Supplementary Information

Contact Between Water Vapor and Silicate Surface Causes Abiotic Formation of Reactive Oxygen Species in an Anoxic Atmosphere

Yu Xia, a,b,c Juan Li,b,d Yuanzheng Zhang,d Yongguang Yin,e Bolei Chen,a,b,e,* Yong Liang,a,b,* Guibin

Jiange, and Richard N. Zarec,*

^aState Key Laboratory of Precision Blasting, Jianghan University, Wuhan, 430056, China.

^bHubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China.

^cDepartment of Chemistry, Stanford University, Stanford, CA 94305, USA.

^dSchool of Physics and Technology, Wuhan University, Wuhan, 430072, China.

eState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 10085, China.

*Bolei Chen https://orcid.org/ 0000-0001-8552-3334;

Yong Liang https://orcid.org/ 0000-0002-3718-0987;

Richard N. Zare https://orcid.org/ 0000-0001-5266-4253

Email: bl chen@jhun.edu.cn; ly76@263.net; zare@stanford.edu

Figure S1 | The schematic of the experimental setup.

Figure S2 | DFT calculation of Gibbs Free Energy (ΔG) about the reaction of H_2O_2 , $H_3^+O\cdot OH$ and $H_2O\cdot OH$ with titanium potassium oxalate.

Figure S3 | (A) Mass spectral results of DI water, 1.5 ppm H_2O_2 and sample in positive ion mode, (B) Mass spectral results of DI water, 1.5 ppm H_2O_2 and sample reacted with PTO solution in equal volume.

Figure S4 | Signal intensity at m/z 36 versus time for 1.5 ppm H₂O₂ solution. (positive ion mode of mass spectrometry) exposed to 340 nm UV radiation, which is turned off, on, and off.

Figure S5 | The relationship between the amount of reactive oxygen species in the leaving gas and reaction time during the contact process.

Figure S6 | The FT-IR spectra of a flat SiO_2 substrate before and after contact with water vapor. The arrow points to the H_2O_2 absorption feature.

Figure S7 | (A) The reaction mechanism of TMB oxidization. (B) The digital images of the end-product of TMB oxidized by hydroxyl radicals.

Figure S8 | A typical FT-IR spectrum of commercial SiO₂ nanoparticles.

Figure S9 | The surface charge density of the SiO_2 substrate before and after contact with water vapor.

Figure S10 | The surface charge density of the SiO_2 substrate following contact with water vapor and then heating, which is repeated three times.