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Mathematical model for mixing of two solutions in nanoESI emitter 

To provide a theoretical framework to interpret the experimental results, we consider the idealized 

one-dimensional problem of diffusion in a long capillary of length L and (constant) diameter d – 

see Figure S2-1. Mimicking experimental conditions, we allow the solute to be transported both 

by diffusion and also by advection, though we assume that the latter effect is small in a way to be 

quantified later. Using subscripts to indicate partial differentiation with respect to time (t) and 

space (x), the equation governing the spatio-temporal evolution of the solute concentration, c, is 

 t x xxc uc Dc ,                                                         (1) 

where D is the diffusion coefficient and u is the advection velocity, which, for analytical 

convenience, we assume to be constant. Note that u = Q/(d 2/4) in which Q is the volumetric 

flow rate of the liquid through the capillary. It is advantageous to non-dimensionalize eq 1 by 

introducing non-dimensional variables for space ξ (x = ξL) and time τ (t = τ L2/D). Then we 

can rewrite eq 1 as 

0 0 0( / ) Pe( / ) ( / ) τ ξ ξξc c c c c c ,                                           (2) 

in which c0 is the initial solute concentration as measured in the region x < ℓ where the 

horizontal distance ℓ is defined in Figure S2-1. The Peclet number, Pe, is defined as Pe = uL/D. 

Eq 2 makes reference to the non-dimensional concentration c/c0, however, it is advantageous 

to consider the evolution of the non-dimensional concentration deficit, defined as σ = 1 − c/c0. 

Whereas σ solves the same governing equation as c/c0, i.e. 

Pe  t ξ ξξσ σ σ ,                                                          (3) 



we can transform the above equation into a standard heat equation by applying the 

transformation 
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such that  satisfies 

=τ ξξυ υ                                                       (5) 

Boundary conditions relevant to the above governing equations are as follows. At x = 0, 

ξ = 0, i.e. on the left-hand side of the capillary, 

0(0, ) (0, ) 0 (0 .0 0 , )0 00 00    00c t c σ τ υ τ                               (6)                                                                         

At x = L, ξ = 1, i.e. on the right-hand side of the capillary, 
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Also, at t = 0, τ = 0,   
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where H denotes the Heaviside step function. 

To solve eq 5, we assume a separable solution of the form 

( ) ( ) ( ).υ ξ,τ X ξ T τ                                                 (9) 

Substitution of eq 9 into eq 5 shows that 

( ) cos ( ) sin ( ) n n n n nX ξ A λ ξ τ B λ ξ τ ,                                (10) 



where n is the sequence of eigenvalues with n = 1, 2, 3 and An and Bn are integration constants. 

Subsequent application of the left- and right-hand side boundary conditions confirm that An = 0 

whereas the eigenvalues satisfy a transcendental equation of the form 
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The first (trivial) root of eq 11 is 1 = 0 whereby sin1 ξ = 0. Thereafter, and to good 

approximation for small Pe,  
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In the interests of maintaining an orthogonal set of basis functions, we consider as a generic 

solution for Xn: 
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such that 
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Combining eq 13 and eq 14 and using superposition yields the small-Pe solution for  
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where the Fourier coefficients bn satisfy 
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Using the above solution for , eq 4 can be solved for  and the normalized concentration 

c/c0 = 1 -  can be found. 

  



 

Figure S2-1. Capillary tube schematic. We assume that the solute (whose initial 

concentration in the region x < l or ξ < l/L is c0) is transported by a combination of diffusion 

and (slow) left-to-right advection. 

 

 

 

 

 

 

                           

 


