

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202207334

An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity

Yi Qin, Gaoran Ge, Peng Yang, Liangliang Wang, Yusen Qiao, Guoqing Pan, Huilin Yang, Jiaxiang Bai*, Wenguo Cui* and Dechun Geng*

Supporting Information

An Update on Adipose-derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity

Yi Qin, Gaoran Ge, Peng Yang, Liangliang Wang, Yusen Qiao, Guoqing Pan, Huilin Yang, Jiaxiang Bai*, Wenguo Cui*, Dechun Geng*

Y. Qin, G. Ge, P. Yang, Y. Qiao, Prof. H. Yang, J. Bai, Prof. D. Geng Department of Orthopaedics, The First Affiliated Hospital of Soochow University; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.

E-mail: jxbai1995@163.com (J. Bai); szgengdc@suda.edu.cn (D. Geng)

L. Wang

Department of Orthopaedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.

Prof. G. Pan

Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.

Prof. W. Cui

Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

E-mail: wgcui@sjtu.edu.cn

Y. Qin, G. Ge and P. Yang contributed equally to this work

Application	Models	Methods	Results	Reference
Fat grafting	A fat graft TLR4(-/-) and Nrf2(-/-) mice model	ADSCs were implanted with adipose tissue	ADSCs increased the survival rate of fat grafts via crosstalk between the Nrf2 and TLR4 pathways	[1]
	A fat graft nude mice model	ADSCs were transfected with modRNA encoding VEGF and co-transplanted with human fat	ADSC ^{modVEGF} enhanced angiogenesis and long-term graft survival	[2]
	A fat graft nude mice model	CD34+CD146+ ADSCs subpopulation with enhanced angiogenic potential were isolated and co-transplanted with adipose tissue	Fat enriched CD34+CD146+ ADSCs exhibited improved survival rate with increased expression of proangiogenic factors	[3]
Wound healing	A mouse full-thickness skin defect model	Mice were divided into three groups and received ADSCs by topical application, intravenous injection, and intramuscular injection respectively	ADSCs accelerated wound healing independent of their techniques for administration	[4]
	A rat full-thickness skin defect model	ADSCs administered systemically into the vein or locally around the wound	ADSCs administered by intravenous injection promoted wound healing without homing to the wound bed	[5]

	A rat diabetic wound model	ADSCs were incorporated into PRP and injected subcutaneously	ADSCs combined with PRP induced a higher wound closure rate with enhanced neovascularization	[6]
	A rat diabetic wound model	ADSCs were preconditioned with PBM and grafted into the wound	ADSCs preconditioned with PBM significantly promoted the wound healing both in vitro and in vivo	[7]
	An ovine burn wound model	ADSCs were administered into grafted burn wound locally	ADSCs ameliorated grafted burn wound healing and accelerated wound bed blood flow with higher VEGF expression	[8]
	A mouse healing-impaired wound model	ADSCs sheets were fabricated through stimulation with L-ascorbate 2-phosphate	ADSC sheets promoted wound healing with reduced scar formation	[9]
Bone regeneration	A mouse femoral fracture model	ADSCs were transduced to express FGF and injected to fracture sites	ADSCs overexpressing FGF accelerated fracture healing by facilitating the remodeling of collagen into mineralized callus	[10]
	A mouse tibial infection model	ADSCs were administered into bone defect area after sufficient debridement of infected bones	ADSCs restored bone regeneration after osteomyelitis via upregulation of osteoblastogenesis, and downregulation of B cells and osteoclasts	[11]
	A rat radial defect model	ADSCs were transplanted with HDB	ADSCs-HDB composites showed a strong osteogenic ability	[12]

	A rat femoral defect model	Osteogenically induced ADSCs were combined with	The strategy of time-phase sequential utilization of ADSCs on	
		MBG scaffolds prevascularized by seeding with	MBG scaffolds promoted better bone formation	[13]
		endothelial-induced ADSCs		
	A mouse calvarial defect	ADSCs were assembled with PDGF and biomineral	ADSCs spheroids incorporating PDGF and biominerals exhibited	
	model	coated fibers to form spheroids and implanted into	greater endothelial lineage mRNA expression and osteogenic	[14]
		defect area	capability	
	A mouse calvarial defect	ADSCs were assembled with adenosine and	ADSCs spheroids impregnated with engineered fibers can	
	model	polydopamine coated fibers to form spheroids and	enable adenosine delivery and promote bone regeneration with	[15]
		implanted to defect area	enhanced osteogenic differentiation.	
Skeletal muscle	A rat muscle injury model	ADSCs were pretreated with IL-4 and SDF-1 and	Cytokine-pretreated ADSCs showed an increased ability to	[16]
repair		transplanted into injured muscles	improve skeletal muscle regeneration	
	A mouse muscle ischemia	ADSCs and HIF-1α-silenced ADSCs were	ADSCs promoted ischemic muscle regeneration by inducing M2	
	model	intramuscularly injected into the ischemic muscle	macrophage polarization via the HIF-1 α /IL-10 pathway, while the	[17]
			therapeutic effect decreased in HIF-1 α -silenced ADSCs	

	A mouse muscle injury model	ADSC after implantation were tracked by optical projection tomography	ADSCs ameliorated skeletal muscle regeneration without direct participation in muscle fiber formation	[18]
	A rat muscle ischemia-reperfusion injury model	Co-application of ADSCs and ECSW was conducted	ECSW-ADSCs treatment appeared more effective than either treatment alone in skeletal muscle repair	[19]
	A rabbit anal sphincter injury model	Co-application of ADSCs and a low-level laser therapy was conducted	Laser-ADSCs treatment was superior to either one alone in repair of anal sphincter injury	[20]
Tendon reconstruction	A rat achilles excision defect model	Tenogenically differentiated ADSCs, undifferentiated ADSCs, or hydrogel alone were injected into the achilles excision defect respectively	ADSCs, especially those tenogenically differentiated improved the biomechanical properties of repaired tendon more than hydrogel alone	[21]
	A rat rotator cuff tear model	ADSCs sheets were transplanted to the rotator cuff tear area	ADSCs sheets significantly enhanced the biomechanical properties of repaired rotator cuff	[22]
	A rabbit patellar tendon defect model	ADSCs sheets stimulated by GDF-5 were combined with nanoyarn scaffolds and implanted into patellar	The GDF-5-induced ADSCs sheets expressed higher tenogenesis-related markers and promoted functional tendon	[23]

		tendon defect area	regeneration	
Cartilage	A rat osteochondral defect	ADSCs were transplanted with an injectable	The ADSCs and GCS/DF-PEG hydrogel complexes showed	[24]
regeneration	model	GCS/DF-PEG hydrogel	obvious cartilage regeneration	
	A rat osteoarthritis model	ADSCs were transplanted with an injectable AM hydrogel	ADSCs and AM hydrogel exhibited synergistic anti-inflammatory and chondroprotective effects	[25]
	A rabbit osteochondral	ADSCs and IGF-1 were transplanted with	The dual delivery platform was able to induce chondrogenic	
	defect model	coacervate-embedded composite hydrogels	differentiation of embedded ADSCs and promote cartilage	[26]
			regeneration effectively.	
	A rabbit osteochondral	CD146+ ADSCs were combined with ACECM and	The CD146+ ADSCs-ACECM composites exhibited an excellent	
	defect model	implanted into defect area	inflammation-modulating property and promoted better cartilage	[27]
			regeneration	
	A pig osteochondral defect	ADSCs were combined with ACECM and transplanted	The ADSCs-ACECM composites successfully repaired the	[28]
	model	into defect area	cartilage defect	
Cardiac	A mouse MI model	ADSCs reprogrammed with six transcription factors	The reprogrammed ADSCs exhibited higher survival rate and	[29]

-

repair		(Baf60c, Gata4, Gata6, Klf15, Mef2a, and Myocd) were	significantly reduced the infarction scar area	
		implanted into the infarct border zone		
	A rat MI model	ADSCs were transplanted with an injectable conductive	The ADSCs-loaded conductive hydrogen sulfide-releasing	
		hydrogen sulfide-releasing hydrogel	hydrogel system ameliorated the harsh microenvironment and	[30]
			improved the cardiac functions remarkablely	
	A rat MI model	ADSCs combined with NRG-MPs were injected into the	ADSC-NRG-MPs improved cell engraftment and	
		infarct border zone	neoangiogenesis, favoring a synergy for inducing overall cardiac	[31]
			remodeling	
	A rat MI model	ADSCs and plasmid DNA-eNOs were transplanted with	The ADSCs-plasmid DNA-hydrogel system increased the	
		an injectable conductive hydrogel	expression of eNOs in MI tissue and significantly ameliorated the	[32]
			cardiac functions	
	A mouse MI model	ADSCs were injected into the infarct border zone with	CTRP9 promoted ADSCs survival, stimulated ADSCs migration,	[33]
		CTRP9	and attenuated cardiomyocyte cell death	
Nerve	A rat sciatic nerve injury	ADSCs were induced by FGF9 and administered	The FGF9-induced ADSCs participated in myelin sheath	[34]

regeneration	model	directly	formation and facilitated axonal regrowth to promote nerve	
			regeneration	
	A rat sciatic nerve defect model	ADSCs sheets with activation of neurotrophic genes were administered directly	The functionalized ADSCs sheets stimulated axon regeneration, remyelination, and nerve reinnervation	[35]
	A rat sciatic nerve defect model	ADSCs were loaded with pI-CSMCs and injected into NGCs	The microcarrier-based ADSCs transplantation improved the repair effect of NGCs effectively	[36]
	A rat sciatic nerve injury model	ADSCs were loaded with SPIONs and magnetically recruited to the injured site	Magnetic targeted ADSCs therapy promoted cell recruitment at the injured site and ameliorated recovery over ADSCs treatment alone	[37]
	A rat spinal cord injury model	ADSCs were administrated with combination of low-level laser	Combination of ADSCs and laser improved motor function recovery, hyperalgesia, and allodynia more than ADSCs alone, with increased number of axons around cavity	[38]
	A rat spinal cord injury model	ADSCs were transplanted with a CaNeu hydrogel	The CaNeu-hydrogel-mediated ADSCs delivery promoted axonal growth and functional repair	[39]

Reference

[1] X. Chen, L. Yan, Z. Guo, Z. Chen, Y. Chen, M. Li, C. Huang, X. Zhang, L. Chen, *Cell Death Dis* **2016**, 7, e2369.

[2] F. Yu, N. Witman, D. Yan, S. Zhang, M. Zhou, Y. Yan, Q. Yao, F. Ding, B. Yan, H. Wang, W. Fu, Y. Lu, Y. Fu, *Stem Cell Res Ther* **2020**, 11, 490.

[3] M. R. Borrelli, R. A. Patel, C. Blackshear, S. Vistnes, N. M. Diaz Deleon, S. Adem, A. H. Shen, J. Sokol, A. Momeni, D. Nguyen, M. T. Longaker, D. C. Wan, *Stem Cells Translational Medicine* **2020**, 9, 1389.

[4] H. Kim, M. R. Hyun, S. W. Kim, Stem Cells Int 2019, 2019, 2745640.

[5] K. Kallmeyer, D. André-Lévigne, M. Baquié, K.-H. Krause, M. S. Pepper, B. Pittet-Cuénod, A. Modarressi, *Stem Cells Translational Medicine* **2020**, *9*, 131.

[6] X. Ni, X. Shan, L. Xu, W. Yu, M. Zhang, C. Lei, N. Xu, J. Lin, B. Wang, *Stem Cell Research & Therapy* **2021**, 12, 226.

[7] H. Ahmadi, A. Amini, F. Fadaei Fathabady, A. Mostafavinia, F. Zare, R. Ebrahimpour-Malekshah, M. N. Ghalibaf, M. Abrisham, F. Rezaei, R. Albright, S. K. Ghoreishi, S. Chien, M. Bayat, *Stem Cell Research & Therapy* **2020**, 11, 494.

[8] O. Fujiwara, A. Prasai, D. Perez-Bello, A. El Ayadi, I. Y. Petrov, R. O. Esenaliev, Y. Petrov, D. N. Herndon, C. C. Finnerty, D. S. Prough, P. Enkhbaatar, *Burns Trauma* **2020**, 8, tkaa009.

[9] J. Yu, M. Y. Wang, H. C. Tai, N. C. Cheng, Acta Biomater **2018**, 77, 191.

[10] H. Zhang, A. Kot, Y.-A. E. Lay, F. A. Fierro, H. Chen, N. E. Lane, W. Yao, *Stem Cells Translational Medicine* **2017**, 6, 1880.

[11] J. M. Wagner, F. Reinkemeier, C. Wallner, M. Dadras, J. Huber, S. V. Schmidt, M. Drysch, S. Dittfeld,
H. Jaurich, M. Becerikli, K. Becker, N. Rauch, V. Duhan, M. Lehnhardt, B. Behr, *Stem Cells Translational Medicine* 2019, 8, 1084.

[12] J. Liu, P. Zhou, Y. Long, C. Huang, D. Chen, Stem Cell Research & Therapy 2018, 9, 79.

[13] J. Du, P. Xie, S. Lin, Y. Wu, D. Zeng, Y. Li, X. Jiang, ACS Appl Mater Interfaces 2018, 10, 28340.

[14] J. Lee, S. Lee, T. Ahmad, S. K. Madhurakkat Perikamana, J. Lee, E. M. Kim, H. Shin, *Biomaterials* **2020**, 255, 120192.

[15] T. Ahmad, H. Byun, J. Lee, S. K. Madhurakat Perikamana, Y. M. Shin, E. M. Kim, H. Shin, *Biomaterials* **2020**, 230, 119652.

[16] M. Zimowska, K. Archacka, E. Brzoska, J. Bem, A. M. Czerwinska, I. Grabowska, P. Kasprzycka, E. Michalczewska, I. Stepaniec, M. Soszynska, K. Ilach, W. Streminska, M. A. Ciemerych, *International Journal of Molecular Sciences* **2020**, 21.

[17] J. Liu, P. Qiu, J. Qin, X. Wu, X. Wang, X. Yang, B. Li, W. Zhang, K. Ye, Z. Peng, X. Lu, *Stem Cells* (*Dayton, Ohio*) **2020**, 38, 1307.

[18] A. Gorecka, S. Salemi, D. Haralampieva, F. Moalli, D. Stroka, D. Candinas, D. Eberli, L. Brügger, *Stem Cell Research & Therapy* **2018**, 9, 195.

[19] T.-C. Yin, R.-W. Wu, J.-J. Sheu, P.-H. Sung, K.-H. Chen, J. Y. Chiang, S.-K. Hsueh, W.-J. Chung, P.-Y. Lin,
S.-L. Hsu, C.-C. Chen, C.-Y. Chen, P.-L. Shao, H.-K. Yip, *Oxid Med Cell Longev* **2018**, 2018, 6012636.

[20] A. Sarveazad, A. Babahajian, A. Yari, C. K. Rayner, M. Mokhtare, A. Babaei-Ghazani, S. Agah, B. Mahjoubi, J. Shamseddin, M. Yousefifard, *Stem Cell Research & Therapy* **2019**, 10, 367.

[21] J. B. Norelli, D. P. Plaza, D. N. Stal, A. M. Varghese, H. Liang, D. A. Grande, *J Tissue Eng* **2018**, 9, 2041731418811183.

[22] M. J. Shin, I. K. Shim, D. M. Kim, J. H. Choi, Y. N. Lee, I.-H. Jeon, H. Kim, D. Park, E. Kholinne, H.-S.

Yang, K. H. Koh, Am J Sports Med **2020**, 48, 3347.

[23] S. Chen, J. Wang, Y. Chen, X. Mo, C. Fan, *Mater Sci Eng C Mater Biol Appl* **2021**, 119, 111506.

[24] J. Yang, X. Jing, Z. Wang, X. Liu, X. Zhu, T. Lei, X. Li, W. Guo, H. Rao, M. Chen, K. Luan, X. Sui, Y. Wei,
S. Liu, Q. Guo, *Front Bioeng Biotechnol* **2021**, 9, 607709.

[25] M. Bhattacharjee, J. L. Escobar Ivirico, H.-M. Kan, S. Shah, T. Otsuka, R. Bordett, M. Barajaa, N. Nagiah, R. Pandey, L. S. Nair, C. T. Laurencin, *Proc Natl Acad Sci U S A* **2022**, 119.

[26] H. Cho, J. Kim, S. Kim, Y. C. Jung, Y. Wang, B.-J. Kang, K. Kim, J Control Release 2020, 327, 284.

[27] X. Li, W. Guo, K. Zha, X. Jing, M. Wang, Y. Zhang, C. Hao, S. Gao, M. Chen, Z. Yuan, Z. Wang, X. Zhang, S. Shen, H. Li, B. Zhang, H. Xian, Y. Zhang, X. Sui, L. Qin, J. Peng, S. Liu, S. Lu, Q. Guo, *Theranostics* **2019**, 9, 5105.

[28] L. Lu, X. Shang, B. Liu, W. Chen, Y. Zhang, S. Liu, X. Sui, A. Wang, Q. Guo, *Journal of Cellular Physiology* **2021**, 236, 4244.

[29] S. Narita, K. Unno, K. Kato, Y. Okuno, Y. Sato, Y. Tsumura, Y. Fujikawa, Y. Shimizu, R. Hayashida, K. Kondo, R. Shibata, T. Murohara, *iScience* **2022**, 25, 104651.

[30] W. Liang, J. Chen, L. Li, M. Li, X. Wei, B. Tan, Y. Shang, G. Fan, W. Wang, W. Liu, ACS Appl Mater Interfaces 2019, 11, 14619.

[31] P. Díaz-Herráez, L. Saludas, S. Pascual-Gil, T. Simón-Yarza, G. Abizanda, F. Prósper, E. Garbayo, M. J. Blanco-Prieto, *J Control Release* **2017**, 249, 23.

[32] W. Wang, B. Tan, J. Chen, R. Bao, X. Zhang, S. Liang, Y. Shang, W. Liang, Y. Cui, G. Fan, H. Jia, W. Liu, *Biomaterials* **2018**, 160, 69.

[33] W. Yan, Y. Guo, L. Tao, W. B. Lau, L. Gan, Z. Yan, R. Guo, E. Gao, G. W. Wong, W. L. Koch, Y. Wang, X.-L. Ma, *Circulation* **2017**, 136, 2162.

[34] C.-W. Huang, S.-Y. Lu, T.-C. Huang, B.-M. Huang, H. S. Sun, S.-H. Yang, J.-I. Chuang, Y.-Y. Hsueh, Y.-T. Wu, C.-C. Wu, *Theranostics* **2020**, 10, 2817.

[35] M.-N. Hsu, H.-T. Liao, V. A. Truong, K.-L. Huang, F.-J. Yu, H.-H. Chen, T. K. N. Nguyen, P. Makarevich, Y. Parfyonova, Y.-C. Hu, *Theranostics* **2019**, *9*, 6099.

[36] Y. Sun, X. Chi, H. Meng, M. Ma, J. Wang, Z. Feng, Q. Quan, G. Liu, Y. Wang, Y. Xie, Y. Zheng, J. Peng, *Bioactive Materials* **2021**, 6, 3987.

[37] P. A. Soto, M. Vence, G. M. Piñero, D. F. Coral, V. Usach, D. Muraca, A. Cueto, A. Roig, M. B. F. van Raap, C. P. Setton-Avruj, *Acta Biomaterialia* **2021**, 130, 234.

[38] A. Sarveazad, A. Janzadeh, G. Taheripak, S. Dameni, M. Yousefifard, F. Nasirinezhad, *Stem Cell Research & Therapy* **2019**, 10, 183.

[39] X. Yuan, W. Yuan, L. Ding, M. Shi, L. Luo, Y. Wan, J. Oh, Y. Zhou, L. Bian, D. Y. B. Deng, *Biomaterials* **2021**, 279, 121190.