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Supplementary Figures 

 

 
 

Supplementary Figure 1. Timing of MSBooster steps and Percolator rescoring. Error bars 

show the standard deviation from running the software ten times. For each subfigure, the 

dataset, the number of mzml/pin file pairs, the number of unique peptides in the pin files, and 

the total number of PSMs are listed. Data are presented as mean values +/- the standard 

deviation. Source data are provided as a Source Data file. 
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Supplementary Figure 2. Feature correlations. Spearman’s correlation was calculated 

between MSBooster features and all features reported by MSFragger (a) and MSFragger-DIA 

(b). (a) was produced from one timsTOF file, (b) from one melanoma file. Source data are 

provided as a Source Data file. 
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Supplementary Figure 3. HLA immunopeptidome PSM rescoring. (a) The percent increase in 

peptides identified when rescoring MaxQuant results with Prosit. Each bar represents the 

results for a different monoallelic cell line from Sarkizova et al., 2020. (b) Swarmplot of the 

number of HLA peptides reported in comparison to only using hyperscore or in comparison to 

MaxQuant rescoring with Prosit. “Original FragPipe” indicates results without using deep 

learning features, only using hyperscore and other features calculated by MSFragger. 

“MSBooster spectra+RT (DIANN)” has the MSBooster generated features added on and is 

equivalent to “spectra+RT” in Fig 2a.  (c) GibbsCluster-generated motifs assigned to each 

peptide subset from the Venn diagram in Fig 2b. Source data are provided as a Source Data 

file. 
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Supplementary Figure 4. Score distributions for unmodified and modified HLA peptides. (a) 

Spectral similarity values for accepted PSMs at PSM FDR < 1% and peptide FDR < 1%. (b) The 

same as (a) but for RT difference values. Note that these values are not log-normalized as in 

other figures. Pyro-glutamation on E was included in the search, but only one was detected and 

therefore excluded from visualization. (c) Venn diagram of the number of peptides with each 

modification before and after MSBooster rescoring. The bottom row is for pyroglutamation from 

Q, either rescored with spectral similarity, RT difference, or both together (spectra+RT). Source 

data are provided as a Source Data file. 
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Supplementary Figure 5. Melanoma DIA rescoring with DIA-Umpire. Swarmplots of the 

number of peptides (a) or proteins (b) reported at 1% FDR. Source data are provided as a 

Source Data file. 
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Supplementary Figure 6. Inverse ion mobility dependence 1/K0 on mass and charge. (a-b) 

Scatter density plots are shown for (a) confident target PSMs and (b) decoy PSMs, where 

brighter colors represent higher density. Figures a-b were generated using data from a single 

DDA PASEF run. Source data are provided as a Source Data file. 
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Supplementary Figure 7. PSM score distributions for MSBooster features. Target PSMs are in 

blue, decoy PSMs in orange. The datasets analyzed were HLA (a), melanoma processed by 

MSFragger DIA (b), melanoma processed by DIA-Umpire with MSFragger (c), single cell 

nanoPOTS (d), and timsTOF (e). RT and IM features were log-transformed to better visualize 

target-decoy separation using the conversion log10(value + 1). Spectral and RT figures have 
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counts on the y-axis, IM has density. Targets are depicted in blue, decoys in orange.  Source 

data are provided as a Source Data file. 

 

 
 

Supplementary Figure 8. Utility of multiple correlated features. Single features (unweighted 

spectral entropy + delta RT LOESS = spectra+RT; unweighted spectral entropy + delta RT 

LOESS + IM probability uniform prior = spectra+RT+IM) are compared against multiple features 

(everything listed in Supplementary Note 1) for Percolator rescoring. Significance was 

calculated using two-sided independent t-tests with p<0.01, and p-values are listed in 

Supplementary Data 1. The numbers reported are for HLA peptides (a), melanoma peptides (b) 

and proteins (c) with MSFragger-DIA, melanoma peptides (d) and proteins (e) with DIA-Umpire 

and MSFragger, single cell peptides (f) and proteins (g), and timsTOF peptides (h) and proteins 

(i). Source data are provided as a Source Data file.  
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Supplementary Figure 9. HLA motif for new peptides from rescoring the HLA dataset with 

multiple correlated features. 
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Supplementary Figure 10. Target-decoy PSM distributions for different charge states and 

features. Target-decoy distributions for inverse ion mobility (a-f), mass (g-l), and peptide length 

(m-r) are shown for precursors of charge 1-5 or all charges together. All subfigures show 

relative density rather than PSM counts to better show target-decoy separation. Targets are 

depicted in blue, decoys in orange. Source data are provided as a Source Data file. 
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Supplementary Figure 11. Swarmplot of peptides (a) and proteins (b) reported at 1% FDR for 

the timsTOF Hela dataset. The “IMfeature” used was IM probability uniform prior. 1/K0 is the 

experimental inverse ion mobility. Charge was one-hot encoded between charges 1 and 7. 

“Base” represents the default in FragPipe with only spectral and RT similarity features. Source 

data are provided as a Source Data file. 
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Supplementary Figure 12. Peptides reported when using different MSBooster features. 

Swarmplots for HLA (a), melanoma MSFragger DIA (b), melanoma DIAU (c), timsTOF (d), 1 cell 

(e), 3 cells (f), 10 cells (g), 50 cells (h). Each dataset was processed 10 times by Percolator, 

each time with a different random seed 1-10. The black line indicates mean peptides reported 

over the 10 runs. Source data are provided as a Source Data file. 
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Supplementary Figure 13. A plotted calibration curve between the experimental and predicted 

RT scales. The data shown here is from one replicate of a 50-cell run from the nanoPOTS data 

(Williams et al.). The red line represents the values estimated by LOESS regression. Individual 

black dots are those PSMs with spectral similarity greater than 0 and log(expectation value) less 

than a user-defined threshold, which is by default -3.5. The inset shows the relationship 

between the experimental RT and difference between predicted and experimental RT when 

using only a linear regression for calibration (delta RT linear). Source data are provided as a 

Source Data file. 
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Supplementary Notes 

Supplementary Notes 1. Features 

Available features in MSBooster are listed below, along with an equation and source for 

less commonly used metrics. By default in FragPipe, the unweighted spectral entropy 

and delta RT LOESS only are used. 

• Spectral similarity: Unweighted spectral entropy requires fragment ion intensity 

vectors to sum to 1. Other metrics require unit normalization (i.e. the sum of 

squared intensities equals 1). p stands for predicted fragment, P for predicted 

intensity vector, m for matched experimental fragment, and M for matched 

experimental intensity vector. By default, the top 12 highest predicted intensity 

fragments are used. 

o Bray Curtis1: 1 −
𝛴ⅈ=1
𝑛 |𝑝ⅈ−𝑚ⅈ|

𝛴ⅈ=1
𝑛 𝑝ⅈ+𝑚ⅈ

 

o Pearson’s correlation: If no matched experimental fragment ions, value is -

1 

o Dot Product 

o Unweighted spectral entropy2: 1 −
2𝑆𝑃𝑀−𝑆𝑃−𝑆𝑀

𝑙𝑛 4
, where entropy S = 

−∑ 𝑓𝑖 𝑙𝑛 𝑓𝑖
𝑛
𝑖=1 , and SPM is the sum of predicted and matched vectors SP 

and SM divided by 2 

• Retention time similarity 

o delta RT loess: Described in Methods (Retention time and ion mobility 

calibration). 
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o delta RT loess normalized: Similar to delta RT loess but divided by the 

interquartile range of predicted RTs for high confidence PSMs in the 

experimental RT vicinity. 

o RT probability Unif Prior: Described in Methods (Kernel density estimation 

of predicted retention time and ion mobility distributions). 

• Ion mobility similarity 

o Features are like those for RT but done separately for each charge. Only 

charges +1-7 are supported.  

 

Supplementary Notes 2. IM feature testing 

Because our IM features only marginally improved identifications, we further explored 

this data to see if we could improve our features. We noted a higher density of decoy 

PSMs at lower 1/K0 values (around 0.7-0.8) compared to confident target PSMs (Fig 

6c-d, Supplementary Fig 10). Similarly, decoy PSMs tend to have lower masses and 

shorter lengths than target PSMs for lower charge states. We hypothesized that adding 

these simpler features may be beneficial for performance. Peptide mass and length 

have already been incorporated as features in the MSFragger-generated pin file. We 

tested adding one-hot-encoded charge and 1/K0 values (not to be confused with the 

DL-based IM features in MSBooster) as features for Percolator as well (Supplementary 

Fig 11a-b, Supplementary Data 1). While 1/K0 by itself did not improve over only using 

spectral and RT features, the combination of charge and 1/K0 led to a 4.4% increase 

over baseline peptide identifications without MSBooster. Simply adding charge and 1/K0 
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values provides greater boosts compared to our hand-crafted IM feature, but the 

improvement is still minimal. 
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