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Supplementary material and methods 

Subjects 

Study participants were selected according to the inclusion/exclusion criteria approved by the 

regional government of Oberbayern. An approval by the medical ethical committee and individual 

informed consent were obtained in advance of the sample collections. Fourteen Darier patients were 

recruited at the Department of Dermatology and Allergy of the Technical University of Munich and 

followed up all along the course of this study. Due to a lack of an established scoring approach for DD, 

a scoring was developed based on a scoring approach for atopic dermatitis, the SCORAD (Scoring of 

Atopic Dermatitis) (1), and all DD patients were examined accordingly. The objective score for DD (ODD 

Score) used here includes a position for ‘severity’ of DD lesions (A: hyperkeratosis, induration of 

papules, erosions) and a position for ‘extent’ of DD lesions (B: total affected surface area of affected 

skin). The global DD score (DD Score) is calculated by summing up ODD and the subjective score (C: 

pain and pruritus) as detected using a visual analog scale (VAS; Supplementary Figure S1). The PGA 

evaluation was well aligned with the established ODD scoring and the latter was therefore used for 

separating study participants into groups of “mild” (ODD-score: <20), “moderate” (ODD-score: 20-35) 

and “severe” (ODD scores: >35). Furthermore, patients’ odour was assessed as this is one of the 

predominant burdens in DD. The odour intensity was scored by an experienced dermatologist on a 

scale from zero (not perceptible) to ten (very intense) (2) and DD patients were categorized into odour 

groups of “mild” (odour score ≤3), “moderate” (odour score 4-6) and “intense” (odour score ≥7) (Table 

1). For the microbial swabs, sample collection guidelines included in the Human Microbiome Project (3) 

were applied. Participants were asked to not use any topical corticosteroids at least 3 days before 

sampling and no systemic antibiotics or corticosteroids for at least 4 weeks. They were also instructed 

to not shower at least 24h to 48 hours before swabs’ collection. Inclusion criteria for healthy controls 

consisted of the absence of any current or prior chronic skin disorders or use of systemic antibiotics in 

the preceding 6 months.  

Specimen collection   
 

Skin swabs were collected from non-inflamed (NIDS) and inflamed (IDS) axillar (AX), 

submammary (SM), and inguinal (IN) regions of DD patients and corresponding sites of their healthy 

matched controls. The NIDS swabs were collected from the unaffected skin areas at a distance of 5 to 

10 centimetres from the IDS. Samples were harvested using the forensic 4N6FLOQ swabs (COPAN flock 

technologies, Italy) previously soaked in sterile 0.15M NaCl supplemented with 0.1% Tween-20. Briefly, 

6 cm2 skin areas were swabbed back and forth approximately 50 times applying a firm pressure, then 

swirled in a 2 ml collection tube containing 400μl sterile 0.15M NaCl solution. Control swabs were 
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maintained in the air for 20 seconds, then similarly processed to exclude swab’s contaminating reads. 

To minimize sample cross-contamination, a fresh pair of sterile gloves was worn at every sampling, the 

collected samples are stored at +4°C and processed for DNA extraction within 24hours (4). Microbial 

DNA was extracted using a benzonase pre-digest approach that we optimized to better estimate the 

living skin microbiota (5) using the QIAamp DNA Microbiome kit (Qiagen, Hilden, Germany). This 

approach ensures an efficient elimination of DNA from dead bacteria as well as skin host DNA, thus 

enabling a better overview of living and active fraction of the skin microbiome. It also uses an optimized 

combination of mechanical and chemical lysis ensuring effective disruption of both Gram negative and 

Gram positive bacteria. Bacterial DNA was purified through adsorption to silica membrane columns 

having undergone prior DNA decontamination processes. DNA samples were collected in 50μl elution 

buffer and stored at -30°C until further processing. Skin biopsies were collected by the recruiting 

dermatologist from 9 NIDS and 10 IDS skin areas on ten patients and stored in RNAlater (Sigma-Aldrich, 

Germany) at -80°C. Total RNA was isolated from bulk biopsies using the miRNeasy Mini Kit (Qiagen, 

Germany) according to manufacturer’s protocol. This kit includes QIAzol Lysis Reagent which combined 

phenol and guanidine thiocyanate for effective tissue lysis. It also inhibits RNases and remove most of 

cellular DNA. Purified RNA samples were stored at -80°C until further use.  

 

16S rRNA gene amplification 

The following 16S rRNA gene universal primers targeting the V3-V4 regions were used in this 

study: Forward:S-D-Bact-0341-b-S-

17(5’→3’)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG. 

Reverse:S-D-Bact-0785-a-A-

21(5’→3’)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC. To each 5 μl 

of extracted template DNA we added 12.5 μL of a NEBNext Ultra QII 5 Master Mix (New England 

Biolabs. Frankfurt, Germany), 1.25 μL of each forward and reverse primers (10 pmol/μl) and 5μl of 

DEPC water. A first PCR was performed as follows: 30s at 98°C, followed by 30 amplification cycles of 

10s at 98°C, 30s at 60°C, and 30s at 72°C, and finally 2 min at 72°C. A second PCR was conducted with 

dual indexing Illumina adaptors from the Nextera XT Index Kit v2 Set B (Illumina, California, USA). One 

μl of purified amplicon sample (10 ng) was mixed with 2.5 μl of each Illumina index, 12.5 μl of the 

NEBNext Ultra QII 5 Master Mix and 6.5 μl of DEPC water. The amplification setting was as following: 

30s at 98°C, followed by 8 amplification cycles of 10s at 98°C, 30s at 55°C, and 30s at 72°C, with a final 

heating step at 72°C for 2 min (6). Indexed PCR products were purified using CleanNGS beads (CleanNA, 

Netherlands) and analysed with Agilent DNA 7500 Chip (Agilent, Waldbronn, Germany). DNA 

concentrations were measured using QuantiFluor dsDNA System (Promega. Madison, USA) using a 

Quantus fluorometer (Promega. Madison, USA). The composite pool was prepared by combining 4 nM 
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of purified DNA samples ensuring equal representations of barcoded libraries. The final pool was 

sequenced on an Illumina MiSeq platform with a PE300 v3 cartridge generating up to 25 million of 

2×300 bp reads. Control samples did not produce measurable amplicons and therefore have been 

added to the pool in equal volumes instead. 

16S downstream sequence processing and statistical analyses 

The obtained V3-V4 amplicon reads were analysed following the UPARSE method (7) as implemented 

in the online IMNGS platform (8). Briefly, primer and barcode sequences were trimmed from each 

read, and sequences shorter than 200bp, low-quality and chimeras were discarded. The cleaned 

sequences were clustered into operational taxonomic units (OTUs) based on a similarity cut-off of 97% 

and taxonomically classified with the RDB classifier (9). Rarefaction curves were additionally generated 

to assess sampling saturation. Downstream analysis including diversity, taxonomy binning, serial group 

comparison and correlations were performed using R scripts available in the Rhea pipeline (10). These 

scripts rely on the R packages ade4, GUniFrac, phangorn, Hmisc, corrplot, plotrix, 

PerformanceAnalytics, reshape, ggplot2, gridExtra, grid, ggrepel, gtable and their dependencies (R 

software 4.0.2).  

A batch effect correction has been performed using the Combat (11) tool to account for the major 

confounders, namely the sampling site, the gender and age of participants, being the major source of 

batch effect according to our PVCA analysis (Supplementary Figure S3C). To correct the age effect, the 

participants have been categorized into four age groups as follows: below 25, between 25 and 40, 

between 40 and 65, and over 65. In our analysis, we used a prevalence cut-off of 0.25% and abundance 

cut-off of 0.5. Based on these cut-offs, 154 OTUs were removed from a total number of 387. Taxa 

below the abundance cut-off were zeroed and skipped in the statistical analysis to not inflate the 

significance. As shown in Table 1, a number of patients received therapy (retinoids or low dose 

naltrexone) during microbiome samplings, and thus we have assessed their impact on the microbiome 

of the IDS and NIDS skin. To validate the obtained α-diversity data, we calculated the effective richness 

that takes into account the effect of sequencing depth and spurious taxa (12). Visualization of distance 

matrices in a space of two dimensions was performed by PCoA (principal coordinate analysis) plots of 

β-diversity. A PERMANOVA test (vegan::adonis) was achieved to determine if the separation between 

groups was significant, as a whole and in pairs. The non-parametric Kruskal Wallis Rank Sum test was 

used for multiple group comparisons. The Mann Whitney test was performed when only two groups 

were compared, using paired statistics for IDS vs NIDS comparison and unpaired statistics for Control 

vs IDS and Control vs NIDS comparisons. Multiple test corrections were performed with the Benjamini 

and Hochberg procedure and corrected P values of less than 0.05 considered as significant.  

A correlation analysis has been performed using the Pearson’s coefficient to investigate the 

interactions between OTUs or between OTUs and metavariables. Taking into consideration that in 
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addition to inflamed skin we also sampled non-inflamed DD skin, the number of samples is thus twice 

as big as for the control group. To correct for that, we considered twice the control group for the 

analysis in order to balance the patient vs control comparisons. Due to the compositional nature and 

high sparsity of the taxonomic variables, for correlation analysis of taxonomic data with metavariables, 

we performed a centred log-ratio transformation to remove the compositional constrains from the 

taxonomic data. In addition, taxa with a relative abundance value of zero (taxonomic zeros) were 

considered as missing data and excluded from the correlation’s calculation. Following this 

transformation, the table was centred and scaled, to adjust for differences in the offset and fold 

changes respectively, and the Pearson correlation for all pairs was calculated. The significance was 

assessed before and after FDR correction. The linear discriminant analysis effect size (LEFSe) (13) was 

performed to search for a linear combination of variables (OTUs) that best separates the groups. It 

employs Kruskal-Wallis rank sum test to detect OTUs with significant differential abundances between 

groups, the pairwise Wilcoxon test between sub-groups, followed by a linear discriminant analysis 

(LDA) applied on taxa that meet the significance threshold to estimate their effect size. The OTUs that 

pass the pairwise Wilcoxon test are considered as potential biomarkers and are ranked according to 

their LDA scores. An additional heatmap shows the abundance of the key microbial taxa across the 

different groups of skin phenotype and sampling areas. Although based on relative abundances values, 

the displayed heatmap rather shows the categories of increase in relative abundance (High, low). 

When the calculated LDA score is high for a given taxon, the heat map will indicate with which group 

this taxon is associated if it displays a high abundance.  

We constructed furthermore an interaction network using the SparCC (14) (Sparse Correlations for 

Compositional data) method to define associations between the different taxa. This approach uses a 

log ratio transformation and performs iterations to identify taxa pairs that are outliers to background 

correlations. Each node represents a taxon and its size is proportional to the number of connections. 

Taxa are only connected if the correlation meets a p-value cut-off of 0.05 and a correlation coefficient 

of 0.3. Considering that taxonomic variables usually differ from metavariables by their compositional 

nature and high sparsity a centred log-ratio transformation was used to remove the compositional 

constrains from the taxonomic variables. Key correlations with the Staphylococcus genus are 

highlighted in the figure with blue and red lines respectively representing negative and positive 

correlations. The calculated correlations were corrected for false discovery rates (FDR).  

 

RNAseq library preparation and downstream analysis  

RNASeq libraries were generated from purified RNA samples using the TruSeq Stranded Total 

RNA Kit (Illumina) according to manufacturer’s protocol. Obtained libraries were sequenced on an 
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Illumina HiSeq4000 as paired-end with a read length of 2x 150 bp and an average output of 40 Mio 

reads per sample and end. STAR aligner was used to perform sequence alignment with the human 

reference genome hg38 (15). Short and low quality reads were discarded and the obtained clean reads 

were processed using the DESEq2 package for differential gene expression analysis (FCH ≥ 1.5, adj.p< 

0.05 and FDR< 0.05) (16, 17). Batch effects were analysed using combat (11) implemented in the sva 

package  to correct for effects of sequencing, age, gender and skin sampling areas. Reads were 

normalized to counts per million (CPM) and only genes with levels above 0.5 CPM retained. Counts 

data were log transformed for clustering and principal component analysis (PCA) analysis using EdgeR 

(18). We constructed a network for the most DEGs between IDS and NIDS skin transcriptomes using 

the STRINGS platform (19) and visualized it on Cytoscape 3 (20, 21). Gene clusters were identified with 

ClusterViz using the MCODE algorithm (Molecular complex detection). The number of gene clusters 

was determined using the elbow method (22). Pathway analysis was performed using the gene 

ontology analysis (GO) approach including a comparison of different data bases as Biological process, 

KEGG (Kyoto Encyclopedia of genes and genomes), Biocarta and reactome (23). Gene set enrichment 

analysis (GSEA) has been performed using the GSEA 4.1.0 platform through which DD transcriptome 

data were analysed for enrichment in different gene set clusters implemented in databases including 

KEGG, GOBP (Gene ontology for biological process), HP (Human phenotype), PID (Pathway interaction 

database). GSEA is a computational approach that determines whether a defined set of genes shows 

statistically significant differences between two groups. It calculates an enrichment score (ES) by 

walking down the ranked-ordered list of genes, increasing a running-sum statistic when a gene is 

present in the gene set and decreasing it if absent. A positive and negative ES respectively indicate an 

enrichment at the top or the bottom of the ranked gene list. The Th17 gene set cluster was selected 

from the study of Hu et 2017 (24) and the psoriasis gene set cluster from the SUAREZ FARINAS psoriasis 

cohort (25). Correlations between abundant taxa and DD transcriptome signatures were analysed on 

R, corrected for multiple testing using the Benjamini−Hochberg method then displayed on Cytoscape 

3.  

 

Histological analysis 

Biopsies collected from NIDS and IDS skin were fixed in 4% paraformaldehyde for 24 hours at 

room temperature, then embedded in paraffin and sectioned at 4 μm. Hematoxylin and eosin staining 

was performed using the automated tissue stainer COT 20 (MEDITE, Burgdorf, Germany). The 

immunohistochemical staining (IHC) was performed on 4 µm sections of formalin-fixed paraffin-

embedded (FFPE) specimens using the immunostainer BOND-MAX (Zytomed Systems, Berlin, 

Germany). Briefly, the FFPE sections were incubated with the human anti-CD4 antibody (1:2, 
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monoclonal rabbit anti-CD4 IgG, (SP35), Zytomed Systems, Berlin, Germany) or the anti-IL-17A 

antibody (1:20, polyclonal goat IgG (AF-317-NA), bio-techne, Wiesbaden, Germany), then detected 

using the BOND Polymer Refine Red Detection (Leica Biosystems, Newcastle upon Tyne, UK). 

Representative images were taken by an experienced comparative pathologist and typical disease 

features of acantholysis, corps ronds, grains and cellular infiltrates were examined. 

 

Artwork 

Figure 1c and Supplementary Figure 1b were created with BioRender.com. 
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