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Figure S1. Schematic visualization of the eight (χ1, χ3) rotamer classes of a Gln–Gln pair, in which
a side-chain–side-chain hydrogen bonding interaction could take place. The side-chains of the pair are
located on neighbouring β-strands of an antiparallel β-sheet inside the polyQ amyloid core. Depending on
the H-bond direction, the eight distinct structural classes are categorized into two forms: ↓ and ↑.
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Figure S2. The stabilities S(t) (see Eq. (1) in Methods of the main text) of the 30 candidate structures for
the polyQ amyloid core examined with up-to-1-µs molecular dynamics simulations using three distinct
force fields: CHARMM36m (Huang et al. (2017)), AMBER14SB (Maier et al. (2015)) and OPLSAA/M
(Robertson et al. (2015)). Strikingly, both M1 and M2 models demonstrated complete stability when
simulated with AMBER14SB and OPLSAA/M, while in CHARMM36m none of the 30 candidates did.
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Figure S3. (A) Spatial arrangement of the side-chain and backbone atoms in the polyQ amyloid core
model M2. Dashed lines represent the distances between the Nϵ atoms of the “a” and “b” types of Gln
residues and their nearest backbone O atoms (brown), as well as the Nϵ–Oϵ distances between side-chains
(black). (B) Side-chain–backbone distances (left panel), i.e., the distances between the Nϵ atoms of the “a”
and “b” types of Gln residues and their closest backbone O atoms. Side-chain–side-chain distances (right
panel), i.e., the Nϵ–Oϵ distances between the side chains, either from “a” to “b” or from “b” to “a”. The
calculations are presented for both the M1 and M2 models, using two force fields: OPLSAA/M (green)
and AMBER14SB (orange); error bars show standard deviation.
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Figure S4. Both polyQ15 models M1 (orange) and M2 (green) remained stable throughout 1-µs MD
simulations in both the AMBER14SB (left) and OPLSAA/M (right) force fields. Shown are the mean
χ1 dihedral angles in type “a” (red) and “b” (blue) Gln side-chains, calculated over consecutive 20-ns
windows; error bars show standard deviation.
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Figure S5. Distributions of the (A) χ1, (B) χ2, and (C) ψ dihedral angles in the M1 (orange lines) and
M2 (green lines) models of the D2Q15K2 fibril obtained from 1-µs MD simulations using the OPLSAA/M
(left) and AMBER14SB (right) force fields. The upper panels show the type “a” conformers (red-shaded
distributions) and the lower panels the type “b” (blue-shaded). The gray-shaded regions represent the
ssNMR-informed constraints. The dashed vertical lines depict the mean values of the corresponding
dihedral angles.
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Figure S6. Illustration of the structural differences between the (A) M1 and (B) M2 models, visualized
through views along the fibril axis z (top panels) and along the β-strand direction x (bottom panels). The
yellow boxes highlight backbone atoms. (C) Sheet-to-sheet (left panel) and strand-to-strand (right panel)
distances calculated for both the M1 and M2 models of polyQ15 using the AMBER14SB (orange) and
OPLSAA/M (green) force fields. The dashed black horizontal lines corresponds to the data obtained from
X-ray experiments Perutz et al. (2002); Sikorski and Atkins (2005). Error bars represent standard deviation.
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Figure S7. Distributions of the side-chain dihedral angles for Gln residues in the M2 model of the polyQ15
fibril. The water-facing side-chains (top) show more disorder than those internal to the polyQ amyloid core
(bottom), but are nonetheless constrained to eight varyingly prominent specific rotamer states.
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Figure S8. Ramachandran plot for the β-turn residues (Q38 and Q39) in the Q44-HttEx1 polyQ amyloid
core. The distribution was obtained over the last 1µs of the 5-µs MD simulation. The β-turn was initially
prepared as a type I’ conformer (whose canonical dihedrals are indicated with the red/white plus-signs);
however, during the simulation it transitioned to the type II (black/green crosses).

Figure S9. Ramachandran plots of the N17, Q44, and PRD domains elucidate the characteristic secondary
structures present in these three disparate domains of the HttEx1 protein: α-helical, β-sheet, and PPII-
helical, respectively. The distributions were obtained over the last 1µs of the 5-µs MD simulation. For
clarity, log10(probability density) values below 1.3, characterized primarily by noise, have been excluded.
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Figure S10. Ramachandran plots for residues 2–36 in the Q44-HttEx1 fibril. The plots showcase the
conformational space explored by each individual residue, revealing variations in backbone torsion angles
across the protein structure. The colorbar is calibrated such that a normalized value of 1 corresponds to the
bin with the highest frequency among all protein residues. Each bin spans one degree in both ϕ and ψ. The
distributions were obtained over the last 1µs of the 5-µs MD simulation.
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Figure S11. Ramachandran plots for residues 37–71 in the Q44-HttEx1 fibril. The plots showcase the
conformational space explored by each individual residue, revealing variations in backbone torsion angles
across the protein structure. The colorbar is calibrated such that a normalized value of 1 corresponds to the
bin with the highest frequency among all protein residues. Each bin spans one degree in both ϕ and ψ. The
distributions were obtained over the last 1µs of the 5-µs MD simulation.
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Figure S12. Ramachandran plots for residues 72–106 in the Q44-HttEx1 fibril. The plots showcase the
conformational space explored by each individual residue, revealing variations in backbone torsion angles
across the protein structure. The colorbar is calibrated such that a normalized value of 1 corresponds to the
bin with the highest frequency among all protein residues. Each bin spans one degree in both ϕ and ψ. The
distributions were obtained over the last 1µs of the 5-µs MD simulation.
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Figure S13. Ramachandran plots for residues 107–110 in the Q44-HttEx1 fibril. The plots showcase the
conformational space explored by each individual residue, revealing variations in backbone torsion angles
across the protein structure. The colorbar is calibrated such that a normalized value of 1 corresponds to the
bin with the highest frequency among all protein residues. Each bin spans one degree in both ϕ and ψ. The
distributions were obtained over the last 1µs of the 5-µs MD simulation.
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