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Materials 

All the chemical reagents were directly used without further purification. Cesium 

iodide (99.999%), lead bromide (PbBr2, 99.999%), Tin(II) chloride dihydrate 

(>99.995%), N,N-Dimethylformamide (DMF, anhydrous, 99.8%), dimethyl sulfoxide 

(DMSO, anhydrous, >99.9%), chlorobenzene (anhydrous, 99.8%), acetonitrile 

(anhydrous, 99.8%), bis(trifluoromethane) sulfonamide lithium salt (Li-TFSI, 

99.95%), and 4-tert-butyl pyridine (t-BP, 98%), urea (99.0-100.5%) were purchased 

from Sigma-Aldrich. Formamidinium iodide (FAI, >99.99%) and methylammonium 



 

 

iodide (MAI, >99.99%) were purchased from Greatcell Solar. Lead iodide (PbI2, 

99.99%), and thioglycolic acid (>95.0%) were purchased from Tokyo Chemical 

Industry (TCI). Periodic acid (99%) was purchased from Macklin. Hydrochloric acid 

(HCl), ethanol, and 2-propanol were purchased from Beijing TongGuang Fine 

Chemicals Company. FTO glass (12-14 Ohm/□) was purchased from Advanced 

Election Technology Co., Ltd. Methylamine chloride (MACl, 99.5%) was purchased 

from Xi’an Polymer Light Technology Co., Ltd. Spiro-OMeTAD (99.5%) and FK209 

Co(III) TFSI salt (>99%) were purchased from Lumtec. 

Preparation of SnO2 layer by chemical bathing deposition (CBD) 

The CBD solution was prepared by dissolving 0.5 g urea in 40 mL deionized 

water, followed by the addition of 10 μL thioglycolic acid and 500 μL HCl (37 wt%). 

After sonication for 5 minutes, 0.11 g SnCl2·2H2O (99.995%) was dissolved in the 

CBD solution. The solution was stored at 8~10 ℃ for 72 h before use. 20 mL CBD 

solution was diluted with 100 mL de-ionized water, followed by sonication for 5 

minutes. The temperature during the sonication process needs to be carefully 

controlled below 30 ℃ to prevent the occurrence of the chemical reaction.  

FTO glasses were etched and cleaned in detergent, deionized water, acetone, 

ethanol, and 2-propanol. Before use, the substrates were dried with N2 and exposed to 

an O2 plasma atmosphere for more than 20 min. As-cleaned FTO glasses were 

horizontally placed in the CBD solution, followed by a heating process at 70 ℃ for 4 

h. The FTO glasses were cleaned with deionized water 3~4 times. For the 

PAPT-modified samples, the FTO glasses were immersed in periodic acid solutions 

with different concentrations varied from 1 mM to 4 mM for 5 minutes. All the FTO 

glasses were dried with N2 and annealed on a hot plate at 150 ℃ for 40 minutes. 

Fabrication of perovskite solar cells 

1.45M perovskite precursor solution (CsI: FAI: MAI: PbI2: PbBr2: MACl=:0.05: 

0.81: 0.04: 0.98: 0.02: 0.20) were dissolved in DMF: DMSO=4: 1 solvent, as 

previously reported.[1] The precursor solution was spin-coated on the FTO substrate 

with a SnO2 layer at 1000 rpm for 12 s and 5000 rpm for 28s. 160 μL chlorobenzene 

was dropped at 10s before the end of the second spinning process, followed by 



 

 

annealing at 100 ℃ for 10 min and 150 ℃ for 10 min. The Spiro-OMeTAD solution 

was prepared by dissolving 0.1260 g Spiro-OMeTAD, 32 μL Li-TFSI solution (520 

mg/mL in acetonitrile), 14 μL Co-TFSI (375 mg/mL in acetonitrile), 55 μL t-BP in 1.4 

mL chlorobenzene. The spiro-OMeTAD solution was spin-coated on the perovskite 

film at 4000 rpm for 30 s. Finally, a 70 nm thick gold electrode was deposited by 

thermal evaporation. 

Fabrication of perovskite solar modules (PSMs) via slot-die coating:  

For the fabrication of PSMs, FTO substrates with areas of 3×3 cm2 were first 

etched with a 1024-nm CO2 laser (P1 scribing). Then, the SnO2 films were fabricated 

by the CBD method. The slot-die machine was purchased from DaZheng (Jiangsu) 

Micro-Nano Tech. Co., Ltd. (China). Then, the perovskite precursor ink was diluted to 

a molar concentration of 0.8 M and slot-die coated on the substrates accompanied by 

a gas-quenching process (with a substrate-moving speed of 2 mm/s). The blowing gas 

pressure from the gas knife was 0.1 MPa. After that, the substrate was transferred onto 

a hot plate and annealed at 150 ℃ for 10 mins. Then, the Spiro-OMeTAD solution 

was slot-died coated at a speed of 2 mm/s. P2-scribe was conducted using a 

532-nm-laser. Then, the P2-scribed substrate was evaporated with a mixed top 

electrode of MoOx (5 nm)/ copper (100 nm). Afterward, the module was scribed again 

to complete the series connection using the same laser scriber. The ratio of the 

dead-area width to the active-area width was 1:9 (0.05mm to 0.45 mm), leading to a 

GFF of 90%. 

Computational methods 

First-principle calculations were performed with the density functional theory 

(DFT) as implemented in Vienna ab-initio Simulation Package (VASP) package.[2] 

The augmented wave (PAW) method[3, 4] was used for the interactions between ions 

and valence electrons with Perdew-Burke-Ernzerhof (PBE)[5, 6] functional. The plane 

wave energy cutoff was set to 450 eV. A sufficiently large vacuum layer of 15 Å was 

used to avoid the periodic image interactions along the z-direction. The atomic force 

and energy convergence criteria thresholds were set to 0.02 eV and 1×10−5 eV/ Å, 

respectively. The k-point mesh of 3×3×1 was employed for SnO2 surface geometric 



 

 

optimization and adsorption energy calculation. The van der Waals (vdW) interaction 

was taken into account with the Grimme type at the DFT-D3 level.[7] 

Characterization 

The morphology of the perovskite films was observed by field-emission 

scanning electron microscopy (FESEM, LEO1530, Zeiss, Germany) and atomic force 

microscopy (AFM, Cypher, Oxford Instruments, UK). The crystal structures were 

characterized by X-ray diffraction (XRD, D8 Advance Diffractometer, Bruker, 

Germany) with Cu Kα (1.5406 Å) radiation operating at 40 kV. The 

Ultraviolet-Visible light spectrum was obtained using a UV-Vis spectrophotometer 

(Lambda 1050, Perkin Elmer, USA). The photoluminescence (PL) spectra were 

characterized by a fluorescence spectrometry (FLS920, Edinburgh Instruments, UK). 

For steady-state PL spectra, the spectra were obtained by illuminating the sample with 

a monochromatic xenon lamp source (λexc=460 nm). For time-resolved PL (TRPL), 

the spectra were acquired with samples photoexcited by a pulsed laser beam (405 nm). 

The XPS spectra were recorded by an X-ray photoelectron spectrometer (ESCALAB 

250Xi, Thermo Fisher SCIENTIFIC INC., UK) with Al Kα radiation (hν = 1486.6 eV) 

as the illumination source. The photoelectron spectroscopy in the air (PESA) was 

performed with the AC-2 instrument (AC-2, RIKEN Instruments, Japan). The Fourier 

transform infrared spectroscopy (FTIR) measurements were performed on the infrared 

spectrometer (VERTEX 70V, Bruker, Germany) in ATR (Attenuated Total Reflection) 

mode. The photocurrent density-voltage (J-V) curves were obtained by a digital 

source meter (2400, Keithley Instruments, USA). The perovskite solar cells were 

illuminated under AM 1.5G (100 mW/cm2) by solar simulators (91192 and 94082A, 

Newport, USA) calibrated with a standard crystalline silicon solar cell. The 

monochromatic incident photon-to-electron conversion efficiency (IPCE) spectra 

were obtained by the quantum efficiency system (QEX10, PV measurements, USA) in 

a DC mode. 

 



 

 

 

Figure S1 The structure image of four kinds of oxygen defects on the surface of CBD-coated SnO2 

films: (a) terminal hydroxyl (b) bridge hydroxyl (c) bridge-oxygen vacancy (d) deep oxygen vacancy. 

 

 

 

Figure S2 XPS spectra of SnO2 films treated with H2SO4 and HI: (a) Sn 3d (b) O 1s (c) I 3d 

 

 



 

 

 

Figure S3 XPS spectra on depth analysis mode of SnO2 films treated by several acids. (a) Sn 3d (b) I 

3d 

 

 

 

Figure S4 UPS spectrum of the corresponding perovskite film. 

 

 



 

 

 

Figure S5 Optical bandgap calculated by Tauc plot of the perovskite films. 

 

 

 

Figure S6 Mott-Gurney curves (J1/2-V) for the calculation of electron mobility in pristine SnO2 and 

PAPT-modified SnO2 layer based on a device structure of FTO/ETL/Ag. 

 

The electron mobility can be calculated by Mott-Gurney Law: 
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Where � is free carrier mobility, �� is permittivity of free space, �� is the dielectric 



 

 

constant of the material, � is the applied voltage and � is the distance between 

electrodes.[8] 

 

 

 

Figure S7 Transmittance spectra of control and PAPT-modified SnO2 films. 

 

 

 
Figure S8 AFM images of pristine SnO2 films and PAPT-modified SnO2 films. 

 

 



 

 

 

Figure S9 SEM image of perovskite films on control and PAPT-modified SnO2 films. 

 

 

Table S1 Fitting parameters of the bi-exponential decay function in TRPL spectra of the corresponding 

perovskite films deposited on the FTO/SnO2 substrate using a 460 nm excitation light source.  

Samples A1 τ1 (ns) A2 τ2 (ns) τavg (ns) 

Control SnO2 0.48 12.42 0.52 146.92 82.70 

PAPT-modified SnO2 0.64 6.30 0.36 128.91 50.55 

 

The average carrier lifetime (����) was calculated according to the equation:  

���� =
���� + ����
�� + ��

 

 

 

Table S2 R2 value of the dark J-V characteristics of the electron-only devices. 

Samples Ohmic region TFL region SCLC region 

Control SnO2 0.9983 0.9997 0.9997 

PAPT-modified SnO2 0.9999 0.9987 0.9991 

 

 

 

 

 



 

 

Table S3 The champion photovoltaic performance of PSCs with/without Phe addition 

Conditions JSC (mA/cm2) VOC (V) FF (%) PCE (%) 

Control 25.09 1.06 74.28 19.77 

1 mM PAPT 23.96 1.09 79.67 20.81 

2 mM PAPT 25.02 1.09 81.55 22.25 

3 mM PAPT 24.97 1.09 79.06 21.58 

4 mM PAPT 24.91 1.06 78.47 20.77 

 

 

 

Figure S10 VOC and JSC statistic distribution of PSCs with different amounts of periodic acid treatment. 

 

 

 

Figure S11 Electric capacity-voltage (C-V) measurement of the corresponding devices. 



 

 

 

Figure S12 DLCP measurements of corresponding devices. Note: The x-axis has been adjusted to start 

from the SnO2/perovskite interface.[9] 

 

 

Table S4 EIS fitting results for PSCs based on different SnO2 films under dark condition. 

Samples RS (Ω) Rrec (Ω) 

Pristine SnO2 29.49 240.6 

PAPT-modified SnO2 23.96 399.7 
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