ORIGINAL ARTICLE

Acid-switchable nanoparticles induce self-adaptive aggregation for enhancing antitumor immunity of natural killer cells

Xiangshi Sun^{a,b}, Xiaoxuan Xu^b, Jue Wang^b, Xinyue Zhang^f, Zitong Zhao^b, Xiaochen Liu^b, Guanru Wang^b, Lesheng Teng^d, Xia Chen^{a,*}, Dangge Wang^{b,c,*}, Yaping Li^{b,e,f,*}

^aDepartment of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China

^bState Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

^cYantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China

^dSchool of Life Sciences, Jilin University, Changchun 130012, China

^eShandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for

Drug Discovery, Yantai 264000, China

^fSchool of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China

Received 19 October 2022; received in revised form 30 December 2022; accepted 16 January 2023

*Corresponding authors.

E-mail addresses: chenxjluedu@163.com (Xia Chen), dgwang@simm.ac.cn (Dangge Wang), ypli@simm.ac.cn (Yaping Li).

Need heading	NaAlg	CaCO ₃	Galunisertib	IL-15
Gal/IL-15				
Gal/IL-15@Ca		\checkmark	\checkmark	\checkmark
Gal@CaLN	\checkmark	\checkmark	\checkmark	
IL-15@CaLN	\checkmark	\checkmark		\checkmark
Gal/IL-15@LN	\checkmark			\checkmark

 Table S1 Composition of control and treated nanoparticles.

Gal/IL-				
15@CaLN	N	V	N	N

Table S2 Encapsulation efficiency (EE) and loading capability (LC) of galunisertib and IL-15 of Gal/IL-15@CaLN and Gal/IL-15@LN. Data were expressed as mean \pm SD (n = 3).

		Gal/IL-15@CaLN	Gal/IL-15@LN
Galunisertib	EE(%)	77.9 ± 0.2	81.6 ± 0.1
	LC(%)	4.3 ± 0.01	4.5 ± 0.01
IL-15	EE(%)	88.0 ± 1.6	91.9 ± 1.4
	LC	$0.98 \pm 0.02 \; \mu g/10 \; mg$	$1.02 \pm 0.02 \; \mu g/10 \; mg$

Figures

Figure S1 (A) Hydrodynamic size and (B) PDI of Gal/IL-15@CaLN and Gal/IL-15@LN after dispersed in PBS for desired duration. (C) Hydrodynamic size and (D) PDI of Gal/IL-15@CaLN and Gal/IL-15@LN in PBS with 10% FBS. Data were expressed as mean \pm SD (n = 3).

Figure S2 FTIR spectrum of (A) Gal/IL-15@CaLN, (B) Gal/IL-15@CaLN in acidic buffer.

Figure S3 Flow cytometry analysis of purity of NK cells (gating on CD3⁻CD49b⁺ cells) separated from BALB/c mouse spleens and afterwards purified by flow cytometer. Data were expressed as mean \pm SD (n = 3).

Figure S4 Cell viability of (A) NK cells and (B) CT26 cells after treated by various treatments. The concentration gradient of galunisertib varied from 0.87 to 43.5 μ g/mL, and that of IL-15 was 2–100 ng/mL. Data were expressed as mean \pm SD (n = 6).

Figure S5 NKG2D expression in NK cells evaluated by flow cytometry. NK cells (2×10^5) were incubated with CT26 cells (2×10^5) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, following by staining with anti-NKG2D-APC antibody. Data were expressed as mean \pm SD (n = 3).

Figure S6 NKp46 expression in NK cells evaluated by flow cytometry. NK cells (2×10^5) were incubated with CT26 cells (2×10^5) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followed by staining with anti-NKp46-PE antibody. Data were expressed as mean \pm SD (n = 3).

Figure S7 Granzyme B expression in NK cells evaluated by flow cytometry. NK cells (2×10^5) were incubated with CT26 cells (2×10^5) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followed by staining with anti-Granzyme B-Alexa Fluor 647 antibody. Data were expressed as mean \pm SD (n = 3).

Figure S8 Perforin expression in NK cells evaluated by flow cytometry. NK cells (2×10^5) were incubated with CT26 cells (2×10^5) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followied by staining with anti-Perforin-PE antibody. Data were expressed as mean \pm SD (n = 3).

Figure S9 p-SMAD2 expression in NK cells evaluated by flow cytometry. NK cells (2×10^5) were incubated with CT26 cells (2×10^5) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followed by staining with anti-p-SMAD2 primary antibody and corresponding PE-conjugated secondary antibody. Data were expressed as mean \pm SD (n = 3).

Figure S10 TGF- β RI expression in NK cells evaluated by flow cytometry. NK cells (2 × 10⁵) were incubated with CT26 cells (2 × 10⁵) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followed by staining with anti-TGF- β RI primary antibody and corresponding PE-conjugated secondary antibody. Data were expressed as mean ± SD (*n* = 3).

Figure S11 TGF- β RI expression in NK cells evaluated by CLSM. NK cells (2 × 10⁵) were incubated with CT26 cells (2 × 10⁵) for 24 h and then treated by various treatments (PBS, IL-15@CaLN, Gal@CaLN, Gal/IL-15@LN, Gal/IL-15@CaLN) at identical 20 ng/mL IL-15 or/and 8.7 µg/mL galunisertib for 12 h, followed by staining with anti-TGF- β RI primary antibody and corresponding Alexa Fluor 647-conjugated secondary antibody (Blue signals: DAPI; red signals: TGF- β RI). Scale bar, 25 µm.

Figure S12 Gating strategies for identification of intratumoral NK cells (gating on CD3⁻CD49b⁺ cells), NKG2D⁺ NK cells (gating on CD3⁻CD49b⁺NKG2D⁺ cells), NKp46⁺ NK cells (gating on CD3⁻CD49b⁺NKp46⁺ cells), Granzyme B⁺ NK cells (gating on CD3⁻CD49b⁺Granzyme B⁺ cells), and Perforin⁺ NK cells (gating on CD3⁻CD49b⁺Perfotin⁺ cells) in CT26 tumor-bearing immune-deficient BALB/c-nu mice.

Figure S13 Frequency of intratumoral NK cell populations in CT26 tumor-bearing BALB/cnu mice. (A) Frequency of NK cells (gating on CD3⁻CD49b⁺ cells). (B) Frequency of NKG2D⁺ NK cells (gating on CD3⁻CD49b⁺NKG2D⁺ cells). (C) Frequency of NKp46⁺ NK cells (gating on CD3⁻CD49b⁺NKp46⁺ cells). Data were expressed as mean \pm SD. The statistical significance was displayed by two-sided unpaired Student's *t*-test. (**P* < 0.05, ***P* < 0.01, ****P* < 0.001) (*n* = 3).

Figure S14 Gating strategies and frequency of intratumoral NK cell populations (gating on CD3⁻CD49b⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S15 Gating strategies and frequency of intratumoral NKG2D⁺ NK cell populations (gating on CD3⁻CD49b⁺NKG2D⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S16 Frequency of intratumoral NKp46⁺ NK cell populations (gating on CD3⁻ CD49b⁺NKp46⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S17 Frequency of intratumoral Granzyme B⁺ NK cell populations (gating on CD3⁻ CD49b⁺Granzyme B⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S18 Frequency of intratumoral Perforin⁺ NK cell populations (gating on CD3⁻ CD49b⁺Perforin⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S19 Frequency of intratumoral CD8⁺ T cell (gating on CD3⁺CD8⁺ cells) and CD4⁺ T cell populations (gating on CD3⁺CD4⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S20 Gating strategies and frequency of intratumoral M1 macrophage populations (gating on CD45⁺F4/80⁺CD80⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S21 Frequency of intratumoral M2 macrophage populations (gating on CD45⁺F4/80⁺CD206⁺ cells) in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 3).

Figure S22 Frequency of intratumoral macrophage populations in CT26 tumor-bearing BALB/c-ic mice. (A) Frequency of M1 macrophage populations (gating on CD45⁺F4/80⁺CD80⁺ cells). (B) Frequency of M2 macrophage populations (gating on CD45⁺F4/80⁺CD206⁺ cells). Data were expressed as mean \pm SD (n = 3). The statistical significance was displayed by two-sided unpaired Student's *t*-test. (*P < 0.05, **P < 0.01, ***P < 0.001).

Figure S23 Photographs of tumors at Day 14 of antitumor study in CT26 tumor-bearing BALB/c-nu mice (n = 6). Scale bar, 1 cm.

Figure S24 Tumor section assays at Day 14 of antitumor study in CT26 tumor-bearing BALB/c-nu mice. (A) H&E staining. (B) TUNEL staining. (C) The infiltration of NK cells characterized as CD49b⁺ cells (Blue signals: DAPI; red signals: CD49b). Scale bar, 100 μ m.

Figure S25 H&E staining of major organs (heart, liver, spleen, lung, kidney) at Day 14 of antitumor study in CT26 tumor-bearing BALB/c-nu mice. Scale bar, 100 μm.

Figure S26 Body weight change monitored every two days during the antitumor study in CT26 tumor-bearing BALB/c-nu mice. Data were expressed as mean \pm SD (n = 6).

Figure S27 Immunofluorescence staining of tumor sections at Day 16 of antitumor study in CT26 tumor-bearing BALB/c-ic mice. (A) The infiltration of NK cells characterized as CD49b⁺ cells (Blue signals: DAPI; red signals: CD49b). (B) The infiltration of CD8⁺ T cells characterized as CD8⁺ cells (Blue signals: DAPI; green signals: CD8). Scale bar, 100 μm.

Figure S28 H&E staining of major organs (heart, liver, spleen, lung, kidney) at Day 16 of antitumor study in CT26 tumor-bearing BALB/c-ic mice. Scale bar, 100 μm.

Figure S29 Body weight change monitored every two days during the antitumor study in CT26 tumor-bearing BALB/c-ic mice. Data were expressed as mean \pm SD (n = 6).