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1. Supplementary Figures11

Fig. S1. State-to-state transitions. For each of the nine distinct states, we can see how many times each state transitions another (self-loops are not shown for visual clarity).
We can see that the various states have meaningful differences between each-other (e.g. the visual system or the somato-motor systems both transition from redundancy- to
synergy-dominated configurations over time), however, within a state, the patterns are largely symmetrical across hemispheres.
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2. Partial Entropy Decomposition12

The partial entropy decomposition (PED) provides a framework with which we can extract all of the meaningful structure13

in a system of interacting random variables (1). By structure, we are referring to the (possibly higher-order) patterns of14

information-sharing between elements. Consider a system X = {X1, X2, . . . , XN}, comprised of N interacting, discrete random15

variables: the set of all informative relationships between elements (and ensembles of elements) in X forms its structure. We16

begin by defining the total entropy of X using the Shannon entropy:17

H(X) := −
∑
x∈X

P(x) log2 P(x) [1]18

Where x indicates a particular configuration of X and X is the support set of X. This joint entropy quantifies, on average,19

how much it is possible to know about X (i.e. how many bits of information would be required, on average, to reduce our20

uncertainty to zero). The entropy is a summary statistic describing an entire distribution P(X):21

H(X) = E[− log2 P(x)] [2]22

Where − log2 P(x) is the local entropy h(x). We can intuitively understand the local entropy with the logic of local23

probability mass exclusions (2, 5). Suppose that we observe X = x. Upon observing x, we can immediately rule out the24

possibility that X is in any state ¬x, and by ruling out those possibilities, we exclude all the probability mass associated with25

P(X = ¬x). If P(x) is very low, then upon learning X = x, we exclude a large amount of probability mass (1− P(x)), and26

consequently, h(x) is high. Conversely, if P(x) is large, then only a small amount of probability mass is excluded, and so h(x)27

is low.28

A. Quantifying Shared Entropy. The measure h(x) is a very crude one: it gives us a single summary statistic that describes the29

behaviour of the whole without making reference to the structure of the relationships between x’s constituent elements. If30

X has some non-trivial structure that integrates multiple elements (or ensembles of elements), then we propose that those31

elements must share entropy. This notion of shared entropy forms the cornerstone of the PED. The way all of the parts of32

X share entropy forms the structure of the system. In the original proposal of the PED by Ince (1), shared entropy (Hcs)33

was defined using the local co-information, which treats the entropy of variables as sets and defines the shared entropy using34

inclusion-exclusion criteria. Unfortunately, as discussed by Finn and Lizier, the set-theoretic interpretation of mutlivariate35

mutual information is complex, as both the expected and local co-information can be negative (6), and the PED computed36

using Ince’s proposed method can result in negative values that are difficult to interpret.37

Here, we propose an alternative way to operationalize the notion of redundant entropy by saying that two variables38

X1, X2 ∈ X share entropy if they induce the same exclusions: i.e. if learning X1 or X2 rules out the same configurations of the39

whole (5). Our goal, then, becomes to determine how the entropy of the whole is parcellated out over (potentially multivariate)40

sharing modes between parts.41

P X1 X2

P00 0 0
P01 0 1
P10 1 0
P11 1 1

Table S1. Joint entropy of two discrete random variables that together make up the macro-variable X.

In our toy system given by Table S1, suppose we learn that X1 = 0 OR X2 = 0. Only one global state is excluded: X = (1, 1)42

is incompatible with both possibilities, regardless of which is true. Consequently we are only excluding P11 from the overall43

distribution. We can quantify this shared entropy using the local entropy of shared exclusions hsx:44

hx
sx({1}{2}) = − log2 P(x1 ∪ x2) [3]45

Here, we are adapting the partial entropy notation first introduced by Ince in (15). The function hx
sx({1}{2}) quantifies46

the total probability mass of P(X) excluded by learning either X1 = x1 or X2 = x2. Said differently, it is the amount of47

information that could be learned from either variable alone. Importantly, while it is a measure of dependency, it is distinct48

from the classic mutual information. Unlike the hcs function (1) (and several other redundant mutual information functions, e.g.49

(7, 9, 15)), our measure hsx operates on the entire joint probability distribution, rather than demanding that redundancy be a50

function of the pairwise marginals. This sets it apart from other redundancy functions, although it is not unique in this regard51

(the isx redundancy function shares this property). For a more detailed discussion of this issue, see Supplementary Material.52

So far, we have restricted our examples to the simple case of two variables, x1 and x2, however, we are interested in53

the general case of information common to arbitrarily large, potentially overlapping subsets of a system that has adopted a54

particular state x. This requires first enumerating the set of subsets, s, which we will call the set of sources. It is equivalent to55

the power set of x, excluding the empty set. For example, if x = {x1, x2, x3}, then the source set s is equal to:56
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s =


{x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3},
{x1, x2, x3}

 [4]57

We are interested in how collections of sources a ∈ s might share entropy (i.e. to what extent they exclude the same possible58

global configurations of x), which allows us to write our redundant entropy function in full generality. For a collection of59

sources {a1, . . . ,ak}:60

hsx(a1, . . . ,ak) := log2
1

P(a1 ∪ . . . ∪ ak) [5]61

hsx can be interpreted in terms of logical conjunctions and dysjunctions of variables (12). Consider the example:62

hsx({x1}{x2, x3}), which quantifies the amount of probability mass about the state of the whole that would be excluded by63

observing just the part x1 or the joint state of x2 and x3. This relationship between probability mass exclusions on one hand,64

and formal logic on the other, places hsx on a sound conceptual footing. While initially defined locally, it is possible to compute65

an expected value Hsx for a joint distribution:66

Hsx(A1, . . . ,Ak) := E[hsx(a1, . . . ,ak)] [6]67

The function hsx is derived from prior work by Makkeh et al. (3), who proposed a redundant information (rather than68

entropy) function, isx. This function decomposes the information that a set of sources discloses about a single target, and they69

noted that if the target was the joint state of all the sources, then the result was a decomposition of the joint entropy of the70

whole. This is based on the identity that i(x1, . . . , xk; x) = h(x) (where x = {x1, . . . , xk}). Formally:71

hsx(a1, . . . ,ak) = isx(a1, . . . ,ak; α) [7]72

This framing makes it intuitively clear that the redundant entropy is the information about the whole that could be learned73

by observing any of the component parts. While this relationship was noted in (3) and termed hsx, it was not explored in any74

detail. We have opted to retain their nomenclature (hsx) in our study of the function. For a deeper analysis of the relationship75

between isx and hsx, see the Supplementary Material.76

B. The Partial Entropy Lattice. Our function hsx has a number of appealing mathematical properties, which collectively satisfy77

the set of Axioms initially introduced by Williams & Beer for the problem of information decomposition (4) as applied to local78

information (2, 3):79

Symmetry: hsx is invariant under permutation of it’s argument: hsx(a1, . . . ,ak) = hsx(σ(a1), . . . , σ(ak))80

Monotonicity: hsx decreases as more sources are added: hsx(a1, . . . ,ak) ≤ hsx(a1, . . . ,ak,ak+1)81

Self-redundancy: In the special case of a single source, hsx is equivalent to the classic local Shannon entropy:82

hsx(a) = h(a).83

For proof of these, see (3) Appendix A. Based on these properties, it is possible to specify the domain of hsx (all non-84

degenerate combinations of sources) in terms of a partially-ordered lattice structure A (2, 4). One of the core insights of85

Williams and Beer was that if one source a ⊂ b, then the information about some third source c redundantly disclosed by a86

or b is equivalent to the information disclosed by a alone. Consequently, we do not have to compute the redundancy for all87

possible combination of sources, only all those collections such that no component source is a superset of any other:88

A = {α ∈ P1(s) : ∀ai,aj ∈ α,ai 6⊂ aj} [8]89

Where P1(s) indicates the power set of s, excluding the empty set. For an in-depth derivation of the lattice, see (2, 4, 12),90

for a visualization of the lattice, see Fig. S2. The value of any element h∂(α) on the lattice can be computed via Mobius91

inversion:92

hx
∂(α) = hsx(α)−

∑
β�α

hx
∂(β) [9]93

The result is the entropy specific to a particular α and no simpler combination of sources. Furthermore, the structure of the94

lattice and the properties of hsx ensure that hx
∂(α) will always be non-negative. We can re-compute the total joint entropy of x95

as:96

h(x) =
|A|∑
i=1

hx
∂(αi) [10]97

Like hsx, it is also possible to compute an expected value of h∂ (which will also be strictly non-negative):98

HX
∂ (α) = E[hx

∂(α)] [11]99
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C. Decomposing Marginal and Joint Entropies. Having defined hsx and the Mobius inversion on the partial entropy lattice, we100

can now do a complete decomposition of the joint entropy, and its marginal components. For example, consider the bivariate101

system X = {X1, X2}. We can decompose the joint entropy:102

H(X) = H12
∂ ({1}{2}) +H12

∂ ({1}) [12]
+H12

∂ ({2}) +H12
∂ ({1, 2})

Furthermore, we can decompose the associated marginal entropies in a manner consistent with the partial information103

decomposition (4):104

H(X1) = H12
∂ ({1}{2}) +H12

∂ ({1}) [13]
H(X2) = H12

∂ ({1}{2}) +H12
∂ ({2}) [14]

These decompositions can be done for larger ensembles, or more statistical dependencies (see below) and can reveal how105

higher-order interactions can complicate (and in some cases, compromise) the standard bivariate approaches to functional106

connectivity.107

3. Mathematical Properties of Hsx108

A. Partial Entropy Decomposition & Partial Information Decomposition. The redundant entropy function hsx is closely related109

to the redundant information function isx proposed by Makkeh et al., (3), and was briefly mentioned in their paper as a110

possible extension of isx, although it was not explored in detail, which we will do here. The function hsx is defined:111

hsx(a1, . . . ,ak) := log 1
P(a1 ∪ . . . ∪ ak) [15]112

This measure is equivalent to the informative component of the measure isx proposed by Makkeh et al., (3) in the context113

of single-target partial information decomposition. The local redundant information function isx is defined:114

isx(a1, . . . ,ak; y) := [16]

log2
P(y)− P(y ∩ (ā1 ∩ . . . ∩ āk))

1− P(ā1 ∩ . . . ∩ āk)
− log2 P(y) [17]

Which can be further decomposed into informative and misinformative components (3, 5):115

i+sx(a1, . . . ,ak; y) := log2
1

P(a1 ∪ . . . ∪ ak) [18]

i−sx(a1, . . . ,ak; y) := log2
P(y)

P(y ∩ (a1 ∪ . . . ∪ ak)) [19]

isx(a1, . . . ,ak; y) = i+sx(a1, . . . ,ak; y)− i−sx(a1, . . . ,ak; y) [20]

Where it is clear that hsx(·) = i+sx(·; y), with the sole difference that i+sx(·; y) is implicitly defined with respect to some target116

variable y (although y has no actual impact on the value). Below, we show that, if the target y is set to the joint state of the117

whole (x), then the partial entropy decomposition of h(x) with hsx as the shard entropy function becomes equivalent to the118

partial information decomposition i(x1, . . . , xN ; x) with isx as the redundant entropy function. The notion that the PED is119

equivalent to doing the PID of the information all the parts disclose about the whole was mentioned parenthetically in (3),120

although the finding that the informative component is all that is required is novel.121

Given the equivalence between hsx(·) and i+sx(·; y), it suffices to show that i−sx(x1, . . . , xN ; x) = 0 bit in all cases. When122

y = x, we can re-write the function as:123

i−sx(x1, . . . , xN ; x) = [21]

log2
P(x1 ∩ . . . ∩ xN )

P((x1 ∩ . . . ∩ xN ) ∩ (x1 ∪ . . . ,∪xN ))
the union of x1 ∪ . . . ∪ xk is clearly a superset of x1 ∩ . . . ∩ xk, so124

i−sx = log2
P(x1 ∩ . . . ∩ xN )
P(x1 ∩ . . . ∩ xN ) [22]125

Which is clearly log2(1) = 0 bit �126

We can understand the partial entropy decomposition using hsx as being equivalent to the decomposition of i(x1, . . . , xN ; x).127

Intuitively, this is consistent with the identity for discrete variables that I(X,X) = H(X). The vanishing misinformative term128

can be seen as a special case of the results presented by Ehrlich et al., (16), who proved a general result that the misinformative129

component of Isx(X;Y ) vanishes if there exists some deterministic function f : Y 7→ X.130
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Fig. S2. The partial entropy lattice. The lattice of partial entropy atoms induced by the Hsx function. Each vertex of the lattice corresponds to a single PE atom, and the
Venn diagram describes the associated structure of probability mass exclusions. The blue area indicates the probability mass from P(x) that is excluded by some combination
of observations. For example, in the legend, we can see the probability mass excluded by observing X1 ∨ X2. The blue area is all of the probability mass one would exclude
after learning the state of either component alone. The lowest atom is the entropy redundant to all three elements (Hsx({1}{2}{3})), and the dependencies get increasingly
synergistic higher on the lattice.
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XOR AND
P X1 ⊕ X2 = T P X1 ∧ X2 = T

1/4 0 0 0 1/4 0 0 0
1/4 0 1 1 1/4 0 1 0
1/4 1 0 1 1/4 1 0 0
1/4 1 1 0 1/4 1 1 1

Table S2. Logical XOR and AND gates.

B. Example: Logical Exclusive-OR (XOR) Gate. To demonstrate how partial entropy decomposition can be used to untangle131

higher-order interactions, consider the logical exclusive-OR (XOR) gate (for the lookup table, see Table S2). The XOR gate is132

an example of a synergistic logic gate: the ability to predict the state of the target T depends on having access to both X1133

and X2 jointly: the pariwise marginal mutual informations are equal to 0: I(X1;T ) = I(X2;T ) = 0 bit, but the joint mutual134

information is nonzero: I(X1, X2;T ) = 1 bit.135

We can initially see that the triple-redundancy H12T
∂ ({1}{2}{T}) = 0 bit. This is because any configuration of logical136

disjunctions does not actually rule out any states: for example, P(X1 = 0 ∪X2 = 0 ∪ T = 0) = 1 as there is no configuration137

(1, 1, 1) that can be excluded. Other results can be unintuitive. For example, most of the partial entropy is shared between the138

three bivariate relationships H12T
∂ ({1}{2}), H12T

∂ ({1}{T}), and H12T
∂ ({2}{T}). How is this consistent with the fact that the139

mutual information between any pair of variables is zero? The bivariate redundancy can be non-zero in this case because, on140

average, knowing the local state of x1 ∨ x2 reduces our uncertainty about the joint state of {x1, x2, t}. For example, suppose141

we learn that x1 = 1 ∨ x2 = 1. This excludes the joint configuration {x1 = 0, x2 = 0, t = 0}. This exclusion of the associated142

probability mass is recognized by hsx(·) as informative, in that it reduces our uncertainty about the joint-state of the whole,143

despite the fact that, on average, X1 and X2 disclose no information about T . There is no redundant information common to X1,144

X2 and T , however, and there a number of higher-order dependencies, such as H12T
∂ ({1}{2, T}) and H12T

∂ ({1, 2}{1, T}{2, T}).145

Atom H12T
∂ || XOR AND MaxEnt

{1}{2}{T} 0.0 0.208 0.193
{1}{2} 0.415 0.208 0.222
{1}{T} 0.415 0.25 0.222
{2}{T} 0.415 0.25 0.222
{1}{2, T} 0.17 0.04 0.041
{2}{1, T} 0.17 0.04 0.041
{T}{1, 2} 0.17 0.104 0.041
{1} 0.0 0.292 0.322
{2} 0.0 0.292 0.322
{T} 0.0 0.0 0.322
{1, 2}{1, T}{2, T} 0.245 0.0 0.018
{1, 2}{1, T} 0.0 0.104 0.093
{1, 2}{2, T} 0.0 0.104 0.093
{1, T}{2, T} 0.0 0.0 0.093
{1, 2} 0.0 0.104 0.17
{1, T} 0.0 0.0 0.17
{2, T} 0.0 0.0 0.17
{1, 2, T} 0.0 0.0 0.245

Table S3. The Partial Entropy Decomposition for the XOR, AND, and Maximum Entropy Gates.

C. Independent Variables. One unusual property of hsx, as demonstrated by the logical-XOR results is that independent146

variables can still share entropy. This is a recognized feature of multiple measures of redundant information/entropy and is147

generally considered to be an issue to be excised (14) (some have gone so far as the suggest an axiom that such a property must148

be disallowed from the outset (15)). While we understand that shared entropy for random variables may seem initially counter149

intuitive, it can be readily understood when considering the problem of inference. Let us return to our two element example150

(Table 1), and this time specify that X1⊥X2. We know then that I(X1;X2) = 0 bit, however, hsx({X1}{X2}) ≈ 0.415 bit.151

Why? The answer is that, while the two variables are independent, in all cases learning either X1 = x1 ∨X2 = x2 is sufficient152

to exclude a single possible state: the case where X1 = ¬x1 ∧X2 = ¬x2. If we were to formalize this in terms of a gambling153

problem, we would find that, despite the independence of both variables, a player is, in fact, more likely to win with a correct154

guess after learning X1 ∨X2. See Figure S3.155

Furthermore, we can see that, while hsx will be greater than zero for small, maximum entropy systems, as the system gets156

larger, the redundancy will logarithmically trend towards zero. The proof for binary systems is straightforward. For a discrete,157

maximum entropy system with k elements, learning the state of X1 = x1 ∨ . . .∨Xk = xk will always exclude a single state: the158

state where X1 6= x1 ∧ . . .∧Xk 6= xk. This single state x∗ will have P(x∗) = 1/k (as all states have the same probability by the159

maximum entropy constraint). The union of all surviving configurations will be 1− P(x∗). Since limk→∞ 1/k = 0, then the160
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Fig. S3. Utility of redundant information. Suppose an agent plays a gambling game, where two independent, binary variables are set at random (so all outcomes
P(x1, x2) = 1/4 for all configurations). If the agent guesses the correct configuration of both variables, they win $1 and if they guess wrong, they win nothing. Clearly, the
expected value of each trial is $0.25 (blue curve). However, if another agent learns that X1 = x1 ∨ X2 = x2, then they can do better at the game, with an expected value of
each trial of $0.33. The difference between the two cumulative distributions of 1000 trials is the extra value that can be extracted from the redundant information. This shows
that, while counter-intuitive, the fact that H12

∂ ({1}{2}) > 0 even if X1⊥X2 is interpretable in practical contexts.

union probability will → 1 and consequently hsx → 0 bit. This suggests that, for very large, idealized systems (such as an ideal161

gas), the redundancy does go to 0 bit for maximum entropy systems. How other values (such as the redundant and synergistic162

structure) behave remains an area of further study, although we conjecture that, as k →∞, redundancies and synergies will163

vanish faster than unique terms.164

D. Hsx & Pairwise Dependency Constraints. The hsx measure is built on the full joint distribution, rather than the maximum165

entropy distribution that preserves pairwise marginals. While this as a departure from historical approaches to PID, we do not166

consider it necessarilly problematic for two reasons:167

In Bertschinger’s original proposal (7, 8) that the redundancy depends solely on pairwise marginals, the focus was on the168

particular case of two inputs X1, X2 that were jointly disclosing information about a single target Y . In this context, the focus169

on pairwise marginals makes sense, as the double synergy term {X1, X2} is the only relevant higher-order term. However, as170

the number of elements grows, we feel the focus on pairwise marginals becomes less natural.171

For instance, consider the atom {1, 2, 3}{2, 3, 4}, which appears in the partial entropy lattice for a set of four elements172

{X1, X2, X3, X4}. Since this atom only contains higher-order information in the joint states of three variables, it does not feel173

natural that it must be computed from the marginals X1, X2, etc. At this point on the lattice, it is assumed that the observer174

has access to the joint states of at least three variables: (X1, X2, X3) and the joint state of (X2, X3, X4). Based on Bertschinger175

et al. (7, 8), it could be argued that the atom {1, 2, 3}{2, 3, 4} should be calculated with respect to the distribution that176

preserves third-order marginals, however that opens a difficult can of worms: should every atom in the lattice be computed177

with respect to the maximum entropy distribution that preserves the marginals of whatever the lowest-order source in the178

atoms is? While this is an intriguing possibility, attempting to implement this is beyond the existing capabilities of our code179

and the SxPID package.180

There is another angle as well. If we consider the interpretation that hsx(x1, x2, x3) = isx(x1, x2, x3; x) where x = {x1, x2, x3},181

it seems as though knowledge of the whole is implicitly built in, even when considering redundant atoms such as {1}{2}{3}. If182

we follow the logic that redundancy should only depend on the pairwise dependency between each input and the target, since183

X is the target, the joint state of the whole is already accounted for.184

Ince’s PED approach (1) required computing hccs with respect to the maximum entropy distribution that preserves pairwise185

marginals. In this case though, since the distribution of the whole is the target distribution, this approach seems unnatural,186

since involves changing the statistics of the whole: effectively decomposing the entropy of an entirely different system than the187

one under study. Ultimately, hsx as it is currently formulated, cannot be easily be reconfigured to accommodate the pairwise188

dependency restriction.189

4. Basic Information Theory Review190

Here we will provide a basic overview of information theory for unfamiliar readers. For a more comprehensive treatment of the191

subject, see the textbooks by Cover & Thomas (10) and/or MacKay (11).192

The basic object of study in information theory is the entropy, which quantifies the total uncertainty that we, as observers,193

have about the state of some variable X. For the purposes of this paper, we will assume that X is discrete, with a finite194

number of possible states that can be pulled from the support set X . For every particular state x ∈ X , there is an associated195

probability P(x). The entropy of X is given by:196
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H(X) = −
∑
x∈X

P(x) logP(x) [23]197

For multiple variables, we can define the joint entropy as:198

H(X1, X2) = −
∑

x1∈X1
x2∈X2

P(x1, x2) logP(x1, x2) [24]199

We can also define the conditional entropy as the uncertainty about X1 left over after accounting for the knowledge that200

X2 = x2:201

H(X1|X2) = −
∑

x1∈X1
x2∈X2

P(x1, x2) logP(x1|x2) [25]202

From these basic components, we can define the mutual information as the difference between our initial uncertainty about203

the state of X1 the the remaining uncertainty about X1 that is not resolved by learning the state of X2:204

I(X1;X2) = H(X1)−H(X1|X2) [26]205

The mutual information is symmetric in it’s arguments: I(X1;X2) = I(X2;X1). If we have multiple Xs disclosing206

information about a single target T , the joint mutual information has the same form:207

I(X1, X2;T ) = H(T )−H(T |X1, X2) [27]208

The mutual information can also be written in terms of probabilities:209

I(X1;X2) =
∑

x1∈X1
x2∈X2

P(x1, x2) log P(x1|x2)
P(x1) [28]210

A. Local Information Theory. Both the entropy and the mutual information can be understood as expected values over some211

(potentially multivariate) distribution):212

H(X) = E[− logP(x)] [29]213

The term − logP(x) is known as the local entropy or the Shannon information content and it quantifies how surprised we,214

as observers are to see that X = x. It is typically denoted as h(x).215

I(X1;X2) = E
[

log2
P(x1|x2)
P(x1)

]
[30]216

The term P(x1|x2)
P(x1) is known as the local mutual information and it quantifies the divergence between the prior probability217

X1 = x1 and the posterior probability X1 = x1 after accounting for the fact that X2 = x2. It is typically denoted as i(x1;x2).218

Unlike the expected mutual information, which is strictly non-negative, the local mutual information can be either greater219

than, or less than, zero. If P(x1|x2) < P(x1), then i(x1;x2) > 0, and if P(x1|x2) < P(x1), then i(x1;x2) < 0. In the latter220

case, we say that x1 misinforms on the state of x2.221

5. Derivations222

For didactic purposes, we have included a number of derivations of the relationships between mutual information and partial223

entropy atoms. The basic logic is reasonably straightforward: any information-theoretic construct that can be written in224

terms of joint and marginal entropies can be converted into partial entropy atoms by first decomposing each of the constituent225

entropies, and then summing them together in accordance with the original definition. Importantly, all atoms must be pulled226

from the lattice describing the structure of the whole system.227

A. Derivation of Eq. 5. Eq. 5 shows:228

I(X1;X2) = H12
∂ ({1}{2})−H12

∂ ({1, 2})229

This can be derived from:230

I(X1;X2) = H(X1) +H(X2)−H(X1, X2)231

From Eqs. 2, 3 and 4 we have:232
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H(X1;X2) = H12
∂ ({1}{2}) +H12

∂ ({1})
+H12

∂ ({2}) +H12
∂ ({1, 2})

H(X1) = H12
∂ ({1}{2}) +H12

∂ ({1})
H(X2) = H12

∂ ({1}{2}) +H12
∂ ({2})

Basic substitution shows that:233

I(X1;X2) = H12
∂ ({1}{2}) +H12

∂ ({1}) +H12
∂ ({1}{2}) +H12

∂ ({2})
−H12

∂ ({1}{2})−H12
∂ ({1})−H12

∂ ({2})−H12
∂ ({1, 2})

Simplifying returns Eq. 5.234

B. Derivation of Eq. 6. Eq. 16 shows that in a triad X1, X2, X3, the bivariate mutual information decomposes as:235

I(X1;X2) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2})
−H123

∂ ({3}{1, 2})−H123
∂ ({1, 2}{1, 3}{2, 3})

−H123
∂ ({1, 2}{1, 3})−H123

∂ ({1, 2}{2, 3})
−H123

∂ ({1, 2})

The logic is essentially the same as was given above, however, atoms are drawn from the three element lattice:236

H(X1) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2}) +H123
∂ ({1}{3})

+H123
∂ ({1}{2, 3}) +H123

∂ ({1})
H(X2) = H123

∂ ({1}{2}{3}) +H123
∂ ({1}{2}) +H123

∂ ({2}{3})
+H123

∂ ({2}{1, 3}) +H123
∂ ({2})

H(X1, X2)) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2}) +H123
∂ ({1}{3}) +H123

∂ ({2}{3})
+H123

∂ ({1}{2, 3}) +H123
∂ ({2}{1, 3}) +H123

∂ ({3}{1, 2})
+H123

∂ ({1}) +H123
∂ ({2}) +H123

∂ ({1, 2}{1, 3}{2, 3})
+H123

∂ ({1, 2}{1, 3}) +H123
∂ ({1, 2}{2, 3})

+H123
∂ ({1, 2})

Once again, substitution and simplification shows:237

I(X1;X2) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2})
−H123

∂ ({3}{1, 2})−H123
∂ ({1, 2}{1, 3}{2, 3})

−H123
∂ ({1, 2}{1, 3})−H123

∂ ({1, 2}{2, 3})
−H123

∂ ({1, 2})

Similar logic underlies the derivation of Eq. 7, using the identity that I(X1;X2|X3) = H(X1;X3) + H(X2;X3) −238

H(X1, X2, X3)−H(X3).239

C. Derivation of Eq. 10. Equation 10 describes how the total correlation can be decomposed into partial entropy atoms:240

T (X1, X2, X3) = (2×H123
∂ ({1}{2}{3}))

+H123
∂ ({1}{2}) +H123

∂ ({1}{3}+ {2}{3})
−H123

∂ ({1, 2}{1, 3}{2, 3})
−H123

∂ ({1, 2}{1, 3})−H123
∂ ({1, 2}{2, 3})−H123

∂ ({1, 3}{2, 3})
−H123

∂ ({1, 2})−H123
∂ ({1, 3})−H123

∂ ({2, 3})
−H123

∂ ({1, 2, 3})
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The logic of the decomposition is the same as above: we begin by writing the total correlation out in terms of joint and241

marginal entropies:242

T (X1, X2, X3) :=
3∑

i=1

H(Xi)−H(X1, X2, X3)243

which can be decomposed:244

H(X1) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{2}) +H123
∂ ({1}{3})

+H123
∂ ({1}{2, 3}) +H123

∂ ({1})
H(X2) = H123

∂ ({1}{2}{3}) +H123
∂ ({1}{2}) +H123

∂ ({2}{3})
+H123

∂ ({2}{1, 3}) +H123
∂ ({2})

H(X3) = H123
∂ ({1}{2}{3}) +H123

∂ ({1}{3}) +H123
∂ ({2}{3})

+H123
∂ ({3}{1, 2}) +H123

∂ ({3})
H(X1, X2)) = H123

∂ ({1}{2}{3}) +H123
∂ ({1}{2}) +H123

∂ ({1}{3}) +H123
∂ ({2}{3})

+H123
∂ ({1}{2, 3}) +H123

∂ ({2}{1, 3}) +H123
∂ ({3}{1, 2})

+H123
∂ ({1}) +H123

∂ ({2}) +H123
∂ ({3}) +H123

∂ ({1, 2}{1, 3}{2, 3})
+H123

∂ ({1, 2}{1, 3}) +H123
∂ ({1, 2}{2, 3}) +H123

∂ ({1, 2}{2, 3})
+H123

∂ ({1, 2}) +H123
∂ ({1, 3}) +H123

∂ ({2, 3})
+H123

∂ ({1, 2, 3})

The same logic can be applied to Eq. 12 to decompose the dual total correlation (with the insight that H(X1|X2, X3) =245

H(X1, X2, X3)−H(X2, X3)), and from there, the O-information can be computed via subtraction of the sets of atoms.246

6. Materials & Methods247

A. Human Connectome Project fMRI Data. The data used in this study was taken from a set of 100 unrelated subjects included248

in the Human Connectome Project (HCP) (17). Refs (17, 18) provide a detailed description of the acquisition and preprocessing249

of this data, which have been used in many previous studies (19, 20). Briefly, all subjects gave informed consent to protocols250

approved by the Washington University Institutional Review Board. Data was collected with a Siemens 3T Connectom Skyra251

using a head coil with 32 channels. Functional data analysed here was acquired during resting state with a gradient-echo252

echo-planar imaging (EPI) sequence. Collection occurred over four scans on two separate days (scan duration: 14:33 min;253

eyes open). The main acquisition parameters included TR = 720 ms, TE = 33.1 ms, flip angle of 52°, 2 mm isotropic voxel254

resolution, and a multiband factor of 8. Resting state data was mapped to a 200-node parcellation scheme (21) covering the255

entire cerebral cortex.256

Considerations for subject inclusion were established before the study and are as follows. The mean and mean absolute257

deviation of the relative root mean square (RMS) motion throughout any of the four resting scans were calculated. Subjects258

that exceeded 1.5 times the interquartile range in the adverse direction for two or more measures they were excluded. This259

resulted in the exclusion of four subjects, and an additional subject due to a software error during diffusion MRI processing.260

The included subjects had demographic characteristics of: 56% female, mean age = 29.29 ± 3.66, age range = 22-36 years.261

A.1. Preprocessing. The minimal preprocessing of HCP rs-fMRI data can be found described in detail in Ref. (18). Five main262

steps were followed: 1) susceptibility, distortion, and motion correction; 2) registration to subject-specific T1-weighted data;263

3) bias and intensity normalization; 4) projection onto the 32k_fs_LR mesh; and 5) alignment to common space with a264

multimodal surface registration (81). This pipeline produced an ICA+FIX time series in the CIFTI grayordinate coordinate265

system. We included two additional preprocessing steps: 6) global signal regression and 7) detrending and band pass filtering266

(0.008 to 0.08 Hz) (22). We discarded the first and last 50 frames of each time series after confound regression and filtering to267

produce final scans with length 13.2 min (1,100 frames). All four scans from 95 subjects were then z-scored and concatenated268

to give a final time-series of 200 brain regions and 418,000 time points.269

A.2. Discretizing BOLD Signals. Unfortunately, the Hsx measure is only well-defined for discrete random variables. Consequently,270

we discretized our data by binarizing the z-scored time series: setting any value greater than zero to one and any value less than271

zero to zero. Prior work has established that transforming BOLD signals into binary point processes preserves the majority of272

the total correlation structure (19, 23), so we are confident that our analysis is robust, especially considering the large number273

of samples.274

We chose to binarize around the z-score (as opposed to alternative point-processing techniques such as local maxima), as275

the z-score ensures that each individual channel is generally maximally entropic (i.e. P(Xi = 1) ≈ P(Xi = 0) ≈ 1/2). This276

ensures that every individual channel has approximately the same entropy, and so deviations from maximum entropy at the277
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level of the entire triad or tetrad can only emerge from correlations between two or more channels, rather than being influenced278

by biases at the channel-level. The choice to binarize about the mean also links this work to previous work on decomposing279

functional connectivity into discrete partitions (19).280

B. Statistical Analyses.281

B.1. Triads & tetrads. In standard FC analysis, it is typical to compute the pairwise correlation between all pairs of brain regions,282

resulting
(

N
2

)
unique pairs. For this analysis, we computed all triads of brain regions, resulting in

(200
3

)
= 1, 313, 400 unique283

triples. For each triad, we computed the joint entropy, and performed the full partial entropy decomposition to compute each284

of the eighteen partial entropy atoms. Finally, each of the atoms was normalized by the total joint entropy, to give a measure285

of how much each atom contributes to the whole entropy. This allows us to directly compare triads that have different joint286

entropies.287

It was not feasible to brute-force all possible tetrads, which is a set of approximately sixty-four million. Instead, we randomly288

sub-sampled sets of four randomly, collecting 1954000 tetrads (≈ 3% of the total space) and analyzing them.289

B.2. Bivariate functional connectivity networks. To directly compare the PED framework to the standard, correlation-based FC290

network framework, we constructed single, representative FC network by computing the pairwise mutual information between291

every pair of regions in the fMRI scan (as was done in (20)).292

I(X;Y ) = H(X) +H(Y )−H(X,Y ) [31]293

B.3. Subgraph Analysis. Since we are interested in how the bivariate FC framework reflects (or fails to reflect) higher-order294

redundancies and synergies, we also compute a battery of structure metrics on matching subgraphs taken from the FC network.295

Formally presented by Onnela et al., (13), we consider arithmetic mean of the subgraph connectivity:296

GA(X) =
∑

i6=j
I(Xi;Xj)

|X|2 − |X| [32]297

For a given triad of tetrad X, we compared the mean FC density to the various redundant and synergistic information-sharing298

structures of X.299

B.4. Community Detection on Bivariate Matrices. Multi-resolution consensus clustering (26) was used to detect network communities300

in the functional connectivity matrix across multiple scales. The algorithm proceeds in three main stages. In the first stage,301

modularity maximization using the Louvain method is performed for 1,000 different values of the resolution parameter, γ. This302

produced a range of γ values that resulted with partitions having between 2 and N communities. The second stage consisted of303

a more fine-grained sweep (10,000 steps) over the γ values defined in the first stage of the process. We aggregate the partitions304

produced by this sweep into a node-by-node co-classification matrix storing how frequently nodes are partitioned into the same305

community. A null model with expected values of co-classification based on the size and number of communities was subtracted306

from the co-classification matrix (26). Finally, in the third stage, the null-adjusted co-classification matrix was clustered again307

using consensus clustering with 100 repetitions and a consensus threshold τ of 0 (24). The resulting partition was used for308

analyses.309

We assessed the similarity between single-subject partitions and consensus partitions using Normalized Mutual Information310

(NMI). Each partition can be formalized as a vector of integers of dimension N whose entries denote the nodes’ allegiance to311

communities. NMI estimates the similarity between two partitions by counting co-occurrences in the two vectors.312

We computed NMI between each one of the 95 single-subject partitions and the consensus partition, in both cases of313

redundancy and synergy hypergraphs. We assessed the significance of NMI values by comparing them with a null case obtained314

by randomly shuffling 1000 times communities labels in the single-subject partitions. The p-values of the statistical test,315

calculated as the fraction of null-case NMI greater than the actual NMI, have been corrected with a Benjamini-Hochberg test.316

B.5. Null Model. To ensure that the statistical dependencies we were observing reflect non-trivial interactions, we significance-317

tested triads and tetrads against a null distribution composed of one million, maximum entropy null models. We constructed318

sets of totally independent, maximum entropy binary time series and computed the PED on each set of three or four null319

channels. From this, we can construct distributions of the expected null structure and expected synergistic structure against320

which to compare triads and tetrads.321

B.6. Hypergraph Community Detection. Each of the triads can be thought of as a hyper-edge on a 3-uniform hypergraph of 200322

nodes. For the synergistic structure, we selected only those hyperedges who had a greater synergistic structure than any of the323

one million maximum-entropy nulls that formed our null distribution. This resulted in a hypergraph with 200 hundred nodes324

and 3,746 regular hyper-edges. We used the same criteria to build a redundant structure hypergraph using the top 3,746 most325

redundant hyperedges.326

Both hypergraphs were clustered using the HyperNetX package (available on Github: https://github.com/pnnl/HyperNetX)327

implementation of the hyper-modularity optimization by Kumar and Vaidyanathan et al., (27).328

Briefly, the algorithm by Kumar and Vaidyanathan et al., takes a modularity maximization approach to partitioning329

the vertices of a hypergraph into non-overlapping communities. In dyadic networks, the modularity function compares the330
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distribution of within- and between-community edges to the expected distribution based on a degree-preserving, configuration331

null model (25). In the case of hypergraphs, a hyper-configuration model can be used instead. A generalized modularity metric332

can then be used as an objective function in a Louvain-based, modularity maximization search.333

B.7. Temporal Structure. To explore the temporal structure of the state-transition series, we used the active information storage334

(28, 29) (a measure of how predictable is the future given the past) and the determinism (30, 31), (a measure of how constrained335

the future is given the past). For a one dimensional, discrete random variable X that evolves through time, we can compute336

the information that the past Xt−1 discloses about the future Xt with the mutual information:337

AIS(X) = I(Xt−1;Xt) [33]338

This measure quantifies the degree to which knowing the past reduces our uncertainty about the future. This term can be339

further decomposed into two components: the determinism and the degeneracy (30):340

I(Xt−1;Xt) = Det(X)−Deg(X) [34]341

Where determinism is:342

Det(X) = log2(N)−H(Xt|Xt−1) [35]343

And degeneracy is:344

Deg(X) = log2(N)−H(Xt) [36]345

The determinism quantifies how reliably a given past state xt−1 leads to a single future state xt. If P(xt|xt−1) ≈ 1, then we346

say that xt−1 deterministically leads to xt.347

We significance tested both the active information storage and the determinism by comparing the empirical values to an348

ensemble of ten thousand randomly permuted nulls generated by shuffling the time series. Since the degeneracy is unchanged349

by permutation of the temporal structure (since the marginal entropy H(Xt) is the same), any changes in active information350

storage produced by shuffling must be driven by changes in the determinism.351

C. Software. All partial information/entropy decompositions were done using the SxPID package released with (3) and can be352

accessed on Github: https://github.com/Abzinger/SxPID.353

D. Data & Software Sharing. Data and software are provided as supplementary material. Supplementary software includes:354

• Code S1: Cython script for computing PEDs for triads and tetrads. Change the .txt extension to .pyx.355

• Code S2: Python code for analysing the rank-differences between triads, the framewise similarities, and the active356

information storage analysis. Change the .txt extension to .py.357

• Code S3: Python code for analysing the relationship between PEDs and bivariate correlations. Constructs Figure 1.358

Change the .txt extension to .py.359

• Code S4: Python code for constructing Figure 2 and 3. Change the .txt extension to .py.360

Supplementary datasets include:361

• Datasets S1-10: 10 .csv files containing results for the triads.362

• Dataset S11-20: 10 .csv files containing results for the tetrads.363

• Dataset S21-30: 10 .csv files containing the null triad analyses.364
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