

Supporting Information for

Cytoskeleton remodeling mediated by circRNA-YBX1 phase separation suppresses the metastasis of liver cancer.

Boqiang Liu^{1,2,3,4,†}, Hao Shen^{1,2,3,4,†}, Jing He^{1,2,3,4}, Binghan Jin⁵, Yuanshi Tian⁶, Weiqi Li^{1,2,3,4}, Lidan Hou^{1,2,3,4}, Weijun Zhao^{1,2,3,4}, Junjie Nan^{1,2,3,4}, Jia Zhao², Jiliang Shen^{1,2,3,4}, Hong Yu^{1,2,3,4}, Yifan Wang^{1,2,3,4}, Ge Shan^{7, 8, 9}, Liang Shi^{1,2,3,4,*} and Xiujun Cai^{1, 2, 3, 4, 7,*}

Liang Shi Email: Liang_Shi@zju.edu.cn Xiujun Cai Email: srrsh_cxj@zju.edu.cn

This PDF file includes:

Methods Materials Figures S1 to S9 Tables S1 to S4 Reference

Methods

Patient Samples

A total of 3 independent cohorts including 145 HCC patients were used in this study. Cohort 1 contained a small group of 22 randomly selected HCC clinical samples collected from Sir Run-Run Shaw Hospital starting in August 2018, which were used for detecting the expression levels of circASH2, mASH2, and DHX9. Cohort 2 included 11 highly and 21 low invasive primary HCC samples collected from Sir Run-Run Shaw Hospital starting in January 2018, which were used for screening metastasis-related circRNAs. Cohort 3 included 91 randomly selected HCC clinical samples with follow-up information, which were collected from Sir Run-Run Shaw Hospital starting in February 2006. Patients in cohort 3 were monitored with a 5-y follow-up. The follow-up period was defined as the interval from the date of surgery to the date of recurrence or death. Patients alive at the end of follow-up were censused. DFS was defined as the interval from the date of surgery until the detection of tumor recurrence. Patients without signs of recurrence at the end of follow-up were censused. Patients who died from diseases other than HCC or unexpected events were excluded from the study cohort. The low and high circASH2 expressions were cut off by median expression.

This study conformed to the principles of the Declaration of Helsinki and was approved by the Ethics Committee of Sir Run-Run Shaw Hospital (SRRSHLS2022Y0312). All patients signed informed consent before surgery for the use of their tissues for scientific research.

Animals.

Male 8-wk-old BALB/C nude mice were used for experiments. HA22T cells were engineered to express the luciferase reporter gene by stable transfection, and the positive stable clones were selected with ampicillin and expanded in culture(1). After that, stable overexpressing circASH2 or control vector HA22T cells were established.

For the orthotopic xenograft model, these cells were injected into nude mice orthotopically to generate and maintain HA22T HCC tissues. The orthotopic models were prepared by transplanting these HCC tissues into mice's liver by a surgical approach. Briefly, two groups of 14 mice each were planted with 1 mg HA22T HCC tissues (HA22T-circASH2 or HA22T-vector) into the left lobe of the liver. Tumor formation and metastasis were monitored by using a Fluorescent Imager [IVIS (In vivo image system) Spectrum] starting from the third day after tumor injection and using mouse intraperitoneal injection of 150 mg/kg D-Luciferin solution. Mice injected with HCC cells were killed after 12 wk, and samples were isolated for further testing. For the tail vein injection model of metastasis, mice (n = 8) were injected with control or oe-circASH2 cells (1 × 106 cells/mouse) through the tail vein. Metastasis was tracked by the IVIS system mentioned before once every 2 wk thereafter. For the intrasplenic injection model of metastasis, engineered cells (1 × 106 cells/mouse) were injected into the mouse spleen (n = 6), and liver metastases were examined in the 9th week after the injection.

Cell culture

LO2, HCCLM3, HA22T, Hep-SK1 were maintained in DMEM (Invitrogen) with 10% fetal bovine serum (FBS, Cellmax), and 1% Glutamine. Huh7 cell was maintained in MEM (Invitrogen) with 10% FBS, and 1% Glutamine. All cells were cultured at 37 °C and 5% CO2. And all cells were checked for mycoplasma by a PCR-based method as well as DAPI staining, to ensure the absence of contamination. Cell line sources are described in supplementary file.

Human circRNA microarray

The Human circRNAs chip (ArrayStar), containing more than 40000 probes specific for human circRNAs splicing sites, was used. After hybridization and washing with samples, 10 primary HCC tissues were analyzed on the circRNAs chips. Exogenous RNAs developed by the External RNA Controls Consortium were used as controls. The sequencing and analysis procedures were performed by Aksomics Co., Ltd.

Lentiviral infection and siRNA transfection

Cells with stable expression were established based on a previous report(1). Briefly, HEK293 cells were transfected with the 20 ug core plasmid (LentiCRSPRv2, pLVX, pLO5-ciR, or pLC5-ciR), with 10 ug psPAX2 packaging plasmid, and 10ug pMD2.G envelope plasmid, for 48 hours to obtain the lentivirus supernatant, which was frozen at -80°C for later infection (1mL lentivirus supernatant /1 \times 10⁶ HCC cells for 8 hour) to produce stable polyclonal populations. Among them, pLO5-ciR (without GFP sequence) and pLC5-ciR (with GFP sequence) core plasmids are specialized circRNA over-expression vectors, containing circRNA over-expression framework (such as Alu element, QKI and other RBP binding sites), and could ensure accurate and efficient circRNA cyclization through unique cyclization mediated sequences. EcoRI and BamHI cleavage sites were reserved in the middle of the expression framework, which could be directly inserted with the target circRNA sequence.

For siRNA transfection, we used LipofectAMINE 3000 (Invitrogen), according to the manufacturer's instructions. Briefly, in order to successfully knock-down target, 0.2 nmol specific siRNA and 10 uL LipofectAMINE 3000 are needed and should be mixed well. The final concentration of siRNA in the transfection system is 100 nM. 8 hours after transfection, the culture-medium should be changed, And, the knock-down efficiency could be detected 48 hours later. Also, sgRNAs for CRISPR were generated by following LentiCRSPRv2 manufacturer's instructions (2).

Quantitative real-time PCR

Total RNAs were isolated using Trizol reagent (Invitrogen), either from cultured cells or frozen tissue of primary tumors and adjacent non-tumor liver tissues. One microgram of total RNA was subjected to reverse transcription using Superscript III transcriptase (Invitrogen). Quantitative real-time PCR (RT-qPCR) was conducted using a Bio-Rad CFX96 system (Bio-Rad) with SYBR green to determine the expression level of a targets of interest. Expression levels were normalized to the expression of GAPDH mRNA. The detecting primers for circRNAs were designed based on its head-to-tail junction(1).

Cell adhesion, migration and invasion assays

For trypsin digestion assay, same amount of HCC cells was seeded for overnight. Then commercial trypsin with EDTA was used for 0.5-2 minutes digestion. Digested cells were washed, and remaining cells were fixed by 4% paraformaldehyde and stained by 0.1% crystal violet for observation.

For 3D invasion assay, we first generated HA22T spheroids (vector or oe-circASH2, diameter= 50 um) in Nunclon Sphera 96U-well plate (Invitrogen) according to the manufacturer's instructions. Then, we transferred the HA22T spheroids to a medium containing matrix, and observed the invasion of spheroids in the matrix one week later.

For transwell assay, HCC cells were seeded with serum-free medium into the upper chamber at 0.2-1×10⁵ cells/well, and the bottom chamber of the apparatus contained culture medium with 10% FBS, and then incubated for 24 hours at 37°C. Following incubation, the migrated cells attached to the lower surface of the membrane were fixed by 4% paraformaldehyde and stained with 0.1% crystal violet for observation. To acquire the dynamic metastasis curve, the real-time xCELLigence cell analyser RTCA (Roche Diagnostics) was used to measure cell migration over time for 48 hours.

Next generation sequencing

Total RNA was extracted by using Trizol reagent (Invitrogen) according to the manufacturer's instructions. The concentration and quality of total RNA were measured by Nanodrop and verified by gel electrophoresis. Then, the total RNA was sent to TSINGKE Biological Technology Co., Ltd. for library construction, sequencing and analysis.

Cell lysis, immunoprecipitation (IP) and immunoblotting (IB)

Cells were homogenized in RIPA or IP lysis buffer supplemented with Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail, Panobinostat, and Methylstat. Lysates were cleared by centrifugation at 13,000 rpm for 15 minutes at 4°C. Supernatants were analyzed for immunoblotting or for immunoprecipitation with the indicated antibodies. For immunoprecipitation, the prepared cell lysates were precleared using 10 μ L Protein A+G Agarose beads by rotating at 4°C for 3 hours. Add the indicated antibody and control IgG to the precleared lysates followed by adding 20 μ L Protein A+G Agarose beads to the mixture with rotating the tubes at 4°C for 3-5 hours for each process. The protein-captured beads were washed with lysis buffer three times and eluted with 50 μ L SDS loading buffer and the eluted protein or protein complexes were detected by immunoblot. Proteins were separated on 10-15% SDS/PAGE gel and then transferred onto PVDF membranes (Millipore). After blocking, membranes were incubated with appropriate dilutions of specific primary antibodies followed by incubation with HRP-conjugated secondary antibodies and visualization using ECL system (Bio-Rad).

RNA FISH assay and immunofluorescence (IF) staining

RNA Fluorescence in situ hybridization (FISH) was performed with a FISH kit (Ribobio) according to the manufacturer's instruction. Briefly, cells in chamber slides were fixed in 4% formaldehyde for 15 minutes. The air-dried cells were subjected to incubation with 40 nM Cy3-conjugated FISH probe (Ribobio) in hybridization buffer (100 mg/ml dextran sulfate, 10% formamide in 2xSSC) at 80°C for 2 minutes. The hybridization was performed at 55°C for 2 hours and the slide was washed with 0.1xSSC at 65°C followed by dehydration through 70%, 90% and 100% ethanol. Next the slides were used for further IF staining or, mounted with Prolong Gold Antifade Reagent with DAPI for confocal microscopy detection.

For immunofluorescence, cells were cultured in chamber slides overnight and fixed with 4% formaldehyde in PBS for 10 minutes at 4°C, followed by permeabilization with 0.5% Triton X-100 in PBS for 10 minutes. Cells were then blocked for nonspecific binding with 10% goat serum in PBS and 0.1% Tween-20 (PBST) overnight, and incubated with the indicated antibody for 1 hour at room temperature, followed by incubation with Goat anti-Mouse or anti-Rabbit IgG (H+L) Antibody from Abcam for 1 hour at room temperature. For stress fiber staining, Rhodamine Phalloidin F-actin Stain Kit from Invitrogen was used. Coverslips were mounted on slides using anti-fade mounting medium with DAPI. Immunofluorescence images were acquired on an Olympus FV3000 fluorescence microscope. For each channel, all images were acquired with the same settings.

Luciferase reporter assay

Luciferase reporter assay was performed according to the standard protocol of Dual-Luciferase Reporter Assay system (Promega). Briefly, indicated fragments of TPM4 promoter (-2000-0 bp) was cloned into the pGL3 luciferase reporter vector, and transfected into circASH2-silenced and control HCC cells (Huh7 and HCCLM3). For each sample, 1 ng pRL-TK was transfected as loading control. 48 hours later, cells were collected and lysed by lysis buffer followed by detection of luciferase activity.

RNA pulldown and purification

For circRNA pulldown assays, cells lysates were prepared by using IP lysis buffer and followed the manufacturer's instruction of Pierce Magnetic RNA-Protein Pull-Down Kit (Thermo Fish Scientific). Briefly, washed Pierce Streptavidin Magnetic Beads were incubated with cell lysate at 4°C for 1 hour for preclearance. The 3' biotin-labeled circRNA probe incubated with the beads at RT for 10 minutes for immobilization. Then, the biotinylated beads were incubated with cell lysate at 4°C overnight. The biotinylated beads were magnetically separated and washed five times. For western blot detection, the beads were boiled in SDS buffer for protein/peptide isolation. For mass spectrometry assays, the beads were incubated with non-ionic water in 70°C for 5 minutes. For RT-qPCR assays and circRNA purification, Trizol reagent was used to extract the total RNA from the beads.

Mass spectrometry analysis

The peptide samples collected from Huh7 and HCCLM3 cells were analyzed on Q-Extractive mass spectrometer (Thermo Fish Scientific) by Novegene Co., Ltd. The full mass and subsequent MS/MS analyses were performed in an Orbitrap analyzer with a resolution of 70000 for MS1 (at 200 mass/charge ratio [m/z]) and 17500 for MS2, respectively. The automatic gain control target for MS1 was set to 3.0×10⁺⁶ with max inject time (IT) of 50ms and 5.0×10⁺⁴ for MS2 with max IT

100ms. The top 20 most intense ions were fragmented by HCD with normalized collision energy of 27% and isolation window of 2 m/z. The dynamic exclusion was set at 30 seconds. Raw data were processed with MaxQuant software (version 1.5.6.0). The intracellular pathway analysis was performed using clusterProfiler in R package to search Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

RNA immunoprecipitation (RIP) and RNA extraction

To prepare antibody-coated beads, 20 µL Protein A+G Agarose beads were incubated with 1-5 mg antibody or control IgG in 500 µL lysis buffer supplemented with Protease Inhibitor Cocktail, Phosphatase Inhibitor Cocktail Panobinostat and Methylstat at 4°C overnight. Then, the beads were washed twice with lysis buffer and kept on ice. Cell lysates were precleared using 10uL Protein A+G Agarose beads by rotating at 4°C for 3 hours. The precleared lysates were transferred to tubes with antibody-coated beads, and then rotated tubes at 4°C for 3-5 hours. The protein-captured beads were washed with lysis buffer for three times. RNA extraction from the beads was collected by using Trizol according to the manufacturer's instructions for later detection. Also, nuclear and cytoplasmic RNA isolation were by using PARIS™ Kit (Thermo Fish Scientific) according to manufacturer's instruction.

circRNA/mRNA interaction simulation and analysis

In the secondary structures of circRNA, the first and last base forms the junction site(3). To determine the secondary structures with minimum free energy, we used Mfold (version2.3, <u>http://unafold.rna.albany.edu/?q=mfold</u>) to calculate(4). Mfold uses energy minimization to identify optimal folding of a nucleic-acid sequence within a specified energy increment in order to simulate the ensemble of possible structures. According to Mfold's calculation, the best secondary structure for circASH2 would have a free energy of -162.70 kcal/mol. And the secondary structure with lowest theoretical value of free energy would be chosen for 3D modeling.

Dot-Bracket Notation was the filed used for RNA Composer

(<u>http://rnacomposer.cs.put.poznan.pl/</u>) to generate the 3D model(5). RNA Composer is a webbased software for RNA folding and 3D structure prediction. Then we used RNA Composer to analyze the tertiary structure and generated the 3D model of circASH2.

RNA loops are known to be the key structure to mediate the RNA interactome(6). We mutated all hairpin structures with bases greater than 8 separately. The principle of mutation we adopted is randomly mutate A/T base to G/C base and vice versa. The corresponding mRNA sequences were obtained by BLAST (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>).

circRNA/protein interaction simulation and analysis

The 3D model of circASH2 was put in HDOCK software (<u>http://hdock.phys.hust.edu.cn/</u>) together with YBX1 (PDB No. 1H95) for RNA/Protein interaction simulation(7). Distance-based approach was used to identify the binding site residues/nucleotides for the protein-RNA complexes using a specific cutoff value. Two atoms (one in RNA and another in protein) were considered to be interacting with each other if the distance between them was <4.5Å.

Bases that might be responsible for interaction was also acquired from HDOCK, according to the distance to YBX1. Then, we generated mutations in circASH2 for binding to YBX1, namely circASH2^{YBX1mut}. The principle of mutation is as same as above. Since the mutation sites were not completely continuous, we re-composed the whole 580 bases of circASH2 according to mutation blueprint. After reconstructing the plasmid, we verified the ring formation and mutation by specifically designed primers and sequencing.

Chemical treatment and inhibitor incubation assays

All the chemicals and inhibitors were prepared as manufacturer suggested. Actinmyocin D was used in RNA decay tests at a concentration of 2 ug/ml. Pre-mRNA splicing inhibitors Madrasin, Isoginkgetin and Hinokiflavone were used to interfere pre-mRNA splicing at the concentration of 10-20 uM, 5-10 uM, 5-10 uM, respectively. NMD inhibitors eIF4A3-IN-1 and NMDI14 treated cells at the same concentration of 5-10 uM. 5% (v/w %) PEG8000 was used as crowded reagent in LLPS assays, and 5% (v/w %) 1,6-hexanediol was used to disassemble YBX1 puncta.

Phase separation assay in cells

HCC cells (Huh7, HCCLM3 and HA22T) expressing YBX1-GFP were grown on coverslips. After adhering to coverslips, cells were analyzed by Olympus FV3000 confocal microscopy, and the visible puncta with diameter more than 0.5 µm were defined as LATS1 puncta.

In vitro phase separation assay

In vitro phase separation assay was performed in storage buffer with indicated protein concentrations, and PEG8000 was also added to a final concentration of 10% (w/v). Phase separation assay was carried out on glass-bottomed dishes, sealed with optically clear adhesive film to prevent evaporation and observed under an Olympus FV3000 confocal microscope equipped with 60× oil immersion objectives. The phase separation assay using circASH2 and YBX1-GFP was performed in a physiological LLPS buffer (20 mM Tris-HCI, pH 7.5, 15 mM NaCI, 130 mM KCI, 5 mM KH₂PO₄, 1.5 mM MgCl₂, and 1 mg/mL BSA).

FRAP assays

FRAP experiments were performed on an Olympus FV3000 confocal microscope with a 60× oil immersion objective. For the *in vitro* experiments, droplets were photobleached with 50% laser power for 0.5 seconds using 488-nm lasers. Time-series images were acquired every ten seconds after bleaching for 5 minutes. For the *in vivo* experiments, FRAP assays were carried out on an OLYMPUS FV3000 confocal microscope at 37 °C in a live-cell-imaging chamber. The recovery from photobleaching was recorded for the indicated time. Analysis of the recovery curves was carried out with ImageJ software.

Quantification and statistical analysis

The experiment was set up to use at least 3 samples (biological replicates) per experiment/ group/ condition to detect a 2-fold difference with power of 80% and at the significance level of 0.05 by a two-sided test for significant studies. Results are reported as mean ± Standard Deviation (SD). Comparisons were performed using two-tailed paired Student's t test, one-way ANOVA test or two-way ANOVA test, as indicated in individual figures. For survival analysis, the expression of indicated targets was treated as a binary variant and divided into 'high' and 'low' level. Kaplan-Meier survival curves were compared using the Gehan-Breslow test in GraphPad Prism v6.01.

Materials

Antibodies

Name	Supplier	Cat No.
Rabbit anti-TPM4 antibody [EPR13316]	Abcam	Cat# ab181085
Rabbit anti-DHX9 antibody [EPR13521]	Abcam	Cat# ab183731
Rabbit anti-ADAR1 antibody [EPR7033]	Abcam	Cat# ab126745
Rabbit anti-QKI antibody [EPR7306]	Abcam	Cat# ab126742
Mouse anti-E Cadherin antibody [rCDH1/1525]	Abcam	Cat# ab238099
Rabbit anti-N Cadherin antibody [EPR1791-4]	Abcam	Cat# ab76011
Rabbit anti-Vimentin antibody [EPR3776]	Abcam	Cat# ab92647
Rabbit anti-YBX1 antibody [EP2708Y]	Abcam	Cat# ab76149
Rabbit anti-Paxillin antibody [Y113]	Abcam	Cat# ab32084
Rabbit anti-UPF1 antibody [EP4682]	Abcam	Cat# ab133564
Rabbit anti-hnRNPA1 antibody [9H10]	Abcam	Cat# ab5832
Rabbit anti-hnRNPD antibody [EPR24001-12]	Abcam	Cat# ab259895
Rabbit anti-hnRNPK antibody [3C2]	Abcam	Cat# ab39975
Rabbit anti-N6-methyladenosine antibody [17-3-4-1]	Abcam	Cat# ab208577
Mouse anti-DDDDK tag (Binds to FLAG® tag sequence) antibody [M2] (HRP)	Abcam	Cat# ab49763
Rabbit anti-6X His tag antibody [EPR20547]	Abcam	Cat# ab213204
Rabbit anti-GFP antibody [EPR14104]	Abcam	Cat# ab183734
Rabbit IgG, monoclonal [EPR25A] - Isotype Control	Abcam	Cat# 172730
Mouse IgG, monoclonal - Isotype Control	Abcam	Cat# 37355
Rabbit anti-TPM4 antibody (ICC)	Invitrogen	Cat# 720311
Goat anti-Rabbit IgG (H+L) Antibody, Alexa Fluor 488	Invitrogen	Cat# A32731
Rabbit anti-Phospho-FAK (Tyr397) antibody (D20B1)	Cell Signaling Technology	Cat# 8556
Rabbit anti-FAK antibody (D2R2E)	Cell Signaling Technology	Cat# 13009
Rabbit anti-Akt (pan) (11E7) Rabbit mAb	Cell Signaling Technology	Cat# 4685
Rabbit anti-Phospho-Akt (Ser473) (D9E) Rabbit mAb	Cell Signaling Technology	Cat# 4060
Rabbit anti-PI3 Kinase p85 (19H8) Rabbit mAb	Cell Signaling Technology	Cat# 4257
Rabbit anti-Phospho-Pl3 Kinase p85 (Tyr458)/p55(Tyr199) (E3U1H) Rabbit mAb	Cell Signaling Technology	Cat# 17366
Rabbit anti-GAPDH antibody (D4C6R)	Cell Signaling Technology	Cat# 97166
Rabbit anti-Histone H3 antibody (D1H2)	Cell Signaling Technology	Cat# 4499
ANTI-FLAG® M2 Affinity Gel	Sigma-Aldrich	Cat# A2200

Cell lines

Name	Supplier	Cat No.
Human: LO2	Institute for Advanced Study of Central South University	Cat# HTCC01
Human: Huh7	JCRB	Cat# JCRB0403
Human: HCCLM3	Type Culture Collection of Chinese Academy of Science	Cat# SCSP- 528
Human: HA22T	BCRC	Cat# 60168
Human: SK-Hep1	ATCC	Cat# HTB-52
Human: Hep-G2	ATCC	Cat# HB-8065
Human: HEK293	ATCC	Cat# CRL- 1573

Primer and oligo sequences

Name	Sequence	Supplier
circASH2 biotinylated probe	aaaTAAATGGTATAATATCCTCGATCATGTAGGG	TsingKe
circASH2 antisense biotinylated probe	aaaATTTACCATATTATAGGAGCTAGTACATCCC	TsingKe
circPABPC1 biotinylated probe	aaaCAGCACGGTTCTGAGTGATGAGGTCTGGCAC	TsingKe
circASH2 probe with Cy3 conjugated	aaaTAAATGGTATAATATCCTCGATCATGTAGGG	Ribobio
TPM4 pre/mRNA probe (mix) with Cy5 conjugated	AGCCCTG+TCCAACTCCTCCTCAACGA TCCGCACGCTCC+TCTGCCCTCT GCTACC+TCCTCGTAT+TTGCGGTCAG	Gene Pharma
si-circASH2	GATCGAGGATATTATACCA	Ribobio
si-mASH2L	CAGTAAAGATCCAGAAGAA	Ribobio
si-DHX9-1	CGAACACCATTGCATGAAA	Ribobio
si-DHX9-2	GGACTAGTAGCAACATTGA	Ribobio
si-ADAR1-1	GCAGAGTCAGCATATATGA	Ribobio
si-ADAR1-2	GGCCCGAGATATAAATGCT	Ribobio
si-QKI-1	GAAGCTGGTTTAATCTATA	Ribobio
si-QKI-2	GACCTATTGTTCAGTTACA	Ribobio
ASO-circASH2	CCCTACATGATCGAGGATAT	Ribobio
sgRNA-YBX1	CAGTAAAATGGTTCAATGTA	TsingKe
sgRNA-TPM4	CGAGCTGGATAAATATTCCG	TsingKe
sgRNA-UPF1	GGTAGGCGTCCTCGTACCGC	TsingKe
circASH2 qPCR primer (except circASH2-random2) -F	CAAGCGCAAACAGCAGGATG	TsingKe
circASH2 qPCR primer (except circASH2-random2) -R	TTCCCACTAGTAGACACAGCA	TsingKe
circASH2 qPCR primer (for circASH2-random2)-F	TGGAACTTGACTGCTGGGC	TsingKe
circASH2 qPCR primer (for circASH2-random2)-R	TAATATCCTCGATCATGTAGGGCT	TsingKe
ASH2L qPCR primer-F	TTTGTTTTCTGCTCAGCGCC	TsingKe

ASH2L qPCR primer-R	TCAAGTTCCAGCTTCTCGGG	TsingKe
GAPDH qPCR primer-F	CGACCACTTTGTCAAGCTCA	TsingKe
GAPDH qPCR primer-R	TTACTCCTTGGAGGCCATGT	TsingKe
pre-GAPDH qPCR primer-F	TGGGGACTGGCTTTCCCATAA	TsingKe
pre-GAPDH qPCR primer-R	GCCAGTAGAGGCAGGGATGA	TsingKe
β -actin qPCR primer-F	CATGTACGTTGCTATCCAGGC	TsingKe
β -actin qPCR primer-R	CTCCTTAATGTCACGCACGAT	TsingKe
pre- β -actin qPCR primer-F	TGTGTGGGGAGCTGTCACAT	TsingKe
pre- β -actin qPCR primer-R	TCCGCCTAGAAGCATTTGCG	TsingKe
DHX9 qPCR primer-F	CGAACCATCTCAGCGACAAAA	TsingKe
DHX9 qPCR primer-R	TGAGGTCCATGCTTATTTGCTC	TsingKe
ADAR1 qPCR primer-F	CTGAGACCAAAAGAAACGCAGA	TsingKe
ADAR1 qPCR primer-R	GCCATTGTAATGAACAGGTGGTT	TsingKe
QKI qPCR primer-F	AAGCCCACCCCAGATTACCT	TsingKe
QKI qPCR primer-R	ACTCTGCTAATTTCTTCGTCCAG	TsingKe
TPM4 qPCR primer (except TPM4-ΔCDS)-F	GAGGTAGCTCGTAAGCTGGTC	TsingKe
TPM4 qPCR primer (except TPM4-ΔCDS)-R	ACCGTTCTCTGCAAATTCAG	TsingKe
TPM4 qPCR primer (for TPM4-ΔCDS)-F	TCGGAGAAGCTTTGAGCACC	TsingKe
TPM4 qPCR primer (for TPM4-ΔCDS)-R	TGTGATGGTCCCTGGTCTCT	TsingKe
pre-TPM4 qPCR primer-F	CTGATGCTTTGGCGGAGGAA	TsingKe
pre-TPM4 qPCR primer-R	TCACGAACGTTCTCACTCTCC	TsingKe
ZNF616 qPCR primer-F	CAGTGACCGTTCAGCTTTTGC	TsingKe
ZNF616 qPCR primer-R	CGATGCCCTACAAGATGTGAAT	TsingKe
PPL qPCR primer-F	CCGGAGCATCTCTAACAAGGA	TsingKe
PPL qPCR primer-R	GCATCCGCCTCTAGCACAT	TsingKe
MPZ qPCR primer-F	CATCGTGGTTTACACCGACAG	TsingKe
MPZ qPCR primer-R	TGGAAGATCGAAATGGCATCTCT	TsingKe
MICB qPCR primer-F	TCTTCGTTACAACCTCATGGTG	TsingKe
MICB qPCR primer-R	TCCCAGGTCTTAGCTCCCAG	TsingKe
MAN2A1 qPCR primer-F	CAGTGCGATCTTCTGTGTGGT	TsingKe
MAN2A1 qPCR primer-R	GCAAACGCTCCAAATGGTCTAT	TsingKe
LRRC58 qPCR primer-F	ACTTGCTGACATATCTGCCTCG	TsingKe
LRRC58 qPCR primer-R	CAGGAGAGTTGGAGGATCATAGG	TsingKe
GNG12 qPCR primer-F	GCAAAACAGCAAGCACCAAC	TsingKe
GNG12 qPCR primer-R	CTATCAGCAAAGGGTCACTCC	TsingKe
GAL3ST1 qPCR primer-F	ACCACATGCGCTTCCACTAC	TsingKe
GAL3ST1 qPCR primer-R	GGTCTTGCAGGAACTCGGT	TsingKe
EIF2A qPCR primer-F	CCGCTCTTGACAGTCCGAG	TsingKe
EIF2A qPCR primer-R	GCAGTAGTCCCTTGTTAGTGACA	TsingKe
CRYAB qPCR primer-F	CCTGAGTCCCTTCTACCTTCG	TsingKe
CRYAB qPCR primer-R	CACATCTCCCAACACCTTAACTT	TsingKe
CCND1 qPCR primer-F	GCTGCGAAGTGGAAACCATC	TsingKe

CCND1 qPCR primer-R	CCTCCTTCTGCACACATTTGAA	TsingKe
UPF1 qPCR primer-F	ACCGACTTTACTCTTCCTAGCC	TsingKe
UPF1 qPCR primer-R	AGGTCCTTCGTGTAATAGGTGTC	TsingKe

Biological samples

Description	Source
Human HCC tumor tissue and paired liver tissue	Sir Run Run Shaw Hospital, Zheijang University

Compounds, proteins, vectors etc.

Description	Source	Identifier
WB/IP lysis buffer	Beyotime	Cat# P0013J
Anti-fluorescence quenching mounting solution	Beyotime	Cat# P0128M
Protein A+G Agarose	Beyotime	Cat# P2055
TRIzol	TAKARA	Cat# 15596026
Polybrene	Sigma-Aldrich	Cat# H9268
DNA Marker DL2000	Vazyme	Cat# MD101-01
Protease inhibitor cocktail	Abcam	Cat# ab65621
Phosphatase inhibitor	Invitrogen	Cat# 78442
Invitrogen™ ProLong™ gold antifade mountant with DAPI	Invitrogen	Cat# P36935
HEPES (1 M)	Invitrogen	Cat# 15630080
Lipofectamine 3000 reagent	Invitrogen	Cat# L3000015
Tyrpsin-EDTA (0.5%)	Invitrogen	Cat# 15400054
Yeast tRNA (10 mg/mL)	Invitrogen	Cat# AM7119
Yeast RNA (5 mg/mL)	Invitrogen	Cat# AM7120G
Streptavidin magnetic beads	Invitrogen	Cat# 88817
RNase A	Invitrogen	Cat# EN0531
Rnase R	Epicentral	Cat# RNR07250
Ultrapure Salmon Sperm DNA	Invitrogen	Cat# 15632011
RNase Inhibitor, recombinant (human placenta)	New England Biolabs	Cat# M0307S
Matrigel Basement Membrane Matrix	BD biosciences	Cat# 356237
D-Luciferin, Sodium Salt D	Yeasen Biotech	Cat# 40901ES01
1,6-hexanediol	Sigma-Aldrich	Cat# 240117
PEG 8000	Sigma-Aldrich	Cat# 89510
Actinomycin D	Cell Signaling Technology	Cat# 15021
Madrasin	MedChemExpress	Cat# HY-100236
Isoginkgetin	MedChemExpress	Cat# HY-N2117
Hinokiflavone	MedChemExpress	Cat# HY-N2360
elF4A3-IN-1	MedChemExpress	Cat# HY-101513
NMDI14	MedChemExpress	Cat# HY-111374
Human recombinant YBX1 protein	Abcam	Cat# ab187443
Cell counting kit (CCK-8)	Yeasen Biotech	Cat# 40203ES60

Annexin V FITC/PI apoptosis Kit	Multi Sciences	Cat# 70- APCC101-30
Endotoxin-free plasmid purification kit	Tiangen	Cat# DP117
PAGE-GEL silver staining kit	Solarbio	Cat# G7210
FastPure® Cell/Tissue DNA isolation kit	Vazyme	Cat# DC112-01
circRNA gRT-PCR kit	Geneseed	Cat# GS0201
Fluorescent in situ hybridization kit	Ribobio	Cat# C10910
FFPE RNA Kit	Omega Bio	Cat# R6954-02
RNA-binding protein immunoprecipitation kit	Millipore	Cat# 17-701
BeyoGold™ His-tag purification resin kit	Beyotime	Cat# P2218
Pierce™ Streptavidin Magnetic Beads	Invitrogen	Cat# 88817
BCA protein assay kit	Invitrogen	Cat# M34152
Rhodamine phalloidin F-actin stain kit	Invitrogen	Cat# R415
PARIS [™] kit for nuclear and cytoplasmic RNA	lus itus usu	0-1# 414004
isolation	Invitrogen	Cal# AM 1921
Pierce™ Magnetic RNA-Protein pull-down kit	Invitrogen	Cat# 20164
Dual-Luciferase reporter assay system kit	Promgea	Cat# E1910
RiboMAX [™] RNA production systems kit	Promega	Cat# P1280
Competent cells: DH5α	Weidi Bio	N/A
Competent cells: BL21	Weidi Bio	N/A
Plasmid: pLO5-ciR	Geneseed	Cat# GS0107
Plasmid: pLC5-ciR (GFP)	Geneseed	Cat# GS0108
Plasmid: pLVX-Puro	Youbio	Cat# VT1465
Plasmid: lentiCRISPRv2	TsingKe	N/A
Plasmid: pET-28a(+)	Youbio	Cat# VT1207
Plasmid: pLO5-ciR-circASH2	This paper	N/A
Plasmid: pLO5-ciR-circASH2-HRmut	This naner	N/A
(1-14, 1+4+7+9)		1.1// \
Plasmid: pLO5-ciR-circASH2-YBX1mut	This paper	N/A
(61-64, 80-84, 99-104. 526-530)		
Plasmid: pLO5-ciR-circASH2-Random1,2	This paper	N/A
Plasmid: pLO5-ciR-circPABPC1	This paper	N/A
Plasmid: pLC5-ciR (GFP)-circASH2	This paper	N/A
Plasmid: pLVX-Puro-TPM4	This paper	N/A
Plasmid: pLVX-Puro-YBX1-FL-3xFlag	This paper	N/A
Plasmid: pLVX-Puro-YBX1-ΔAPD-3xFlag	This paper	N/A
Plasmid: pLVX-Puro-YBX1-ACSD-3xFlag	This paper	N/A
Plasmid: pLVX-Puro-YBX1-ΔCTD-3xFlag	This paper	N/A
Plasmid: pLVX-Puro-YBX1-FL-EGFP	This paper	N/A
Plasmid: pLVX-Puro-YBX1-ΔAPD-EGFP	This paper	N/A
Plasmid: pLVX-Puro-YBX1-ACTD-EGFP	This paper	N/A
Plasmid: lentiCRISPRv2-YBX1	This paper	N/A
Plasmid: lentiCRISPRv2-TPM4	This paper	N/A
Plasmid: lentiCRISPRv2-UPF1	I his paper	N/A
Plasmid: pE1-28a(+)-YBX1-FL-EGFP	I his paper	N/A
Plasmid: pET-28a(+)-YBX1-ΔAPD-EGFP	This paper	N/A
Plasmid: pET-28a(+)-YBX1-ΔCTD-EGFP	This paper	N/A

Plasmid: pET-28a(+)-YBX1-ΔAPD+ΔCTD- EGFP	This paper	N/A
---	------------	-----

Fig. S1. The microarray analysis identified circASH2 as a metastasis-suppressive role and regulated by DHX9 in HCC.

A. A Heatmap (left) and a volcano plot (right) of differentially expressed circRNAs ($|\log_2(fold-change)| \ge 1$, *P*< 0.05) between normal tissues and HCC tissues in GSE78520 and GSE97332. circASH2 was denoted by black arrow.

B. A Venn Diagram showing differentially expressed circRNAs within GSE78520 and GSE97332. **C.** RT-qPCR analysis of circASH2 after RNase R treatment in Huh7 cells. GAPDH mRNA was a negative control (mean \pm SD, ****P* < 0.001, n.s., not significant, two-way ANOVA test).

D. The relative RNA levels were examined by RT-qPCR after treatment with actinomycin D at the indicated time points in Huh7 cells (mean \pm SD, ****P* < 0.001, unpaired Student's t test).

E. Quantification of circASH2 copy numbers in 4 HCC cell lines. The Ct values and the amount of purified dsDNA fragments corresponding to circASH2 amplicon were plotted to generate a standard curve by RT-qPCR (left). R² represents Spearman's correlation coefficient and the *P* value was calculated by Spearman's correlation test. The inset (right) presents the copy numbers of circASH2 in different HCC cells.

F and **G**. RT-qPCR analysis of mASH2 in 22-paired matched HCC and non-tumor tissues (F, cohort 1, mean \pm SD, ****P* < 0.001, paired Student's t test), and TCGA HCC cohort (G, mean \pm SD, ***P* < 0.01, unpaired Student's t test).

H. HCC cells with DHX9 (left), ADAR1 (middle), QKI (right) knockdown were analyzed by immunoblotting with the indicated antibodies in Huh7 cells. GAPDH was used as an internal reference.

I. The expression levels of circASH2, mASH2, and ADAR1 or QKI were detected by RT-qPCR after treated with indicated siRNAs in Huh7 and HCCLM3 cells (mean \pm SD, ****P* < 0.001, one-way ANOVA test).

J, **K** and **L**. The expression of DHX9 in 22-paired matched HCC and non-tumor tissues (J, cohort 1, ***P < 0.001, paired Student's t test), TCGA HCC cohort (K, ***P < 0.001, unpaired Student's t test) and 32 HI/LI HCC tissues (L, cohort 2, *P < 0.05, unpaired Student's t test).

Fig. S2. circASH2 suppresses HCC metastasis in vivo.

A. Confirmation of circASH2 overexpression in the injected cells and in situ tumors by RT-qPCR (**P < 0.01. ***P < 0.001, unpaired Student's *t* test). GAPDH was used as an internal reference. **B.** Typical HE staining images (lung) of HA22T tumors at the 12th week after tumor implantation. Left: scale bar, 1 mm. Right: scale bar, 100 μ m.

C. Left: IVIS images showing gastrointestinal (GI) metastasis in mice scarified at the 12th week (metastasis are marked with orange arrows, n=7). Right: GI metastasis are quantified (mean \pm SD, **P* < 0.05, unpaired Student's t test).

D. IVIS images of HA22T tumors at the 12th week after rapid tail vein injection (metastasis are marked with orange arrows, n=8).

E. Typical spleen images of HA22T tumors in mice scarified at the 12th week.

Fig. S3 circASH2 impairs the cytoskeleton assembly in HCC.

A, **B** and **C**. Confirmation of circASH2 knockdown (A and B) or overexpression (C) in HCC cells by RT-qPCR (**P < 0.01. ***P < 0.001, n.s., not significant, unpaired Student's *t* test). GAPDH was used as an internal reference.

D and **F**. Quantitative analysis on the photos of cells without (–) or with (+) trypsinization after crystal violet staining by staining area (means \pm SD, ***P* < 0.01, ****P* < 0.001, n.s., not significant, unpaired Student's *t* test or one-way ANOVA test).

E and I. Quantitative analysis on the fluorescence photos by mean fluorescence intensity (means \pm SD, ****P* < 0.001, unpaired Student's *t* test).

G. Quantitative analysis on the cell numbers per field of Transwell assays (means \pm SD, ****P* < 0.001, unpaired Student's *t* test).

H. *In vitro* 3D invasion assays, the diameter of the sphere was measured and analyzed (****P* < 0.001, unpaired Student's t-test).

Fig. S4 TPM4 is repressed by circASH2 and functionally relevant.

A. A Heat Map showing the differentially expressed genes in HCC cells after circASH2 knockdown.

B, **C** and **D**. Gene set enrichment analysis (GSEA) showed FAK signaling pathway (B), PI3K/AKT signaling pathway (C), and ECM receptor interaction pathway were activated after circASH2 knock-down.

E and F. Ectopic expression of TPM4 rescued circASH2 induced phenotypes in trypsin digestion assays (E, **P < 0.01, n.s., not significant, one-way ANOVA test) and dynamic metastasis assays (F, ***P < 0.001, n.s., not significant, two-way ANOVA test), while vice versa. Scale bar, 1 cm. **G.** Up: IVIS images of HA22T tumors at the 6th week after rapid tail vein injection (metastasis are marked with orange arrows, n=8). Down: tumor foci are quantified (mean ± SD, **P < 0.01, n.s., not significant, one-way ANOVA test).

Fig. S5 circASH2 promotes mRNA decay by physically connecting TPM4 transcripts.

A. AGO2 RIP assays showed circASH2 cannot enriched by AGO2, while circHIPK3 (a well-known circRNA functions as miRNA sponge) was used as a positive control (***P < 0.001, and n.s., not significant, unpaired Student's *t* test).).

B. Left: ORF-Flag (cross junction-site) fusion construct was transfected into HA22T cells. The length of expected peptide encoded by circASH2 is 187aa (about 20-25 kd). Right: 187aa-Flag fusion protein was detected by immunoblot analysis. GAPDH was used as an internal reference.
 C. The m6A level of TPM4 mRNA in HA22T cells with circASH2 overexpression was detected by m6A RIP experiment (n.s., not significant, unpaired Student's t-test).

D. A Mountain plot showing the MFE structure (upper) and the entropy (lower) for each position in circASH2.

E. Trypsin digestion assay on indicated HA22T cells. Cells without (–) or with (+) trypsinization were fix-stained with crystal violet and photographed (***P < 0.001, n.s., not significant, one-way ANOVA test). Scale bars, 1 cm.

F. A diagram showing TPM4 mRNA-circASH2 matching sequences (analysis by BLAST) and positions.

Fig. S6 circASH2/hnRNPs complex accelerates mRNA degradation via nonsense-mediated decay.

A. Potential circASH2-binding proteins (purified by circRNA pulldown) were separated by SDS-PAGE and visualized by silver staining. hnRNP bands were highlighted with red box.
 B. A diagram showing the characteristic peptides in corresponding bands detected by mass spectrometry.

C. HA22T cells overexpressing circASH2 or control vector were treated with DMSO, Madrasin (10-20 μ M), Isoginkgetin (5-10 μ M), or Hinokiflavone (5-10 μ M) for 48 hours. The endogenous TPM4 protein bands were quantified and standardized by GAPDH (means ± SD, **P* < 0.05, ***P* < 0.01, n.s., not significant, one-way ANOVA test).

D. HA22T cells overexpressing circASH2 or control vector were treated with DMSO, eIF4A3-IN-1 (5-10 μ M), NMDI-14 (5-10 μ M) for 48 hours. The endogenous TPM4 protein bands were quantified and standardized by GAPDH (means ± SD, ***P* < 0.01, n.s., not significant, one-way ANOVA test).

Fig. S7 circASH2/hnRNPs-induced TPM4 mRNA degradation is YBX1-dependent.

A. RT-qPCR was used to detect the endogenous circASH2 immunoprecipitated with YBX1, while circPABPC1 acted as a negative control (***P < 0.001, unpaired Student's t-test).

B. circASH2 FISH (red) and anti-YBX1 immunofluorescence (green) staining showing colocalization of these two molecules (arrowheads) in Huh7 and HCCLM3 cells. Nuclei were labeled with DAPI (blue). Scale bars, 10 μ m.

C. Cytoskeleton formation of indicated HCCLM3 cells was shown by phalloidin staining of F-actin (red) and immunofluorescence of paxillin (green), while DAPI (blue) was used to stain the nucleus. Scale bar, 10 μ m.

D. Trypsin digestion assay on indicated HCC cells. Cells without (-) or with (+) trypsinization were fix-stained with crystal violet and photographed. Scale bars, 1 cm.

E. The expression level of YBX1 was detected by immunoblot after circASH2 overexpression (HA22T) or knockdown (Huh7) in HCC cells.

F. The nuclear-cytoplasmic distribution of YBX1 was determined by immunoblot after circASH2 overexpression (HA22T) or knockdown (Huh7) in HCC cells.

G. Huh7 cells were transduced with YBX1^{FL}-3×Flag, YBX1^{Δ APD}-3×Flag, YBX1^{Δ CSD}-3×Flag and YBX1^{Δ CTD}-3×Flag, respectively. RT-qPCR was used to detect the circASH2 enriched by anti-Flag immunoprecipitation.

H. Simulated interaction between circASH2 and YBX1 (CSD, denoted by red box) generated by HDOCK.

I. A diagram showing the circASH2 bases predicted to interact with YBX1.

J. Trypsin digestion assay on indicated HA22T cells. Cells without (-) or with (+) trypsinization were fix-stained with crystal violet and photographed (***P* < 0.01, n.s., not significant, one-way ANOVA test). Scale bars, 1 cm.

K. HA22T cells were transduced with circASH2^{WT}, circASH2^{YBX1mut}, circASH2^{61-64mut}, circASH2^{79-84mut}, circASH2^{99-104mut}, and circASH2^{527-531mut}, respectively. Immunoblots analysis was used to detect the endogenous YBX1 enriched by circASH2-pulldown

Fig. S8 Intranuclear YBX1 undergoes LLPS enhanced by circASH2, and is indispensable for circASH2 signals.

A. YBX1^{FL}-GFP and a series of YBX1-GFP truncation mutations were generated and determined by immunoblots analysis. GAPDH was used as an internal reference.

B. HCCLM3 cells transfected with YBX1^{FL}-GFP, YBX1^{ACTD}-GFP, or YBX1^{APD}-GFP were

analyzed by confocal microscopy. Representative pictures were shown. Scale bar, 10 μ m. **C.** Time-series fluorescence microscopy analysis of YBX1-GFP puncta in HCCLM3 cells. Bottom row shows zoom-in view of two fusing puncta. Scale bar, 10 μ m (top) and 2 μ m (bottom). **D.** Left: Representative micrographs of YBX1-GFP puncta before and after photobleaching in HCCLM3 cells. Scale bar, 10 μ m. Right: Quantification of fluorescence intensity recovery in the bleached region of YBX1 puncta.

E and F. The effect of 5% 1,6-hexanediol on YBX1 droplets *in vivo* (E, scale bar, 10 μ m) and *in vitro* (F, scale bar, 5 μ m).

G. Representative images of phase separation behaviors of different concentrations of purified YBX1-GFP in different concentrations of NaCI (with 5% PEG8000). Scale bar, 5 μ m.

H. Top: Representative images of YBX1-GFP in control and circASH2-overexpressed HA22T cells. Scale bar, 10 μ m. Bottom: Quantification of YBX1-GFP puncta number in control and circASH2-overexpressed HA22T cells (mean ± SD, **P < 0.01, one-way ANOVA test). **I.** *In vitro* phase separation assay showing that circASH2 promotes YBX1 LLPS in a dose-dependent manner. Scale bar, 5 μ m.

J. *In vitro* phase separation assay showing that circASH2^{WT} facilitates YBX1^{WT}-GFP, instead of YBX1^{\triangle CTD}-GFP, phase separation, whereas circASH2^{YBX1mut} loses the function. Scale bar, 5 μ m. **K and L.** YBX1-KO HCC cells (HCCLM3 and HA22T) were reconstituted with YBX1^{FL}, YBX1^{\triangle APD}, YBX1^{\triangle CSD}, and YBX1^{\triangle CTD}, respectively. Cytoskeleton formation (K) in indicated cells was shown by phalloidin staining of F-actin (red), while DAPI was used to stain the nucleus. Scale bar, 10 μ m. Meanwhile, representative images of trypsin digestion assay (L) on indicated cells were shown. Scale bars, 1 cm.

Fig. S9 Schematic diagram. circASH2 s negatively regulated by DHX9 and connects TPM4 transcripts with the YBX1/hnRNPs complex, thereby facilitating NMD of the former. Decreased TPM4 results in cytoskeletal instability, which in turn inhibits HCC metastasis. Furthermore, circASH2 promotes YBX1 LLPS and augments YBX1-mediated TPM4 transcripts' decay.

Number	Gender	Age (years)	Pathology	Tumor size (cm)	Postsurgical metastasis
HI-1	М	80	moderately differentiated HCC, MVI:0	1.7×1.4	Y
HI-2	М	65	moderately-poorly differentiated HCC, MVI:0	2.8×2.5	Y
HI-3	М	61	well-moderately differentiated HCC, MVI:1	2.0×1.5	Y
HI-4	М	65	well-moderately differentiated HCC, MVI:0	2.0×1.8	Y
HI-5	М	64	moderately differentiated HCC, MVI:0	2.7×2.7	Y
LI-1	М	63	well-moderately differentiated HCC, MVI:0	8.0×6.0	Ν
LI-2	F	65	well-moderately differentiated HCC, MVI:0	8.5×6.5	Ν
LI-3	М	59	moderately differentiated HCC, MVI:1	7.0×4.5	Ν
LI-4	М	62	moderately differentiated HCC, MVI:0	3.5×3.0	Ν
LI-5	М	68	moderately-poorly differentiated HCC, MVI:1	4.3×3.0	Ν

Table S1. Clinical characteristics of 5 HI and 5 LI HCC patients.

Voviables		circA	SH2	Dyskus
variables	_	High	Low	- P value
	≤60	26	27	0.000
Age, years	>60	19	19	0.999
Condon	Female	11	7	0.000
Gender	Male	34	39	0.303
	No	10	5	0.400
HBV	Yes	35	41	0.168
Cirrhooio	No	21	21	0.000
Cirriosis	Yes	24	25	0.999
	≤400	27	27	0.000
AFP, ng/mL	>400	18	19	0.900
Tumor size, cm	≤5	30	21	0.050
	>5	15	25	0.058
Recurrence	No	22	15	0 129
	Yes	23	31	0.138

Table S2. Clinicopathological analyses of 91 primary HCC patients with different expression levels of circASH2 (cohort 3).

Protein	Unused value	Protein	Unused value
YBX1	89.66	PCCB	21.04
PYC	77.36	HNRNPA3	19.67
HNRNPD	58.95	HNRPQ	19.34
HNRNPA1	51.56	ANXA2	18.43
RFA1	50.50	HNRNPAB	18.14
PARP1	49.38	RS4X	17.74
SSBP	45.04	EFTU	17.19
MCCB	44.88	HNRNPH	16.00
TBB5	44.53	HNRNPU	15.41
TBA1B	41.90	PCBP2	14.42
PURB	41.02	DAZP1	14.39
RFA2	35.93	RS3A	14.07
PURA	30.66	RS18	13.77
HNRNPA2	30.35	TCP4	12.99
PUR9	28.75	HNRNPL	12.91
HMCES	28.21	RS6	12.07
TREX1	26.36	MCCA	12.02
ACACA	25.25	UGDH	11.70
HLTF	23.72	ALDH2	11.66
MGME1	23.15	MSI2H	11.62
HNRNPK	22.36	KPYM	10.10
RBMS1	22.22	RLA0L 10.0	

Table S3. Mass spectrometry identified the potential circASH2-binding proteins (unused valve>10).

AA No.	AA	PrD-like score	Disorder score
1	М	0.0089	0.9813
2	S	0.0075	0.9792
3	S	0.0059	0.9785
4	E	0.0038	0.9784
5	А	0.0039	0.9777
6	E	0.0039	0.977
7	Т	0.0066	0.9748
8	Q	0.0107	0.9744
9	Q	0.0116	0.9731
10	Р	0.0111	0.9738
11	Р	0.0104	0.9741
12	А	0.0094	0.9743
13	А	0.0086	0.9753
14	Р	0.0079	0.9752
15	Р	0.007	0.9736
16	А	0.0059	0.971
17	А	0.0049	0.9677
18	Р	0.0041	0.9632
19	А	0.0031	0.9558
20	L	0.0021	0.9454
21	S	0.002	0.9208
22	А	0.0017	0.8889
23	А	0.0015	0.8446
24	D	0.0013	0.789
25	т	0.0015	0.7159
26	К	0.0019	0.6402
27	Р	0.0038	0.573
28	G	0.0054	0.504
29	Т	0.0064	0.4483
30	т	0.008	0.4014
31	G	0.0106	0.3651
32	S	0.0123	0.3699
33	G	0.0135	0.3742
34	А	0.0142	0.3844
35	G	0.015	0.3973
36	S	0.0153	0.4194
37	G	0.0153	0.4414
38	G	0.0148	0.4638
39	Р	0.0138	0.4883
40	G	0.0124	0.5063
41	G	0.0103	0.5256
42	L	0.0069	0.5418
43	т	0.0061	0.5315
44	S	0.0057	0.5305
45	А	0.0051	0.5349

Table S4. Structural disorder analysis of YBX1 amino acid sequence.

	46	А	0.0046	0.5382
	47	Р	0.0041	0.5351
	48	А	0.0035	0.5276
	49	G	0.003	0.5211
	50	G	0.002	0.5217
	51	D	0.0005	0.5225
	52	К	0.0001	0.519
	53	К	0	0.5226
	54	V	0	0.5355
	55	I	0	0.5515
	56	А	0.0001	0.5687
	57	Т	0	0.5828
	58	K	0	0.6045
	59	V	0	0.6275
	60	L	0	0.6397
	61	G	0.0001	0.639
	62	Т	0.0001	0.6416
	63	V	0.0001	0.6458
	64	K	0.0001	0.6467
	65	W	0.0002	0.6512
	66	F	0.0012	0.6424
	67	Ν	0.0029	0.6254
	68	V	0.0032	0.6099
	69	R	0.0043	0.5868
	70	Ν	0.0062	0.5612
	71	G	0.0064	0.5393
	72	Y	0.0063	0.5243
	73	G	0.0058	0.5027
	74	F	0.0047	0.4841
	75		0.0042	0.4654
	76	N	0.0045	0.4449
	77	R	0.0036	0.437
	78	N	0.0033	0.4345
	79	D	0.0011	0.4326
	80		0.0005	0.4348
	81	ĸ	0.0001	0.4406
	82	E	0	0.4464
	83	D	0	0.4523
	84	V	0	0.4616
	85	F	0.0001	0.4657
	86	V	0.0001	0.4656
	۲۵ ۵۵	H	0.0003	0.4639
	88	Q	0.0005	0.4549
	89		0.0004	0.45
	90	A	0.0003	0.4485
	91		0.0002	0.4431
	92	ĸ	0.0002	0.4315
-	৬৩	ň	0.0005	0.4237

94	Ν	0.0017	0.4164
95	Ν	0.0019	0.4086
96	Р	0.0014	0.4046
97	R	0.0007	0.4052
98	К	0.0004	0.4096
99	Y	0.0003	0.4271
100	L	0.0002	0.4316
101	R	0.0002	0.4339
102	S	0.0002	0.4386
103	V	0.0001	0.4532
104	G	0.0001	0.4637
105	D	0.0001	0.4709
106	G	0.0001	0.4785
107	E	0	0.4836
108	Т	0	0.4944
109	V	0	0.5057
110	E	0	0.5079
111	F	0	0.5197
112	D	0	0.5186
113	V	0	0.5229
114	V	0	0.5131
115	E	0	0.4994
116	G	0.0001	0.492
117	E	0.0001	0.4834
118	K	0.0003	0.4811
119	G	0.0013	0.4765
120	A	0.0019	0.4715
121	E	0.0026	0.4717
122	A	0.0088	0.4772
123	A	0.0159	0.4992
124	Ν	0.0241	0.5117
125	V	0.0258	0.5337
126	Т	0.0314	0.5526
127	G	0.0401	0.5635
128	Р	0.0459	0.5931
129	G	0.0508	0.6263
130	G	0.0539	0.6672
131	V	0.0557	0.712
132	Р	0.062	0.7421
133	V	0.0673	0.7634
134	Q	0.0833	0.778
135	G	0.0872	0.8091
136	S	0.0894	0.8369
137	K	0.0911	0.8632
138	Y	0.1015	0.8976
139	A	0.1077	0.9123
140	A	0.1149	0.9197
141	D	0.1233	0.9206

142	R	0.1544	0.9167
143	Ν	0.2109	0.9184
144	Н	0.2244	0.9222
145	Y	0.2409	0.9214
146	R	0.2507	0.906
147	R	0.269	0.8875
148	Y	0.3022	0.877
149	Р	0.3224	0.8391
150	R	0.3399	0.8076
151	R	0.3719	0.7778
152	R	0.4299	0.77
153	G	0.5351	0.767
154	Р	0.6053	0.762
155	Р	0.6664	0.7578
156	R	0.7197	0.7564
157	Ν	0.8161	0.7766
158	Y	0.8394	0.798
159	Q	0.8535	0.7791
160	Q	0.8566	0.776
161	Ν	0.8552	0.7692
162	Y	0.8453	0.7525
163	Q	0.8289	0.6968
164	Ν	0.7666	0.6322
165	S	0.5093	0.5523
166	E	0.2008	0.464
167	S	0.1647	0.4119
168	G	0.1213	0.3482
169	E	0.0563	0.2753
170	K	0.0488	0.2485
171	N	0.0477	0.2237
172	E	0.0408	0.2119
1/3	G	0.0409	0.2207
1/4	S	0.0403	0.2467
175	E	0.0392	0.2716
176	S	0.0433	0.3212
177	A	0.0465	0.3695
178	P	0.0503	0.4126
179	E	0.0535	0.4752
180	G	0.083	0.5658
181	Q	0.1027	0.6374
182	A	0.1076	0.7
183	Q	0.1133	0.7688
184	Q	0.1136	0.8137
185	ĸ	0.1091	0.8493
100	л Л	0.1071	0.0910
10 <i>1</i>		0.1009	0.921
100	ľ D	0.1002	0.9000
109	ĸ	0.104	0.9093

191 R 0.1048 0.983 192 R 0.1081 0.9884 193 F 0.1146 0.9922 194 P 0.1266 0.9923 195 P 0.1369 0.9936 196 Y 0.1458 0.9943 197 Y 0.151 0.9937 198 M 0.1536 0.9942 199 R 0.1549 0.9863 200 R 0.1566 0.9843 201 P 0.1611 0.9733 203 G 0.1776 0.9352 204 R 0.1619 0.9183 206 P 0.1905 0.8973 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1955 0.8313 211 P 0.1677 0.8254	190	R	0.1036	0.9778
192 R 0.1081 0.9884 193 F 0.1146 0.9922 194 P 0.1266 0.9929 195 P 0.1369 0.9936 196 Y 0.1458 0.9943 197 Y 0.1511 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1776 0.9352 204 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1677 0.8252	191	R	0.1048	0.983
193 F 0.1146 0.9922 194 P 0.1266 0.9929 195 P 0.1369 0.9336 196 Y 0.1458 0.9943 197 Y 0.1516 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9733 202 Y 0.1724 0.9723 203 G 0.1776 0.9352 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8281	192	R	0.1081	0.9884
194 P 0.1266 0.9929 195 P 0.1369 0.9936 196 Y 0.151 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9793 202 Y 0.1776 0.9352 203 G 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1627 0.8252 213 V 0.1508 0.8251 214 Q 0.1453 0.8257 215 G 0.1221 0.8245	193	F	0.1146	0.9922
195 P 0.1369 0.9936 196 Y 0.1458 0.9943 197 Y 0.1511 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9733 202 Y 0.1724 0.9723 203 G 0.1776 0.9352 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1955 0.8313 211 P 0.1677 0.8252 213 V 0.1683 0.8261 214 Q 0.1453 0.8283	194	Р	0.1266	0.9929
196 Y 0.1458 0.9943 197 Y 0.151 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9945 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1955 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1950 0.8281 214 Q 0.1453 0.8257 215 G 0.1231 0.8247	195	Р	0.1369	0.9936
197 Y 0.151 0.9937 198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1759 0.9576 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8823 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1627 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8433 219 E 0.0847 0.82	196	Y	0.1458	0.9943
198 M 0.1536 0.992 199 R 0.1549 0.9883 200 R 0.1586 0.9845 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1759 0.9576 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486	197	Y	0.151	0.9937
199 R 0.1549 0.9883 200 R 0.1586 0.9945 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1971 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1971 0.8471 211 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.822	198	М	0.1536	0.992
200 R 0.1586 0.9845 201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1759 0.9576 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8233 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1683 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.08291 0.4433	199	R	0.1549	0.9883
201 P 0.1661 0.9793 202 Y 0.1724 0.9723 203 G 0.1759 0.9576 204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8252 213 V 0.1608 0.8261 214 Q 0.1453 0.8252 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8433 219 E 0.8047 0.82	200	R	0.1586	0.9845
202Y 0.1724 0.9723 203 G 0.1759 0.9576 204 R 0.1759 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1955 0.8313 211 P 0.1623 0.8254 212 P 0.1623 0.8261 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0866 0.828 217 V 0.0861 0.8433 219 E 0.0847 0.8291 220 G 0.0943 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.804 224 Q 0.1233 0.8116 225 G 0.1207 0.8079 227 G 0.1203 0.8653 231 R 0.1187 0.8941 232 P 0.1185 0.9448 234 R 0.1217 0.8041 226 A 0.1207 0.8322 233 V 0.1185 0.9448 234 R 0.1217 0.8941 235 Q<	201	Р	0.1661	0.9793
203G 0.1759 0.9576 204R 0.1776 0.9352 205R 0.1819 0.9183 206P 0.1905 0.8923 207Q 0.1979 0.8704 208Y 0.1984 0.8661 209S 0.1971 0.8471 210N 0.1955 0.8313 211P 0.1677 0.8252 213V 0.1677 0.8252 213V 0.1633 0.8257 216E 0.0896 0.828 217V 0.0861 0.8433 219E 0.0847 0.82 220G 0.0913 0.8291 221A 0.0954 0.8353 222D 0.1003 0.8253 223N 0.1192 0.8192 224Q 0.1233 0.8116 225G 0.1192 0.804 226A 0.1207 0.8322 230G 0.1227 0.8118 224Q 0.1233 0.8116 225G 0.1192 0.8025 233V 0.1185 0.9488 234R 0.1227 0.8148 235Q 0.12217 0.8041 236N 0.1281 0.9755 236N 0.1281 0.9755 236N 0.12237 0.9911	202	Y	0.1724	0.9723
204 R 0.1776 0.9352 205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8433 219 E 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1227 0.8118 226 A 0.1207 0.8079	203	G	0.1759	0.9576
205 R 0.1819 0.9183 206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1623 0.8252 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0661 0.8466 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118	204	R	0.1776	0.9352
206 P 0.1905 0.8923 207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1677 0.8252 213 V 0.1508 0.8251 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8466 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8251 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8025	205	R	0.1819	0.9183
207 Q 0.1979 0.8704 208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.1925 0.8313 211 P 0.1623 0.8252 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8322	206	Р	0.1905	0.8923
208 Y 0.1984 0.8661 209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8251 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079	207	Q	0.1979	0.8704
209 S 0.1971 0.8471 210 N 0.195 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0954 0.8359 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8118 226 A 0.1207 0.804 225 G 0.1207 0.804 226 A 0.1207 0.8322 230 G 0.1207 0.8322	208	Y	0.1984	0.8661
210 N 0.195 0.8313 211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8079 227 G 0.1182 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653	209	S	0.1971	0.8471
211 P 0.1823 0.8254 212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1203 0.8653	210	Ν	0.195	0.8313
212 P 0.1677 0.8252 213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1237 0.8118 225 G 0.1207 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971	211	Р	0.1823	0.8254
213 V 0.1508 0.8261 214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245	212	Р	0.1677	0.8252
214 Q 0.1453 0.8257 215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0954 0.8359 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1	213	V	0.1508	0.8261
215 G 0.1231 0.8247 216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1207 0.8321 231 R 0.1187 0.8971 232 P 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1	214	Q	0.1453	0.8257
216 E 0.0896 0.828 217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1187 0.8971 232 P 0.1185 0.9488 231 R 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1	215	G	0.1231	0.8247
217 V 0.0861 0.8486 218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9488 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1237 0.9911 <td>216</td> <td>E</td> <td>0.0896</td> <td>0.828</td>	216	E	0.0896	0.828
218 M 0.0859 0.8433 219 E 0.0847 0.82 220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849	217	V	0.0861	0.8486
219E0.08470.82220G0.09130.8291221A0.09540.8359222D0.10030.8253223N0.11920.8192224Q0.12330.8116225G0.12270.8118226A0.12070.8079227G0.11920.8025228E0.11620.804229Q0.12070.8322230G0.12030.8653231R0.11870.8971232P0.11850.9448234R0.12170.9601235Q0.12810.9755236N0.12370.9911	218	Μ	0.0859	0.8433
220 G 0.0913 0.8291 221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	219	E	0.0847	0.82
221 A 0.0954 0.8359 222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1162 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9488 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	220	G	0.0913	0.8291
222 D 0.1003 0.8253 223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9488 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	221	A	0.0954	0.8359
223 N 0.1192 0.8192 224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	222	D	0.1003	0.8253
224 Q 0.1233 0.8116 225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9488 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1237 0.9911	223	N	0.1192	0.8192
225 G 0.1227 0.8118 226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9488 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	224	Q	0.1233	0.8116
226 A 0.1207 0.8079 227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	225	G	0.1227	0.8118
227 G 0.1192 0.8025 228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	226	А	0.1207	0.8079
228 E 0.1162 0.804 229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1185 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1237 0.9911	227	G	0.1192	0.8025
229 Q 0.1207 0.8322 230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1237 0.9911	228	E	0.1162	0.804
230 G 0.1203 0.8653 231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	229	Q	0.1207	0.8322
231 R 0.1187 0.8971 232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1237 0.9911	230	G	0.1203	0.8653
232 P 0.1188 0.9245 233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	231	R	0.1187	0.8971
233 V 0.1185 0.9488 234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	232	Р	0.1188	0.9245
234 R 0.1217 0.9601 235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	233	V	0.1185	0.9488
235 Q 0.1281 0.9755 236 N 0.1286 0.9849 237 M 0.1237 0.9911	234	R	0.1217	0.9601
236 N 0.1286 0.9849 237 M 0.1237 0.9911	235	Q	0.1281	0.9755
M 0.1237 0.9911	236	Ν	0.1286	0.9849
	237	М	0.1237	0.9911

_	238	Y	0.1165	0.9939
	239	R	0.1044	0.9946
	240	G	0.0978	0.9951
	241	Y	0.0878	0.9953
	242	R	0.0711	0.994
	243	Р	0.0619	0.9924
	244	R	0.0514	0.99
	245	F	0.0456	0.9883
	246	R	0.0425	0.9775
	247	R	0.0411	0.9556
	248	G	0.0408	0.9161
	249	Р	0.0397	0.8615
	250	Р	0.0383	0.7984
	251	R	0.0365	0.691
	252	Q	0.0359	0.5535
	253	R	0.0315	0.4436
	254	Q	0.0293	0.3469
	255	Р	0.0198	0.25
	256	R	0.0088	0.1658
	257	E	0.0028	0.1362
	258	D	0.0021	0.1269
	259	G	0.0021	0.1151
	260	Ν	0.0019	0.0944
	261	E	0.0005	0.08
	262	E	0.0003	0.0802
	263	D	0.0006	0.0934
	264	K	0.0015	0.1096
	265	E	0.0058	0.1275
	266	Ν	0.0424	0.1677
	267	Q	0.0512	0.2245
	268	G	0.0531	0.2899
	269	D	0.054	0.3328
	270	E	0.0594	0.3729
	271	Т	0.1071	0.5025
	272	Q	0.182	0.6218
	273	G	0.2018	0.6985
	274	Q	0.2148	0.7386
	275	Q	0.2174	0.8148
	276	P	0.2146	0.8657
	277	P	0.2111	0.9123
	278	Q	0.2069	0.9416
	279	R	0.1885	0.9593
	280	R	0.1786	0.973
	281	Y	0.1734	0.9826
	282	ĸ	0.1644	0.9834
	203 204	ĸ	0.1598	0.9842
	204 205		0.15/9	0.9857
_	200	Г	0.1403	0.9001

286	Ν	0.1399	0.9824
287	Y	0.1123	0.976
288	R	0.067	0.9543
289	R	0.042	0.921
290	R	0.0282	0.8782
291	R	0.0206	0.8166
292	Р	0.0165	0.7336
293	Е	0.0116	0.6584
294	Ν	0.0114	0.5847
295	Р	0.009	0.5376
296	K	0.0062	0.5016
297	Р	0.0058	0.5637
298	Q	0.0052	0.6134
299	D	0.0023	0.6981
300	G	0.0016	0.7733
301	К	0.0003	0.8161
302	Е	0.0001	0.8556
303	Т	0.0001	0.8949
304	К	0.0001	0.9278
305	А	0.0001	0.9559
306	А	0.0001	0.9663
307	D	0.0002	0.967
308	Р	0.0003	0.9676
309	Р	0.0004	0.9658
310	А	0.0004	0.9646
311	Е	0.0004	0.9575
312	Ν	0.001	0.9556
313	S	0.001	0.9574
314	S	0.001	0.9534
315	А	0.0008	0.9473
316	Р	0.0006	0.926
317	Е	0.0003	0.9092
318	А	0.0004	0.9142
319	Е	0.0006	0.9041
320	Q	0.0019	0.9055
321	G	0.0022	0.9049
322	G	0.0022	0.9139
323	Α	0.002	0.9157
324	E	0.0018	0.9005

Reference

- 1. Shi L, *et al.* (2017) Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. *Cell Death Dis* 8(11):e3171.
- 2. Sanjana NE, Shalem O, & Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. *Nat Methods* 11(8):783-784.
- 3. Hofacker IL & Stadler PF (2006) Memory efficient folding algorithms for circular RNA secondary structures. *Bioinformatics* 22(10):1172-1176.
- 4. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic acids research* 31(13):3406-3415.
- 5. Popenda M, *et al.* (2012) Automated 3D structure composition for large RNAs. *Nucleic acids research* 40(14):e112.
- 6. Zhu P, *et al.* (2019) IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. *Nat Immunol* 20(2):183-194.
- 7. Yan Y, Zhang D, Zhou P, Li B, & Huang SY (2017) HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. *Nucleic acids research* 45(W1):W365-W373.