
Supplementary Material 

 

 

UNRAVELING THE GENETICS OF TRANSFORMED SPLENIC MARGINAL 

ZONE LYMPHOMA 

Marta Grau, Cristina López, Alba Navarro & Gerard Frigola et al. 

  



 
 

1 
 

 

SUPPLEMENTARY METHODS ........................................................................................ 2 

Conventional and molecular cytogenetics ................................................................................ 2 

Analyses of target next-generation sequencing (NGS) panel ................................................... 2 

Statistical modeling for recurrent alterations ........................................................................... 3 

Co-occurrence and mutual exclusivity analysis (COME) ........................................................... 5 

Analysis of whole genome sequencing (WGS) .......................................................................... 6 

SUPPLEMENTARY FIGURES ............................................................................................ 8 

Supplementary Figure S1. Heatmap showing the normalized coverage across the regions 

captured for variant calling in the 59 samples analyzed by NGS. ............................................. 8 

Supplementary Figure S2. SMZL-T cases with a chromothripsis pattern.................................. 9 

Supplementary Figure S3. Co-occurrence and mutual exclusivity plot. ................................. 10 

Supplementary Figure S4. Co-occurrence of genomic aberrations. ....................................... 11 

Supplementary Figure S5. Copy number alterations (CNA) and somatic variants (SNV/indel) 

identified in SMZL patients at diagnosis. ................................................................................ 12 

Supplementary Figure S6. Box-plots of copy number alterations (CNA) and SNVs/indels 

detected in SMZL. .................................................................................................................... 13 

Supplementary Figure S7. Estimation Parameters. ................................................................ 14 

Supplementary Figure S8. Bivariate proportions. ................................................................... 15 

Supplementary Figure S9. Genomic alterations involving TP53 in SMZL. ............................... 16 

Supplementary Figure S10. Comparison of mutation frequencies between the present series 

at diagnosis and a published series of 303 SMZL samples ...................................................... 17 

Supplementary Figure S11. Dynamics of genomic aberrations during SMZL transformation.18 

Supplementary Figure S12. Histopathological features of case SMZL055 at diagnosis and 

transformation ........................................................................................................................ 20 

Supplementary Figure S13. Kaplan-Meier curve of survival from time of transformation (SFT) 

according to international prognostic index (IPI) score. ......................................................... 22 

SUPPLEMENTARY REFERENCES ................................................................................... 23 

 

 

  



 
 

2 
 

SUPPLEMENTARY METHODS 

Conventional and molecular cytogenetics  

Cytogenetic analyses were done at diagnosis (n=12) and at transformation (n=11). Karyotypes 

were described according to the International System for Human Cytogenetic Nomenclature 

(ISCN).1 Complex karyotype (CK) was considered when at least three clonal chromosomal 

abnormalities were detected. FISH was done using 7q32 (IRF5) locus-specific (Empire Genomics, 

New York, United States) at diagnosis and transformation, BCL2 breakapart (BA), BCL6 BA, and 

MYC BA probes at transformation with available material. BCL3 BA probe was used in one 

patient at diagnosis and transformation, t(11;14)(q13;q32) was used in one patient at 

transformation. All FISH probes were provided by MetaSystems (Altlussheim, Germany). 

Hybridizations were performed according to the manufacturer's protocols. At least 100 nuclei 

were examined for each probe. Digital image acquisition, processing, and evaluation were 

performed using ISIS digital image analysis version 5.0 (MetaSystems).  

Analyses of target next-generation sequencing (NGS) panel 

Variant calling was performed using an updated version of our in-house pipeline.2 Briefly, raw 

reads were trimmed using the SurecallTrimmer (v4.0.1, AGeNT, Agilent). Alignment of the 

trimmed reads was performed using minimap2 algorithm3, PCR or optical duplicates were 

marked using MarkDuplicates from Picard (RRID: SCR_006525), and the base quality score 

recalibration was performed using GATK’s BaseRecalibrator and ApplyBQSR functions (RRID: 

SCR_001876 v4.0). Variant calling was performed in parallel using VarScan2 (v2.4.3)4, Mutect2, 

VarDictJava (v1.4)4, LoFreq (v2.1.3.1)5, outLyzer (v1.0)6, and freebayes (v1.1.0)7. Variants 

identified were annotated using snpEff/snpSift (v4.3t). Only variants that were identified as 

“PASS” by at least 4 of the algorithms. All mutations called by at least 4 algorithms were manually 

reviewed on Integrative Genomic Viewer (IGV). Variants that were likely false positive calls 

(noisy region, low quality reads) were filtered out. Mutations enriched in chimeric/hard-clipped 

reads supporting the mutation were flagged by considered in downstream analyses. Paired 

information (diagnosis and transformation) was used to curate and validate the mutations 

identified. 

Variants reported in the 1000 Genome Project, ExAC and/or gnomAD with a population 

frequency >1% were considered polymorphisms and therefore removed from the analysis. To 

further filter out non-recurrent polymorphisms, variants were only considered somatic if 1) they 

were not reported as germline in our custom International Cancer Genome Consortium (ICGC) 

database of 506 chronic lymphocytic leukemia analyzed by whole-genome/exome sequencing8; 
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and were 2) reported as somatic in lymphoid neoplasm in COSMIC database, 3) truncating, or 4) 

predicted as potentially damaging by at least one of the following algorithms: CADD (phred score 

> 10), PolyPhen2 (score > 0.9), SIFT (score < 0.1), MutationAssessor (score > 2) and Provean 

(deleterious).  

Statistical modeling for recurrent alterations 

After the preprocessing, filtering and curation of the NGS and copy number alteration (CNA) 

data, we had information about the presence or absence of 58 recurrent alterations in 59 splenic 

marginal zone lymphomas (SMZL) samples, 27 obtained at the time of diagnosis (SMZL) and 32 

at the time of transformation (SMZL-T). These 59 samples belonged to 41 different patients, for 

9 of them we only had the diagnostic sample, for 14 only the transformation sample, and for 18 

patients at both time points. Additionally, only the 38 alterations with at least 5 altered samples 

were considered for the analyses explained in the current and the next section. 

Statistical model. We assumed that the presence or absence of an alteration (y) could be 

explained by the following mixed effects logistic model: 

𝑦𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖𝑗)

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼𝐶𝐴𝑆𝐸[𝑖]𝑗 + 𝛽𝑗𝑇𝑖

𝛼𝐶𝐴𝑆𝐸[𝑖]𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑗, 𝜎𝑗
2)

𝑙𝑜𝑔𝜎𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜆, 𝜏2)

 

where the observed response variable yij is binary and takes value 1 when sample i presents the 

alteration j and 0 otherwise. According to this model, the probability that a sample presents the 

alteration j (pij) depends on two factors: (i) the random intercept αCASE[i]j, which varies case to 

case and is shared by all samples of the same case, and (ii) whether the sample is transformed 

or not (Ti), scaled according to parameter βj. The random intercepts (α) for the different cases 

were assumed to follow a normal distribution with mean μj and standard deviation σj. Finally, a 

common log-normal distribution was assumed for the 40 σj, which are difficult to estimate 

individually, in order to borrow information between them and aid in the estimation of each 

one. Parameters λ and τ control the shape of this log-normal distribution. 

Interpretation. Focusing on the interpretation of some of the parameters, a large and positive βj 

means that alteration j is much more likely to be present in a SMZL-T sample than in a diagnostic 

sample, whereas a large and negative value means that it is more likely to be present only in the 

diagnostic samples. The vector of parameters αj (one α for each case) controls how much the 

affinity of presenting alteration j varies case to case, cases with larger α are more likely to 
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present the alteration in both samples and cases with lower α are more likely to not have it in 

any sample. Therefore, the variation in the values of vector αj, controlled by the parameter σj, 

is an indication of how correlated are the diagnostic and SMZL-T samples in alteration j. A σj 

close to 0 would translate to all values of the vector αj being very similar and close to μj, thus 

presenting the alteration would not depend on the case and therefore no correlation would be 

observed between diagnosis and transformation. On the other hand, a high value of σj would 

translate in very different values in vector αj, who would then define which samples present the 

alteration in both diagnosis and transformation and which ones do not, thus, observing a high 

correlation. It is important to note that α and β have an additive effect to the probability of 

presenting the alteration in the logit scale, so the magnitude of how much β changes the 

probability in the original scale depends upon the distribution of α. 

Priors. The above model was estimated using a fully Bayesian approach, which requires that a 

prior distribution is specified for each parameter of the model. These prior distributions can 

summarize available previous information and help obtaining better estimations of the 

parameters, or just be very vague and let the data tell the full story. Using highly informative 

priors was not possible given the limited/absent literature in transformed SMZL cases, but using 

semi-informative priors to help bound the posterior distribution to plausible values was possible 

based on previous information in regular SMZL cases9,10. For example, the prior distribution 

assigned to each βj was Normal with mean 0 and standard deviation 5, a distribution that 

contains most of its probability mass between -10 and 10. If βj = 10, then a case with a 5% 

probability of presenting the alteration in the diagnosis, would have a probability of almost 

99.9% in the transformation. For a βj = -10, the probability in the transformation would be 

0.0002%. This example highlights that values of βj around -10 or 10 already have an extreme 

effect to the probabilities and are very unlikely to be true, at least for the majority of alterations, 

so low prior plausibility was assigned to these extreme values. Similar logic was used to specify 

priors for the other parameters, which are depicted below: 

𝛽𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52)∀𝑗

𝜇𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(-3.5, 52)𝐼[-12,2]∀𝑗

𝜆 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.5,3)

𝜏 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1.2)

 

where I[-12,2] denotes that the distribution is truncated to the interval[-12, 2]. 

Technical details. Simulations of the posterior distribution were obtained with JAGS v4.3.0.11 

Specifically, we used three chains with an adaptation of 40000 simulations and a thinning 
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interval of 6 for the next 600000, ending with a final 300000 ready to be used as an 

approximation of the posterior distribution once convergence was verified. The large number of 

posterior samples were needed for the statistical test explained in the next section (co-

ocurrence and mutual exclusivity). 

Results. The posterior distributions with the 95% credible intervals (CI) of λ, τ and each μj, σj and 

βj are represented in Supplementary Figure 6. The σj distributions are relatively similar, where a 

large proportion of their mass is contained in the 3 to 7 range. The reason for this similarity is 

that each alteration has little information about its own σj, so the common distribution 

dominates all of them and applies a strong shrinkage. The σj and λ distributions are far from zero, 

an expected result that suggests a global moderate correlation between the diagnostic and 

transformation samples. Supplementary Table 8 contains the point estimate and 95% CI for each 

βj, together with the classical P-value corresponding to test if βj=0. Finally, the posterior 

distributions of the μj, σj and βj parameters can be used to obtain, for each alteration, an 

estimation of the proportion of altered cases in the diagnosis and in the transformation.  

The SMZL-SMZL-T bivariate 95% CI of each alteration are represented as contour lines in 

Supplementary Figure 7. Contour lines far from the red line (equal proportion in diagnosis and 

transformation) indicate larger differences in the proportions of both times. 

Co-occurrence and mutual exclusivity analysis (COME) 

The co-occurrence and mutual exclusivity between any pair of alterations is usually tested using 

the Fisher Exact Test. Due to the complex structure of our data, where there is a mix of 

independent samples and paired ones, this approach was not possible. Thus, we used a posterior 

predictive check of the above statistical model for dependence between alterations, given that 

the model was blind and ignorant about which samples had simultaneously the same 

alterations. Specifically, for each pair of alterations, we compared the observed co-occurrences 

in the data against the number of co-occurrences expected by the model, if two alterations are 

highly associated the observed number of co-occurrences would be much higher than the 

expected number (or lower in the case of mutual exclusivity). 

The first step was to use the posterior distribution of the parameters to simulate replicated 

datasets with the same structure as the original dataset (same number of diagnosis and 

transformation samples, same number of paired and unpaired samples, etc.). Then, for each 

replicate and for each pair of alterations we calculated three variables: the number of altered 

cases in alteration 1 (X1), the number of altered cases in alteration 2 (X2), and the number of co-

occurrences (C). So, for each pair of alterations we ended with 300000 replicates of a vector 
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containing these three values ([X1, X2, C]). The final step was to compute a two sided p-value for 

each pair according to: 

Pup= P(Crep>Cobs |X1
rep = X1

obs, X2
rep = X2

obs) 

Pdown = P(Crep<Cobs |X1
rep = X1

obs, X2
rep = X2

obs) 

p-value = 2 · min(Pup, Pdown) 

where the super index rep references the replicated values and the super index obs references 

the unique observed value. Of note, the p-values were computed conditioning on the number 

of altered cases being equal to the observed values (X1
rep = X1

obs and X2
rep = X2

obs). This 

conditioning was the reason to obtain a large number of posterior simulations, as we needed a 

reasonable number of replicates after selecting those that met the condition. For a specific pair 

of alterations, a low p-value would mean that the observed co-ocurrences are far from the co-

ocurrences expected by a model that assumes independence, therefore, suggesting that those 

alterations are associated. This analysis was performed with the 38 alterations present in at least 

5 samples. The obtained P-values are represented in Supplementary Figure 2. 

Analysis of whole genome sequencing (WGS) 

Raw reads were mapped to the human reference genome (GRCh37) using the BWA-MEM 

algorithm (v0.7.15)12. BAM files were generated, sorted, indexed and optical/PCR duplicates 

flagged using biobambam2 (https://gitlab.com/german.tischler/biobambam2,v2.0.65). FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc, v0.11.5) and Picard tools 

(https://broadinstitute.github.io/picard, v2.10.2) were used to extract quality control metrics. 

Single nucleotide variants (SNV) were analyzed using CaVEMan (cgpCaVEManWrapper, 

v1.12.0)13, Mutect2 (GATK v4.0.2.0)14, and MuSE (v1.0 rc)15 run in paired tumor-normal mode. 

SNV were normalized using bcftools (v1.8)16 and intersected using custom scripts. We applied 

caller-specific filters to remove low quality variants identified by CaVEMan and Mutect2. 

Variants detected by CaVEMan with CLPM>0 and ASMD values <90, <120 or <140 for sequencing 

read lengths of 100, 125, or 150 bp, respectively, were excluded. Variants called by Mutect2 

with MMQ<60 were eliminated. Mutations detected by at least two algorithms were 

considered. Short insertions/deletions (indels) were called by Pindel (cgpPindel, v2.2.3)17, SvABA 

(v7.0.2)18, Mutect214, and Platypus (v0.8.1)19. Pindel, SvABA, and Mutect2 were run in paired 

tumor-normal mode. The somaticMutationDetector.py script 

(https://github.com/andyrimmer/Platypus/blob/master/extensions/Cancer/somaticMutation
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Detector.py) was used to identify somatic indels called by Platypus. Indels were left-aligned and 

normalized using bcftools16 and intersected using custom scripts. Caller-specific filters were 

applied: indels with MMQ<60, MQ<60, and MAPQ<60 for Mutect2, Platypus, and SvABA, 

respectively, were removed. Only indels identified by at least two algorithms were retained for 

downstream analyses. Due to the longitudinal nature of the dataset analyzed, SNV called in one 

timepoint (either SMZL at diagnosis or at transformation) were considered in the second sample 

if at least one read with the mutation was found in the BAM file usingalleleCounter 

(min_map_qual=35, min_base_qual=20, https://github.com/cancerit/alleleCount, v4.0.0). 

Similarly, indels detected in one timepoint were added in the second sample if any of the 

algorithms detected the alteration independently of its filters. Finally, SNV and indels were 

annotated using snpEff/snpSift (v4.3t)20,21 and RefSeq as a reference (GRCh37.p13.RefSeq).  

CNA were called using Battenberg (cgpBattenberg, v3.2.2)22 and ASCAT (ascatNgs, v4.1.0)17. CNA 

within any of the immunoglobulin loci (IGH, IGK, IGL) were filtered out. A consensus of CNA was 

performed by manual inspection and comparison with CNA data from copy number array data. 

Structural variants (SV) were extracted using BRASS (v6.0.5)23, SvABA18, and DELLY2 (v0.8.1)24. 

The SV identified by the different algorithms were intersected using a custom script considering 

a window of 300 bp around the breakpoints. For downstream analyses we kept the SV identified 

by at least two programs if at least one of the algorithms called the alteration with a high quality 

(MAPQ≥90 for BRASS, MAPQ=60 for SvABA and DELLY2). In addition, IgCaller (v1.2)25 was used 

to call SV within any of the immunoglobulin loci. All SV were visually inspected using IGV26.  
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SUPPLEMENTARY FIGURES 

Supplementary Figure S1. Heatmap showing the normalized coverage across the regions 

captured for variant calling in the 59 samples analyzed by NGS. 

Normalized coverage was calculated dividing the mean coverage of each target exon by the 

mean coverage of the sample. Therefore, a normalized coverage of approximately 1 means a 

uniform coverage across the studied regions. Samples are represented in rows, while the 

different exons of each gene are shown in columns, which are grouped by gene. 
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Supplementary Figure S2. SMZL-T cases with a chromothripsis pattern.  

The genome-wide copy number profile of the two SMZL-T cases is represented from 

chromosome 1 to X, and from p-arm to q-arm (chromosome Y is excluded). Copy number gains 

(blue), losses (red) and copy neutral loss of heterozigosity (yellow) are displayed. An IGV window 

shows the altered reads (colored nucleotides) of TP53 gene. (A) Copy number profile of 

SMZL022T. The chromosomes with chromothripsis (chromosomes 2 and 3) and the biallelic 

alteration (loss and SNV) on TP53 are highlighted. (B) Copy number profile of SMZL52T. The 

chromosome 6 with chromothripsis and the biallelic alteration (loss and SNV) on TP53 are 

highlighted.  

  



 
 

10 
 

Supplementary Figure S3. Co-occurrence and mutual exclusivity plot.  

Heatmap representing the co-occurrence (blue) and mutual exclusivity (red) between 

alterations (SNV/indels, and CNA). The higher intensity of the colors (blue and red) colors 

correspond to more significant P-values. Only alterations present in at least 5 samples are 

shown. 
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Supplementary Figure S4. Co-occurrence of genomic aberrations. 

Oncoprint representations of individual cases with genomic aberrations at diagnosis (right) and 

SMZL-T (left). There are represented co-occurrences with P-value<0.005: ARID1A and TP53; 

MYD88 and 8p23-p22 loss.  
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Supplementary Figure S5. Copy number alterations (CNA) and somatic variants (SNV/indel) 

identified in SMZL patients at diagnosis.  

(A) Copy number profile identified by microarray in 22 SMZL patients at diagnosis. Gains (blue), 

and losses (red). Probes are aligned from chromosome 1 to X, from p-arm to q-arm 

(chromosome Y is excluded). The recurrently (n≥3) altered genomic regions and candidate target 

genes are indicated. (B) Oncoprint with the recurrent genetic alterations found in 27 SMZL cases 

at diagnosis. Upper panel: altered genes by decreasing frequency; bottom panel: altered 

genomic regions.  
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Supplementary Figure S6. Box-plots of copy number alterations (CNA) and SNVs/indels 

detected in SMZL. 

Total number of CNA, losses, gains, genes altered and mutations detected in SMLZ cases at 

diagnosis (green), and SMZL-T (pink). P-values were obtained using mixed-effects negative 

binomial models, which account for the partially paired structure of the data. CNA, gains and 

losses, but not mutations, were more present at transformation.  
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Supplementary Figure S7. Estimation Parameters.  

Prior and posterior distributions of all parameters in the statistical model for the 

presence/absence of recurrent alterations in SMZL-T vs SMZL. The distributions are represented 

as violin plots and 95% credible intervals are highlighted with thick solid lines. The SNV/indels 

are labeled in grey, gains in blue, losses in red, and copy neutral loss of heterozigosity in yellow. 

Alterations in TNFAIP3, TP53, 6p gains and loss of 9p21 (CDKN2A/B) were enriched at SMZL-T.  
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Supplementary Figure S8. Bivariate proportions.  

Bivariate posterior distributions of the SMZL proportion of altered cases (x-axis) versus the 

SMZL-T proportion (y-axis). A different alteration is represented in each panel. Contour lines are 

drawn at different levels of the bivariate credible interval (95%, 75%, 50%, 25% and 10%). 5000 

simulations of the posterior distribution are shown as gray points in the background. The 

observed proportions are shown as yellow points. SNV/indels are labeled in grey, and CNA are 

labeled in blue, red, and yellow indicating gain, loss and copy neutral loss of heterozigosity, 

respectively. Alterations in TNFAIP3, TP53, 6p gains and loss of 9p21 (CDKN2A/B) were enriched 

at SMZL-T. 

 

 

 



 
 

16 
 

Supplementary Figure S9. Genomic alterations involving TP53 in SMZL.   

Genomic aberrations involving TP53 gene, integrating SNVs, indels and CNA. Cases with at least 

one alteration in TP53 are represented. The SNV/indels are labeled in grey and losses in red, and 

light gray indicates “not altered”. 
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Supplementary Figure S10. Comparison of mutation frequencies between the present series 

at diagnosis and a published series of 303 SMZL samples. 

Comparison of the frequently mutated genes in the present series at diagnosis (n=27) and the 

series published by Bonfiglio et al., 202110. The genes represented had at least 1 SNV/indel and 

a variant allele frequency higher than 10%.  
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Supplementary Figure S11. Dynamics of genomic aberrations during SMZL transformation.  

Representation of variant allele frequency (VAF) of each SNV/indel at diagnosis (x-axis) and at 

transformation (y-axis). Unique alterations at diagnosis (green) or at transformation (pink) or 

shared alterations (yellow) are represented. 
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Supplementary Figure S12. Histopathological features of case SMZL055 at diagnosis and 

transformation.  

Images A-C-E-G-I correspond to the biopsy obtained at diagnosis, while images B-D-F-H-J 

correspond to the biopsy at the transformation. (A) Histologically, the diagnostic biopsy of the 

spleen showed a classic SMZL pattern, with small B cell nodules replacing the germinal centers 

from the white pulp, effacing the follicular mantles, and infiltrating the red pulp (H&E, 20X, high 

magnification field at 60X). (B) In the lymph node biopsy obtained at transformation, the normal 

architecture of the lymph node was effaced by a proliferation of centroblastic-looking cells 

arranged in a vaguely nodular pattern (H&E, 20X, high magnification field at 60X). (C-D) CD20 

highlights the nodular pattern in the diagnosis (C; CD20, 5X), and an area of diffuse pattern in 

the transformation (D; CD20, 10X). (E-F; Ki67, 10X) Proliferation index assessed with Ki67 

staining was higher in the transformation (F) compared to the diagnosis (E)". (G-H, BCL6, 10X) 

While Bcl6 in the diagnostic biopsy enhanced residual germinal center B-cells (G), Bcl6 

expression in the transformation biopsy was more diffuse and intense (H). This increased 

expression could be attributed to a BCL6 rearrangement detected by FISH with a breakapart 

BCL6 probe (inset, 100X). (I-J) The study of the immunoglobulin heavy chain (IGH) gene showed 

the same clonal peak in both biopsies, confirming a clonal relationship. 



 
 

21 
 

 

 



 
 

22 
 

Supplementary Figure S13. Kaplan-Meier curve of survival from time of transformation (SFT) 

according to international prognostic index (IPI) score.  
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