that R;|(X; = x;, Z; = 1) ~ Ber{expit(f,, +
Bi1x)} = Ber{expit(1.4 + 0.21x,)} and R,|(X; = x;, Z; = 0) ~ Ber{expit(fy, + fjox;)} = Ber{expit(2 + 1.64x,)}. The
p coefficients were chosen so the overall probability of the outcome being observed was ¢ = P(R;, = 1) = 0.8. ¥; was
generated by random draws from a normal distribution, such that Y;|(X; = x;, Z; = 1) ~ N(y; + po,x;, 6}2)(1 —p?)) =N(0.475 —
0.751/0.245x,,0.245(1 — 0.752)) and Y;|(X, = x,, Z; = 0) ~ N(uy + po x;, c2(1 = p*)) =N(0.375 - 0.75 1/0.245x,,0.245(1 —
0.75%)).

This scenario was altered to observe simulation results when the amount of missingness, missingness per intervention group,
the association between the covariate and the probability of missingness, the proportion randomized to the intervention group
and the sample size was varied, as follows:

y

e The amount of missingness ¢ = P(R; = 1) was varied from 0.8 to be between 0.75 and 0.8. This was done by varying
i :
By, and By, so that P(R, = 1|Z; = 1) = [ expit(1.4 + ﬁllx,-)%dxi = ¢ and P(R, = 1|Z;, = 0) = [ expit(2 +

—x.2/2
ﬁloxi)%dxi = ¢. Two figures for the scenario were produced, where ¢ was varied on the x-axis, and on the y-axis of
T

the first figure the sample size calculated by each method (nngaras PpRWs Mknown a0 My ) Was displayed. On the y-axis
of the second figure, the empirical power for each analysis method [standard (IPRW estimator), [IPRW (IPRW estimator),
known (IPRW estimator), approx (IPRW estimator)] was displayed.
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o This approach was repeated for varying the amount of missingness per intervention group. On the x-axis, P(R; = 1|Z; =
1) was varied from 0.75 to 0.8 with the constraint 0.5 * {P(R; = 1|Z, = 1)+ P(R; = 1|Z, = 0)} = ¢ = 0.8, so
PR, =1|Z;=0)=1.6 - P(R;, =1|Z; = 1). Along with f;; = 1.4 and f,, = 2 and varying f,; and f,,,.

e This approach was repeated for varying the association between the covariate and the probability of missingness. On the

—x2/2
x-axis, B, was varied from 0.21 to 2.21 and S, was set so that P(R; = 1|Z; = 1) = [ expit(f, + ﬂllxi)%dxi =0.8.
e This approach was repeated for varying the probability of being randomized to the intervention group k = P(Z; = 1) to

be between 0.2 and 0.8.

e This approach was repeated for smaller »n. This was achieved by varying y; so the intervention effect was larger so a lower
sample size was required. y; was varied from 0.475 to 0.675, S0 Ny, 4.q Varied from 1288 to 144.

CRT Scenarios

For CRTs, the intercluster correlation 6 was set at 0.05 and the cluster size m was set at 5. The number of clusters was calculated
as 2[(n¢.gandara/2)/m1, 2[(ncprw /2)/m1, 2[(ncgnown/2)/m] and 2[(nc_ypprox/2)/m], tespectively, where [ ] is the ceiling
function. Half the clusters were assigned to the intervention group. The overall probability of the outcome being observed was
setat¢p = P(R,; =1)=0.8.

For a single baseline binary covariate (X,; = 1,2), the probability of the outcome being observed was generated from
Bernoulli distributions as follows: Ry;|[(X,; = 1, Z, = 1) ~Ber(0.7), Ri;|(X;; =2,Z, = 1) ~Ber(0.9), R,;|(X;; =1,Z, =
0) ~ Ber(0.75) and Ry;|(X,; = 2, Z; = 0) ~ Ber(0.85). In the scenarios where Y); is a continuous outcome, Y,; was generated
by Y |( Xy =¢, Z, =1) =y, +Z_,’k+€,i3 and Y, |(X;;, =¢,Z, =0) = ,uco+éjk+€/i? with §, ~ N(O, 50&), efal ~ N(0, 0'31 —50'5)
and ei? ~ N(0, 0'30 - 50’5) for ¢ = 1,2, where 03 =Y. ﬂC{GCZI + (e — ) =2, 7[‘6{0'020 + (fo0 — Hp)*}- When Yy, is a binary
outcome, Y, was generated using the method of Qaqish®, such that the mean outcome in each category in the intervention group
was ., and each category in the control group was p,, and the correlation between outcomes in each cluster was 6. These
scenarios are displayed in Table 2(a).

For a single baseline continuous covariate, X;; was generated by random draws from a standard normal distribution, and Ry;
from a Bernoulli distribution such that R;[(X,; = x;;, Z, = 1) ~ Ber(expit(1.4 + 0.21x,,)) and Ry;|(X}; = x4;, Z;, = 0) ~
Ber(expit(2+1.64x,,)). Y; was generated by Y, |(Xy; = xy;, Z, = 1) = py +po,xy;+8 +e,; = 0.475-0.75 \/6.245xk,-+§k +ey;
and Y, [(Xy; = Xy, Zy = 0) = py+po,xy;+ 86 +€,; = 0.375-0.75 \/6.245 +, +¢€,; with§, ~ N(O, 505) = N(0,0.05x0.245)
and ¢;; ~ N (O, 03(1 — & — p?)) = N(0,0.245(1 — 0.05 — 0.75%)).

Each of the six scenarios in Table 2 and the one scenario for a baseline continuous covariate were altered to observe simulation
results when the intercluster correlation () and cluster size (m) was varied, as follows:

e The intercluster correlation (6) was varied from 0.03 to 0.07 on the x-axis.

e The cluster size (m) was varied from 2 to 10 on the x-axis.

Dataset Analysis
The IPRW empirical sandwich variance estimator for IRTs was:
-1 -5 ( A-1\T -1 ( A-1)\T
Miprw {A 5 (A )[1,1] +ATB (A )[2,2]}

where A and /3 are defined as in Equation (22) with Npitor Teplaced with nypry .
The IPRW empirical sandwich variance estimator for CRTs was:

-1 -1 (A-1\T =15 ( A-1\T _
Kc prw {Ac Bc (‘AC )[1,1] +Ac Be (Ac )[2,2]} » Kcprw = ne.iprw/m

where fic and Bc are defined as in Equation (23) with K ;, replaced with K¢ jprw-

pilot
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Additional Results

Additional Parameters Varied for a Single Baseline Binary Covariate Scenarios

The simulation results when missingness per intervention group was varied are in Web Figure 1, when the association between
the covariate and the probability of missingness was varied are in Web Figure 2, when the proportion randomized to the
intervention group was varied are in Web Figure 3 and when the sample size was varied are in Web Figure 4.

Single Baseline Continuous Covariate Scenarios
For IRTs with weighting based on the single continuous covariate, ng,,4..¢ Was calculated to be 1288, njppy to be 1480, ny,wn
to be 1836 and n,,,, to be 1428. fi; — fiy based on nyy,daras MpRW> Mknown OF Mapprox PArticipants by Equation (4) was correctly
estimated as 0.10. The empirical power with nppgy using the [IPRW estimator in Equation (4) was at the target of 90%. The
empirical power With Ry, gards Pinown a0d Mypproy Using the IPRW estimator in Equation (4) was 87, 94 and 90%, respectively.
For CRTS, n¢_gandard Was calculated to be 1494 (K gungara = 300), neprw t0 be 1686 (K jprw = 338), N jnown t0 be 2042
(Kcknown = 410) and ne_yppox 10 be 1634 (Koo = 328). Results were similar to IRTs, 4, — i, based on ne_gangards Pe-prw
Ncnown OF Neoapprox Participants and the IPRW estimator was correctly estimated as 0.10. The empirical power with n¢ pry
using the IPRW estimator was at the target of 90%. The empirical power With n¢_yundards PC-known a0 Ac_gpprox USing the IPRW
estimator was 88, 94 and 90%, respectively.

The simulation results when the amount of missingness was varied are in Web Figure 5, when missingness per intervention
group was varied are in Web Figure 6, when the association between the covariate and the probability of missingness was varied
are in Web Figure 7, when the proportion randomized to the intervention group was varied are in Web Figure 8 and when the

sample size was varied are in Web Figure 9.
CRT Scenarios
The simulation results when the intercluster correlation was varied are in Web Figure 10 and 11 for a single baseline binary and

continuous covariate, respectively. The results when the cluster size was varied are in Web Figure 12 and 13 for a single baseline
binary and continuous covariate, respectively.
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WEB APPENDIX D: CLUSTER RANDOMIZED TRIAL (CRT) TUTORIAL AND
INDIVIDUALLY RANDOMIZED TRIAL (IRT) CASE STUDY

Estimating the Intercluster Correlation from Pilot Data for the Cluster Randomized Trial (CRT) Tutorial

An IPRW estimator of the intercluster correlation assuming an exchangeable correlation structure was constructed by consider-
ing the following estimating equation,

K
1 - Y — u); — 1) 1 Yii — Ho) XYy — Ho)
Z Z [ZkkaRk/ 1k11 lkl_] { : - 5} + (= Z R Ryje Oklx Oklj { - - 5}] =0

k=l i) =) Ho(1 = pp)
So,
£ Zyeihei! =)W= (=Zeghes) (V—fag) (Y ~iig)
Z RkiRkj (-py) + (=fiy)
R k=1 i%) A a Ag(1—-fgy
§=
K
~1 -1 ~1 -1
kzl ; Ry Ry; {Zkelkz e T =2Zpey e Ok/}
=1i

Individually Randomized Trial (IRT) Case Study of Sample Size for the IPRW versus the Standard Approach

To illustrate how different patterns of missing outcome data can influence the required variance inflation or reduction under an
IPRW estimator compared to the standard approach, we explore outcome measures from the AIDS Clinical Trials Group (ACTG)
A5273 IRT?. ACTG A5273 evaluated second-line antiretroviral therapy (ART) for treatment of HIV in resource-limited settings.
It randomized half the participants to second-line ART consisting of lopinavir/ritonavir plus raltegravir (the intervention group)
and half to second-line ART consisting of lopinavir/ritonavir plus nucleos(t)ide reverse transcriptase inhibitors (the control
group). In this case study, we consider CD4 count and triglyceride levels measured at 96 weeks post-initiation of second-line
ART as potential outcome measures. We estimate the mean and variance components relevant to each sample size formula for
each outcome measure from the trial data, set the proportion of participants with an observed outcome at 90% in the intervention
group and 70% in the control group, and explore the impact of the association between the fully observed baseline covariate and
the probability of the outcome being observed by varying the f coefficients in the missingness model.

For CD4 count, we considered a binary outcome of CD4 > 400 cells/mm? and a continuous outcome of /og(CD4). We
considered the primary outcome to be MAR given the randomized intervention group and the baseline CD4 count measurement;
either dichotomized as baseline CD4 > 100 versus < 100 cells/mm?> or as a continuous measure of /og(baseline CD4). The
relative efficiency of the IPRW versus the standard approach, defined as 7jpgy /Zstandarg» Was evaluated. When weighting by
dichotomized baseline CD4, the difference in relative efficiency was small; Zpryw / Tyandara Fanged from a minimum of 0.976 to
a maximum of 1.02 (Web Figure 16A, B and C). This small difference is because the within-category variability of CD4 count
was similar for all categories as shown in the 7jpgyy calculation underneath Web Figure 16. For the log(CD4) outcome weighting
by log(baseline CD4), Typrw / Tetandara 1ad a large range from a minimum of 0.8 to a maximum of 1.6 as the odds ratio for the
association between a one unit increase in /og(baseline CD4) and the outcome being observed ranged from 0.25 to 4 (Web Figure
16D). The IPRW estimator is less efficient compared to the standard approach when the strength of the association between
log(baseline CD4) and the outcome being observed is weaker. This calculation assumed /og(baseline CD4) and /0og(CD4) are
both normally distributed.

For triglyceride levels, we considered a binary outcome of triglyceride > 200 mg/dL and a continuous outcome of
log(triglyceride). We considered the primary outcome to be MAR given the randomized intervention group and the baseline
triglyceride level; either dichotomized as baseline triglyceride > 150 versus < 150 mg/dL or as a continuous measure of
log(baseline triglyceride). When weighting by dichotomized baseline triglyceride, the difference in the relative efficiency of
the IPRW versus standard approach was larger than for the CD4 count outcome; Tippw /Tgandarg T20ged from a minimum of
0.96 to a maximum of 1.14 (Web Figure 17A, B and C). The difference in magnitude compared to the CD4 count outcome is
explained by the fact that in the control group the within-category variability of triglycerides is higher for participants with a
baseline triglyceride level > 150 mg/dL than for participants with a baseline triglyceride level < 150 mg/dL. Indeed, the rela-
tive efficiency would differ even more for an outcome measure with a greater discrepancy in within-category variances. For the
log(triglyceride) outcome weighting by /og(baseline triglyceride), Tiprw / Tstandarq 12d @ large range from a minimum of 0.8 to a
maximum of 1.5 (Web Figure 17D), with a similar pattern as for the CD4 count outcome.
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WEB APPENDIX E: SIMPLE G-COMPUTATION

Let Y; represent the outcome for participant i and Z; indicate the randomized intervention, such that,

1 if participant i is randomized to the intervention group
' 0 if participant i is randomized to the control group

Suppose that g {E(YilZ,- = 1)} =g(u) =71, and g {E(Y,-|Zl- = O)} = g(uy) = Ay, where p, is the population mean of the
outcome Y; under intervention and 4, is the population mean of the outcome Y; under control. Define R, to be an indicator of
whether the outcome Y; is observed, as follows,

R. =

1

1 if Y; is observed
0 if Y; is missing

Let X, represent a vector of fully observed baseline covariates. Suppose that E(Y;|X;, Z, = 1) = m}; = X[, and E(Y;| X, Z; =
0) = my; = X[ &,. Defining 6 = (A, 4., CO)T and assuming the outcome Y; is missing at random, i.e. R; 1L Y;|(X;, Z,), leads
to the following simple g-computation estimating equations,

n

> u (Y, R, Z,, X;50) =0

i=1

Z,(my; — py)
1-Z)(m,y —
W, R, Z, X0 = 07 ;EY‘” m”°))
IR A A A 1i

(I = Z)R; X,(Y; — my,)

and single regression imputation estimators of the mean of the outcome in the two groups of the randomized trial, as follows,

n -1 n n -1 n
/21:{221'} {Zzimli}’ﬁoz{z(l_zi)} {Z(l_zi)mm}
i=1 i=1 i=1 i=1

From M-estimation theory,

var(§) = n~! A7 B(A™)T
where A = E (—%) and B =E (uu]).
The expression for A is:

z,% 0 ~Z,X! 0
1
—Z) % —(1 - T
E 0 @ Zi)d/l(] 0 (1-2)X,
0 0 Z,R X X] 0
0 0 0 (1-Z)R X, X]
The expression for 13 is:
Z.(my; — py)? 0 0 0
- 0 (1 = Z)(my; — py)* 0 0
0 0 R, Z,(Y; — m)* X, X] 0
0 0 0 R(1 = Z)(Y; — my)* X, X]

Considering the parameters of interest, var{ (/All , 20)} can be simplified to,

K <%)_2 [E{(mli_ﬂ1)2|Zi= 1}+A] 0

o2,
S (om )72 2
0 (1—-x) <J> [E{(my; — #o)?1Z, = 0} + B]

S =

where
A=EX]|Z; = DE(e;; X, X]|Z; = )" E{e,,(Y; - m;)’X,X]| Z, = 1}E(e;;, X, X] | Z, = )'E(X,| Z; = 1)
B=EX]|Z, =0)E(eq; X, X]|Z, = 0)"' E{ey,(Y; — my;)* X, X | Z; = 0}E(e(; X; X1 Z, = 0)'E(X,| Z, = 0)
e, =PR, =1|X,,Z,=1), e;; = P(R, = 1|X,,Z, = 0)
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Therefore,

P -2
var{g(f;) — g(flg)} =n"" (K_] <a—l;> [E{(my; — m)*|1 Z; = 1} + A]
1

e\
+(1 - (=) [ElOny — up)*|Z, =0} + B
04
In the scenario where the covariates consist of one baseline categorical variable with ¢ = 1, ..., C categories, we can write

X! = (I(Xi =1,....I(X; = C)) , 6= (Cn’ ,Cm)T s 6= (CIO’ 7CCO)T
C C
E{(my, — u)?|Zy =1} = ) 7, (pter = )% E{(mg; — o)1 Z, = 0} = Y w.(eg — o)’
anﬁumz;u}=anﬁnmz=0}=maxﬁwﬁ;nc
E{e, I(X,=¢)|Z, =1} = P(R,=1|X,=c¢, Z, = Dz, E{e[(X, =¢)|Z, =0} = P(R, = 1|X, = ¢, Z, = O)x,

Efe,,(Y; —m)*I(X; =0)|Z; =1} = P(R, = 1|X, = ¢, Z; = 1)o7,

Efe,(Y; — mp)*I(X; = ¢)|Z, =0} = P(R, = 1|1X, = ¢, Z; = 0)o2 7,
where 7, = P(X; = ¢) = P(X, =c¢|Z, = 1) = P(X, = ¢|Z, = 0), 0, =var(Y}|X; = ¢, Z; = 1), 6% = var(Y}| X, = ¢, Z,; = 0),
poy =EY|X, =c,Z, = 1)and p,y = EY;|X, = ¢, Z, = 0).

C 2 2
ﬂ'cO'CO

PR, =1|X,=c¢.Z, =0)

c=1 1

Ma

T.0
A= ¢ cl ,B=
;P<Ri=llxi=c,zi=1)

Therefore,
c c z ‘721
E{m,,—u)?|Z =1} + A= —u)?+ e
{omy; =)’ 1Z; =1} C;nc(ucl H1) CZ:; PR=1X =cZ =0
Similarly,
E{(mgy — y0)2|Zl. =0}+B= (Yoo — Mo)z + <<
&~ & P(R,=1]X,=c,Z;=0)
So,

c=1

C 0'21 a/’ll B
o | . RY) ity
varlg(i) = g} = ™! 3 k7w § G + (e — ) <‘“1>
o’ oo\~
o Z RY 0
+( K) ”C{P(Ri =11X,=¢,2Z=0) o i) } <()/10
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Web Figure 1. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level using
the niprws Pinowns Mapprox AN Agiangara formulas when weighting by a baseline binary covariate in an IRT, where the probability
of the outcome being observed in the intervention group P(R; = 1|Z; = 1) is varied on the x-axis. (b) Simulation results
displaying the empirical power for each sample size with the [IPRW estimator.
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Web Figure 2. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level using
the nprws Minowns Mapprox AN Agiangara formulas when weighting by a baseline binary covariate in an IRT, where the probability
of being observed in the intervention group when X; = 1[i.e. P(R; = 1|X; = 1, Z, = 1) = expit(f;,)] is varied on the x-axis.
(b) Simulation results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 3. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the Apry, Mknowns Mapprox AN Agangara formulas when weighting by a baseline binary covariate in an IRT, where the prob-
ability of being randomized to the intervention group k = P(Z; = 1) is varied on the x-axis. (b) Simulation results displaying
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Web Figure 4. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the Aprw, Mknowns Rapprox AN Mgandara formulas when weighting by a baseline binary covariate in an IRT, where the sample
size is varied on the x-axis by varying p,, or y;,. (b) Simulation results displaying the empirical power for each sample size
with the [PRW estimator.
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Web Figure 5. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nipry s Anowns Mapprox AN Agiangara formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of the outcome being observed ¢ = P(R; = 1) is varied on the x-axis. (b) Simulation results displaying the empirical
power for each sample size with the IPRW estimator.

@ (b)
2000 100
95
- "
— H

9]

< 1500 g
. . S g5

"
80
1000 "
0.750 0.775 0.800 0.750 0.775 0.800
P(Rilz=1) P(RilZ=1)
i. IPRW ii. known = jii. approx iv. standard i. IPRW ii. known = jii. approx iv. standard

Web Figure 6. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nipry, Mxnowns Mapprox AN Agungara formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of the outcome being observed in the intervention group P(R; = 1|Z; = 1) is varied on the x-axis. (b) Simulation
results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 7. a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the niprys Minowns Mapprox AN Agandara formulas when weighting by a baseline continuous covariate in an IRT, where f;; is

varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the IPRW estimator.
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Web Figure 8. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
Minown> Mapprox AN Agangarq formulas when weighting by a baseline continuous covariate in an IRT, where the
probability of being randomized to the intervention group k = P(Z; = 1) is varied on the x-axis. (b) Simulation results
displaying the empirical power for each sample size with the [IPRW estimator.
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Web Figure 9. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the nipry, Mknowns Mapprox AN Agangara formulas when weighting by a baseline continuous covariate in an IRT, where the
sample size is varied on the x-axis by varying y,. (b) Simulation results displaying the empirical power for each sample size
with the IPRW estimator.
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Web Figure 10. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the e prws Ac-knowns Ac-approx 3N A gtandara fOrmulas when weighting by a baseline binary covariate in a CRT, where the
intercluster correlation 6 is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with
the [PRW estimator.
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Web Figure 11. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the ne_prws Pc-knowns Mc-approx AN Ac_gandara fOrmulas when weighting by a baseline continuous covariate in a CRT, where
the intercluster correlation 6 is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size

with the IPRW estimator.
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Web Figure 12. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the e prws Ac-knowns Ac-approx 3N A gtandara fOrmulas when weighting by a baseline binary covariate in a CRT, where the
cluster size m is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the [IPRW
estimator.
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Web Figure 13. (a) Datasets generated with the sample size calculated to have 90% power at a two-sided 5% significance level
using the ne_prw, Ae-knowns Mc-approx AN Ae_gandard fOrmulas when weighting by a baseline continuous covariate in a CRT, where
the cluster size m is varied on the x-axis. (b) Simulation results displaying the empirical power for each sample size with the
IPRW estimator.



30

Individually Randomized Trial (IRT), Y; continuous, g identity, scenario 3
Sample size calculation for randomized clinical trials via inverse probability of response weighting when outcome data are missing at random

weighting by a categorical variable weighting by a continuous variable
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Individually Randomized Trial (IRT), Y; continuous, g identity, scenario 4
Sample size calculation for randomized clinical trials via inverse probability of response weighting when outcome data are missing at random

weighting by a categorical variable weighting by a continuous variable
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Web Figure 14. R shiny app illustration to calculate the sample size by the niprw, Pinowns Mapprox standara fOrmulas. Note,
sample sizes were rounded up to the nearest even number to enable simulation of half the participants in each randomized
intervention group.
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Cluster Randomized Trial (CRT) Tutorial

Sample size calculation for randomized clinical trials via inverse probability of response weighting when outcome data are missing at random

weighting by a categorical variable weighting by a continuous variable

Power [1 — ] Proportion randomized to intervention [x] n .
05 1 0 [05] 1
2130
Type | error [a] Proportion in group 1 [7]] ighting by a binary i variable)
001 01 0 1
——
2100
Outcome type Proportion with observed outcome, group 1, intervention [expit(511)]
© continuous U 5 U ™
@® binary —
. 3 . 5 ; 2070
Link function Proportion with observed outcome, group 2, intervention [expit(/)]
© identity °
® logit o
Proportion with observed out 1, control [expit(B10)] 2040
roportion with observed outcome, group 1, control group [expi
Mean outcome, group 1, intervention [z11] P group group lexpit{Zio 09
[ 1 Power (1-B)
094
o ® iPRW A iwowm B appox | iv.sindard
Mean outcome, group 2, intervention [y N N .
group Lend Proportion with observed outcome, group 2, control group [expit(/20)]
0.98 0 niprw [Kiprw]
Mean outcome, group 1, control [110] o
2150 [ 360 ]
08 p1 = 095,40 =0.88,¢p = 0.71
Mean outcome, group 2, control [20] jvi or Cluster ized Trial Ninon [Kinown]
0.94 © individually
2151 [ 360 ]
Variance outcome, group 1, intervention [(7121] @ cluster
(D01 cluster size [m] Rapprox[Kapprox]
A N Y|
Variance outcome, group 2, intervention [o‘Zz]] 2084 [ 348 ]
03
- 2 intercluster correlation [5] Nstandard | Kstandara]
Variance outcome, group 1, control [o7,] 0 3
0.01 _\ 2043 [ 342 ]
Variance outcome, group 2, control [53“]
- nipRW Mstandard
03
1.052

Web Figure 15. R shiny app CRT tutorial to calculate sample size by nprw[Kiprwls Minown[Kinownls Papprox [Kapprox] and
Ngandard | Kstandaral fOr the example in Section 4.1.
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CD4, Relative Efficiency: Tiprw/ Tstandard
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Web Figure 16. Relative efficiency based on the inverse probability of response weighted (IPRW) versus standard approach
for a CD4 count outcome. The contours display the ratio Typry / Tgandara fO different magnitudes of the association between the
fully observed baseline covariate (X;) and the probability of the outcome being observed { P(R;|X;, Z,)}.
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Web Figure 17. Relative efficiency based on the inverse probability of response weighted (IPRW) versus standard approach
for a triglyceride outcome. The contours display the ratio Tjpryw / Teandara fOr different magnitudes of the association between the
fully observed baseline covariate (X;) and the probability of the outcome being observed { P(R;|X;, Z,)}.
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no closed-form, based on Gauss-Hermite quadrature with 100 quadrature points
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