## Science Advances

## Supplementary Materials for

## Proton-conductive aromatic membranes reinforced with poly(vinylidene fluoride) nanofibers for high-performance durable fuel cells

Fanghua Liu et al.

Corresponding author: Kenji Miyatake, miyatake@yamanashi.ac.jp

*Sci. Adv.* **9**, eadg9057 (2023) DOI: 10.1126/sciadv.adg9057

## This PDF file includes:

Figs. S1 to S17 Tables S1 to S5



Fig. S1. Contact angles of different solvents on the porous nonwoven PVDF fabric and porous ePTFE substrate at room temperature.

**Fig. S2. Images of the reinforcement materials and reinforced membranes.** (A) Porous nonwoven PVDF nanofiber fabric. (B) Porous ePTFE substrate. (C) Reinforced SPP-TFP-4.0-PVDF membrane. (D) Reinforced SPP-TFP-4.0-ePTFE membrane.



**Fig. S3. Elemental mapping images of the reinforced membranes.** (**A**) and (**B**) Sulfur element. (**C**) and (**D**) Fluorine element. Analyzed by EDS (energy-dispersive X-ray spectroscopy) at acceleration voltage of 15.0 kV.



Fig. S4. Dependence of the proton conductivity on the water uptake from 20% to 95% RH at 80 °C.



Fig. S5. The normalized water uptake and proton conductivity of reinforced membranes relative to their parent SPP-TFP-4.0 membrane under different relative humidity at 80 °C. (A) SPP-TFP-4.0-PVDF. (B) SPP-TFP-4.0-ePTFE. (C) Normalized proton conductivity divided by normalized water uptake as a function of relative humidity for SPP-TFP-4.0-PVDF and SPP-TFP-4.0-ePTFE.



Fig. S6. Stress-strain curves of porous ePTFE substrate in machine direction (MD) and nonwoven PVDF fabric at 80 °C and 60% RH.



Fig. S7. The viscoelastic properties of SPP-TFP-4.0-ePTFE and Nafion XL in different directions, SPP-TFP-4.0-PVDF, parent SPP-TFP-4.0 and Nafion NRE 211. At 80 °C, relative humidity dependence of Storge modulus (E') (A), loss modulus (E'') (B) and tan  $\delta$  (=E''/E') (C). At 60% RH, temperature dependence of Storge modulus (E') (D), loss modulus (E'') (E) and tan  $\delta$  (=E''/E') (F).



Fig. S8. CV curves with corresponding ECSA at 40 °C and 100% RH. (A) CV curves. (B) Calculated ECSA values from CV curves. The CV was obtained by sweeping the potential from 0.075 to 1.0 V vs. RHE (reversible hydrogen electrode) at a scan rate of 20 mV s<sup>-1</sup> for 50 cycles, supplying hydrogen (0.1 slpm) and nitrogen (0.1 slpm) to the anode and cathode, respectively, with no back pressure. The catalyst loading was 0.5 mg cm<sup>-2</sup> for all electrodes.



**Fig. S9. Fuel cell performance.** IR curves at 80 °C and 30% RH (**A**). Power density as a function of the current density at 80 °C and 100% RH (**B**), 80 °C and 30% RH (**C**), 100 °C and 53% RH (**D**), 100 °C and 30% RH (**E**), and 120 °C and 30% RH (**F**). The catalyst loading was 0.5 mg cm<sup>-2</sup> for both electrodes supplying hydrogen and air to the anode and cathode, respectively, with no back pressure.



Fig. S10. Nyquist plots at 80 °C and 100% RH, feeding hydrogen (0.1 slpm) to the anode and air (0.1 slpm) to the cathode with no back pressure.



**Fig. S11. IR-corrected polarization curves.** (**A**) 80 °C and 100% RH, (**B**) 80 °C and 30% RH, (**C**) 100 °C and 53% RH (**D**) 100 °C and 30% RH and (**E**) 120 °C and 30% RH. The catalyst loading was 0.5 mg cm<sup>-2</sup> for all electrodes supplying hydrogen and air to the anode and cathode, respectively, with no back pressure.



**Fig. S12. Tafel curves.** (**A**) 80 °C and 100% RH, (**B**) 80 °C and 30% RH, (**C**) 100 °C and 53% RH (**D**) 100 °C and 30% RH and (**E**) 120 °C and 30% RH. The catalyst loading was 0.5 mg cm<sup>-2</sup> for all electrodes, supplying hydrogen and air to the anode and cathode, respectively, with no backpressure.



**Fig. S13. Combined chemical (OCV hold) and mechanical (wet/dry cycling) durability at 90 °C without back pressure.** The testing time and cycle number dependence of the OCV and ohmic resistance of SPP-TFP-4.0 (**A**), SPP-TFP-4.0-ePTFE (**B**) and Nafion NRE 211 (**C**). (**D**) Changes in OCV and ohmic resistance in each hydration regime for SPP-TFP-4.0-PVDF membrane. The tested cell loaded 0.2 and 0.1 mgPt cm<sup>-2</sup> at the anode (hydrogen, 0.06 slpm) and cathode (air, 0.06 slpm), respectively. The measurement was carried out at OCV, where the frequent wet/dry cycling was conducted via switching wet gas (100% RH; 15 s) and dry gas (0% RH; 2 s).



**Fig. S14.** The CCMs images after combined chemical and mechanical durability test. (A) SPP-TFP-4.0. (B) SPP-TFP-4.0-ePTFE.



Fig. S15. The mechanical properties of SPP-TFP-4.0-PVDF and Nafion XL before and after combined chemical and mechanical durability test at 80 °C and 60% RH.



Fig. S16. The SEM images of SPP-TFP-4.0-PVDF and Nafion XL after combined chemical and mechanical durability test. (A) and (B) Surface. (C) and (D) Cross-section. A Hitachi SU3500 device was used at an accelerating voltage of 15.0 kV.



Fig. S17. Preparation process for the reinforced membranes using the push-coating method.

|                   | IEC                     |       | Domain size (nm) |               |           | Water  |       | Swelling <sup>d</sup> at r.t. |         |
|-------------------|-------------------------|-------|------------------|---------------|-----------|--------|-------|-------------------------------|---------|
| Membrane          | (mmol g <sup>-1</sup> ) |       |                  |               | Thickness | uptake | ¢ (%) | (                             | (%)     |
|                   |                         | TD ch |                  |               | (µm)      | 20%    | 95%   | In-                           | Through |
|                   | IEC <sup>a</sup>        | IEC⁵  | hydrophilic      | hydrophobic   |           | RH     | RH    | plane                         | -plane  |
| SPP-TFP-4.0       |                         | 3.40  | $2.50\pm0.30$    | $1.84\pm0.15$ | 27        | 16.1   | 92.3  | 19.9                          | 46.6    |
| SPP-TFP-4.0-PVDF  | 2.96                    | 2.01  | $1.11\pm0.24$    | $1.93\pm0.27$ | 14        | 4.6    | 38.9  | 5.1                           | 6.3     |
| SPP-TFP-4.0-ePTFE | 2.95                    | 2.13  | $1.74\pm0.33$    | $1.70\pm0.20$ | 16        | 9.9    | 70.5  | 13.5                          | 14.3    |
| Nafion NRE 211    |                         | 0.97  |                  |               | 25        | 4.7    | 19.7  | 8.5                           | 12.0    |
| Nafion XL         |                         | 0.71  |                  |               | 30        | 3.7    | 14.4  | 4.3                           | 6.6     |

**Table S1.** The titrated IEC, hydrophilic and hydrophobic domain sizes, thickness, water uptake and swelling ratio of membranes.

<sup>a</sup>: calculated from SEM images;

<sup>b</sup>: titrated IEC obtained by acid-base titration;

<sup>c</sup>: measured at 80 °C;

<sup>d</sup>: measured at r.t. (room temperature) in water.

**Table S2.** The obtained hydrogen permeability from LSV curves, and the calculated hydrogen permeability of the membranes considering the thickness and the proton conductivity at 80 °C and 100% RH.

|                   | Thickness <sup>a</sup> | Hydrogen                  |                                                                                         | Proton                    |  |
|-------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------|---------------------------|--|
| Membrane          | (µm)                   | permeability <sup>b</sup> | (10 <sup>9</sup> mm = 1 H = -1 mm <sup>-2</sup> mm)                                     | conductivity <sup>d</sup> |  |
|                   |                        | $(mA cm^{-2})$            | $(10^{\circ} \text{ mmol } \text{H}_2 \text{ s}^{\circ} \text{ cm}^{\circ} \text{ cm})$ | $(mS cm^{-1})$            |  |
| SPP-TFP-4.0       | 27                     | 0.90                      | 6.3                                                                                     | 550.1                     |  |
| SPP-TFP-4.0-PVDF  | 14                     | 1.06                      | 3.8                                                                                     | 281.8                     |  |
| SPP-TFP-4.0-ePTFE | 16                     | 1.15                      | 4.8                                                                                     | 387.5                     |  |
| Nafion NRE 211    | 25                     | 1.27                      | 8.2                                                                                     | 187.9                     |  |
| Nafion XL         | 30                     | 1.07                      | 8.3                                                                                     | 139.5                     |  |

<sup>a</sup>: measured by micrometer.

<sup>b</sup>: obtained from LSV curves at 80 °C and 100% RH;

<sup>c</sup>: calculated by considering the thickness of membrane;

<sup>d</sup>: measured at 80 °C and 95% RH.

|                   | wet/        | Pt loading at                        | OCV und   | er wet/dry | Ohmic<br>resistance                                  | Test        | Cycle         |
|-------------------|-------------|--------------------------------------|-----------|------------|------------------------------------------------------|-------------|---------------|
| Membrane          | time<br>(s) | anode/cathode (mg cm <sup>-2</sup> ) | Initial   | final      | under wet/dry<br>state (m $\Omega$ cm <sup>2</sup> ) | time<br>(h) | number<br>(N) |
| SPP-TFP-4.0       | 15/2        | 0.2/0.1                              | 0.91/0.87 | 0.72/0.60  | 0.092/0.361                                          | 5.5         | 1,173         |
| SPP-TFP-4.0-PVDF  | 15/2        | 0.2/0.1                              | 0.91/0.86 | 0.72/0.64  | 0.147/1.288                                          | 703.0       | 148,870       |
| SPP-TFP-4.0-ePTFE | 15/2        | 0.2/0.1                              | 0.82/0.79 | 0.72/0.68  | 0.282/0.892                                          | 1.1         | 233           |
| Nafion NRE 211    | 15/2        | 0.2/0.1                              | 0.91/0.86 | 0.76/0.61  | 0.271/0.755                                          | 41.5        | 8,788         |
| Nafion XL         | 15/2        | 0.2/0.1                              | 0.91/0.86 | 0.86/0.31  | 0.241/0.613                                          | 415.6       | 88,008        |

Table S3. The test conditions and results for combined chemical and mechanical durability.

|                  | Yield stress |       | Maximum    |       | Young's       |       | Rupture energy        |       |
|------------------|--------------|-------|------------|-------|---------------|-------|-----------------------|-------|
| Membrane         | (MPa)        |       | strain (%) |       | modulus (GPa) |       | (MJ m <sup>-3</sup> ) |       |
|                  | Before       | After | Before     | After | Before        | After | Before                | After |
| SPP-TFP-4.0-PVDF | 35.5         | 32.2  | 126.4      | 94.0  | 0.50          | 0.55  | 28.1                  | 27.4  |
| Nafion XL-MD     | 24.0         | 15.7  | 321.2      | 151.1 | 0.16          | 0.08  | 64.3                  | 19.5  |
| Nafion XL-TD     | 22.0         | 12.0  | 383.0      | 241.2 | 0.06          | 0.05  | 48.8                  | 19.3  |

**Table S4.** The mechanical properties of SPP-TFP-4.0-PVDF and Nafion XL at 80 °C and 60%RH before and after combined chemical and mechanical durability test.

| Substrate | Porosity<br>(%) | Pore size<br>(µm) | Fiber diameter<br>(nm) | Thickness<br>(µm) | Source                |
|-----------|-----------------|-------------------|------------------------|-------------------|-----------------------|
| PVDF      | 78              | 0.2857            | 100                    | 7                 | Shinshu<br>University |
| ePTFE     | 85              | 0.4~0.7           | -                      | 11                | Valqua LTD            |

 Table S5. The physical parameters of porous substrates.