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Supplementary Texts 31 

Text S1. Data splitting strategy for model training. 32 

To comprehensively validate the performance of EpiGePT in predicting chromatin accessibility, 33 

we adopted three different data splitting strategies in the DNase1 prediction experiment to 34 

verify the model's prediction ability when facing new genomic regions and cell types, which 35 

can meet researchers' usage needs to the maximum extent. Firstly, cross-cell type prediction 36 

refers to splitting the training and testing sets according to cell types in the same genomic 37 

region, where the cell types in the testing set have not appeared in the training set (Figs. S1B). 38 

Secondly, cross-genomic region prediction refers to splitting the training and testing sets 39 

according to genomic regions in the same cell type (Figs. S1A). Thirdly, simultaneous cross-40 

cell type and genomic region prediction, where the prediction can be performed in completely 41 

novel cell types and genomic regions with the expression of transcription factors in that cell 42 

type. The training set needs to subset both cell types and genomic regions (Figs. S1C). To 43 

complete the latter two auxiliary predictions, we also split the data into 5 folds according to 44 

both cell types and genomic regions, so that both cross-validation can be performed in one 45 

round of training, but this will also reduce the amount of training and testing data. 46 
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Text S2. System design and implementation of the web server. 47 

EpiGePT-online runs on a Linux-based Apache web server (https://www.apache.org) and 48 

utilizes the Bootstrap v3.3.7 framework (https://getbootstrap.com/docs/3.3/) for its web-49 

frontend display. The backend of the server uses PHP v7.4.5 (http://www.php.net). The 50 

platform is compatible with the majority of mainstream web browsers, including Google 51 

Chrome, Firefox, Microsoft Edge, and Apple Safari. 52 
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Text S3. Running time of the EpiGePT and baseline methods. 53 

To demonstrate the computational efficiency of our model, we recorded the runtime of 54 

EpiGePT and baseline methods for one epoch on two sets of experiments, with different data 55 

sizes and input sequence lengths. Firstly, in the DNase signal prediction experiment on 129 56 

cell types, with an input sequence length of 10kbp and using the same training data, Enformer 57 

requires approximately 3 hours and 4 minutes to complete one epoch, while EpiGePT only 58 

takes 2 hours and 17 minutes. In contrast, ChromDragoNN2, which uses a genomic bin rather 59 

than a long region as the model input, requires 24 hours for pre-training and 8 hours for fine-60 

tuning. In this case, the batch size of ChromDragoNN was set to 1024, which is equivalent to 61 

EpiGePT using a batch size of around 20. This modeling and computation approach presents 62 

challenges in terms of computational efficiency when dealing with large amounts of data. 63 

DeepCAGE3 faces similar efficiency issues using the same approach. Even with a batch size 64 

of 256 on a single GPU, it still takes nearly 10 hours to complete one epoch of training. 65 

Secondly, we also recorded the running time of the models under larger-scale data and longer 66 

input sequences. When the number of input genomic bins increased from 50 to 1000, which 67 

corresponds to an input sequence length of approximately 128k, EpiGePT took approximately 68 

3 hours to complete one epoch of training on 20 cell lines and 13,300 genomic regions, while 69 

Enformer required approximately 27 hours to train one epoch, as it required a longer input 70 

sequence of approximately 190kbp. Furthermore, EpiGePT without TF module (EpiGePT-seq) 71 

had approximately 1/4 of the parameters of Enformer and took approximately 2 hours and 40 72 

minutes to train. In terms of performance, EpiGePT-seq performed similarly to Enformer on 73 

this dataset. This also explains why we chose to simplify the pure sequence model rather than 74 

directly adding a TF module to Enformer. 75 
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Text S4. Implementation of Enformer model and Enformer+. 76 

To ensure a fair comparison between models and prevent the possibility of information 77 

leakage, we implemented the Enformer4 model ourselves and trained it on our own collected 78 

data. Due to differences in dataset size and partitioning compared to Enformer, we reduced 79 

the number of encoder layers in Enformer to prevent overfitting. Thus, we reduced the number 80 

of encoder layers in Enformer to 3. Additionally, we introduced Enformer+ to enable a fair 81 

comparison between EpiGePT and Enformer in locus-level prediction. As Enformer takes only 82 

the DNA sequence as input, it tends to predict the same values for the same locus in different 83 

cell types, resulting in a loss of locus-level prediction ability. To address this, we incorporated 84 

the binding status and expression of the same transcription factors in Enformer+, and 85 

compared it to EpiGePT's performance on the same tasks. 86 
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Supplementary Figures 87 

Fig. S1 88 

 

Fig. S1. Three data partitioning strategies for model training and testing. (A) Cross 89 

genomic region prediction. The training and testing datasets utilized the expression profiles of 90 

identical cell types, but were evaluated on novel genomic regions for prediction. (B) Cross cell 91 

type prediction. The training and testing datasets utilized the same genomic regions, but were 92 

evaluated on novel cell types for prediction. (C) Cross genomic region and cell type prediction. 93 

The cell types and genomic regions used in the training and test sets were both different. 94 
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Fig. S2 95 

 

Fig. S2. EpiGePT's performance in predicting DNase-seq and other epigenetic signals 96 

is demonstrated in (A) through visualization of predicted results for DNase and CTCF signals. 97 

EpiGePT is able to make accurate predictions for these signals, as well as for the regulatory 98 

relationships within a genomic region of 20th chromosome ranging from 61,100,000 to 99 

61,150,000. (B) EpiGePT and baseline methods were compared for their performance in 100 

predicting epigenetic signals in new cell types and genomic regions (cross-both prediction). 101 

The left panel shows the Pearson correlation coefficient, and the right panel shows the 102 
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Spearman correlation coefficient. (C) Locus level prediction of DNase signal. We predicted a 103 

value for each genomic locus, and calculated the correlation coefficient between the predicted 104 

values and true values for the same locus in different cell types. (D) Visualization of predicted 105 

signals, such as the comparison between predicted and true values in a 128kbp region (from 106 

133,632,000 to 133,760,000) on chromosome 12, shows that the presence of a large number 107 

of zeros in both the true and predicted signals can limit the correlation between the two signals. 108 
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Fig. S3 109 

 

Fig. S3. Performance of EpiGePT and baseline methods on chromatin states 110 

classification, multiple epigenomic profiles prediction and causal variants 111 

classification. (A) Binary classification of chromatin states for distinguishing functional 112 

regions on the chromatin based on the annotation data from ChromHMM-15-states. (B) Four-113 

class chromatin state classification is used to distinguish functional regions on the chromatin, 114 

including TSS, potential enhancers, other functional regions, and non-functional regions 115 

based on the annotation data from ChromHMM-15-states. * indicates that the p-value is less 116 

than 0.005 under a one-sided Wilcoxon hypothesis test , ** indicates that the p-value is less 117 

than 0.005 under a one-sided Wilcoxon hypothesis test, and *** indicates that the p-value is 118 

less than 1e-3 under this hypothesis test. (C) Cross-cell-type prediction of 8 epigenomic 119 

signals at 8 test cell types. Each dot denotes the Pearson correlation coefficient of the predicted 120 

signals and true signals at the specific cell types on a specific epigenomic signal. (D) The performance 121 
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of EpiGePT and Enformer in discriminating causal eQTLs across 48 tissues, each dot 122 

representing the average auPRC obtained from 5-fold cross-validation on a specific tissue. 123 
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Fig. S4 124 

 

Fig. S4. Ablation analysis of the EpiGePT model. (A) Ablation analysis on the TF module 125 

and the Sequence module, we observed a decrease in predictive performance for each 126 

module across eight chromatin epigenetic signals, as evidenced by a reduction in Pearson 127 

correlation coefficient. (B) Ablation analysis on the Multi-task module. The green shaded area 128 

in the figure represents the results of multi-signal cross-cell-type predictions, while the red 129 

shaded area represents the results of training and predicting on each signal individually. It can 130 
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be observed that the multi-task module has a positive effect on the model performance across 131 

all signals. (C) Ablation analysis of the number of the training cell types. When the number of 132 

training cell types increases while the number of testing cell types remains constant, there is 133 

an increasing trend in performance as the number of training cell types increases. 134 
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Fig. S5 135 

 

Fig. S5. Case application of the EpiGePT-online. Users can choose either single locus 136 

annotation or multi-region annotation on EpiGePT-online, and each genomic region requires 137 

a length of 128kbp. Users need to upload the TPM values of transcription factors expression 138 

simultaneously. After annotation, users can enter the result page and download the predicted 139 

files. The prediction accuracy is 128bp genomic bin, and users can obtain the predicted signals 140 

of these eight epigenetic modifications. 141 
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Fig. S6 142 

 

Fig S6. Model architecture of EpiGePT for multiple epigenomic signals prediction. (A) 143 

The computational process of EpiGePT. The sequence module employs a stack of five 144 

convolutional layers followed by pooling operations, resulting in representations that capture 145 

sequence patterns. The TF module integrates motif binding information and gene expression 146 

data to represent cell-specific information. The Transformer module takes the genomic bin 147 
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sequences mentioned above as input and learns the interaction relationships between bins, 148 

capturing the interactions among them. Finally, the obtained embeddings are mapped to the 149 

eight types of epigenomic signals through a fully connected layer. (B) Specific details of the 150 

convolutional block involve the fusion of 1D convolution, ReLU activation function, and max 151 

pooling operation to achieve changes in the feature dimension O and extract bin-level features. 152 

153 
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Fig. S7 154 

 

Fig. S7. The fine-tuning performance of the EpiGePT model on predicting potential 155 

enhancer-promoter regulatory networks. (A) The performance (measured by auROC and 156 

auPRC) of the fine-tuned EpiGePT model and baseline methods (DeepTACT and Kmer) on 157 

HiChIP loops data in distinguishing enhancer-gene pairs at various distance ranges (0-20 kbp, 158 

20-40 kbp and 40-64 kbp). (B) The performance of the fine-tuned EpiGePT model and 159 

baseline methods on HiChIP loops data in distinguishing enhancer-gene pairs under 1:2 160 

positive-negative sample ratio on GM12878 cell line. (C) The performance of the fine-tuned 161 

EpiGePT model and baseline methods on HiChIP loops data in distinguishing enhancer-gene 162 

pairs under 1:2 positive-negative sample ratio on K562 cell line. (D) The ROC and PR curves 163 

of EpiGePT and baseline methods for predicting HiChIP loops from the GM12878 cell type.  164 
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Fig. S8 165 

 

Fig. S8. The performance (auROC) of attention score of EpiGePT in distinguishing 166 

regulatory element-gene pairs at different distance ranges. (A) The performance of 167 

EpiGePT in distinguishing enhancer-gene pairs at different distance ranges on the data from 168 

Gasperini et al5. (B) The performance of EpiGePT in distinguishing enhancer-gene pairs at 169 

different distance ranges on the data from Fulco et al6. 170 
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Supplementary Tables 

Table S1. The information of DNase-seq bam file across 129 biosamples from the ENCODE7 project. 

Table S2. The information of RNA-seq tab-separated values (tsv) file across 129 biosamples from the ENCODE project. 

Table S3. The information of DNase-seq, CTCF and other six Histone markers bam file across 28 cell lines or tissues from the ENCODE project. 

Table S4. The information of RNA-seq tab-separated values (tsv) file across 28 cell lines or tissues from the ENCODE project. 

Table S5. The preprocessed expression data of 711 human transcription factors from the ENCODE project across 129 biosamples. 

Table S6. The preprocessed expression data of 711 human transcription factors from the ENCODE project across 28 cell lines or tissues. 

Table S7. The order and names of epigenomes of the expression matrices across 56 epigenomes from the ROADMAP8 project. 

Table S8. The preprocessed expression data of 642 human transcription factors across 56 epigenomes from the ROADMAP project. 
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