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Mathematical model for mixing of two solutions in nanoESI emitter

To provide a theoretical framework to interpret the experimental results, we consider the idealized
one-dimensional problem of diffusion in a long capillary of length L and (constant) diameter d —
see Figure S2-1. Mimicking experimental conditions, we allow the solute to be transported both
by diffusion and also by advection, though we assume that the latter effect is small in a way to be
quantified later. Using subscripts to indicate partial differentiation with respect to time (t) and

space (x), the equation governing the spatio-temporal evolution of the solute concentration, c, is
¢, +uc, =Dc,,, €))

where D is the diffusion coefficient and u is the advection velocity, which, for analytical
convenience, we assume to be constant. Note that u = Q/(rd 2/4) in which Q is the volumetric
flow rate of the liquid through the capillary. It is advantageous to non-dimensionalize eq 1 by
introducing non-dimensional variables for space & (x = £L) and time z (t = z L?/D). Then we

can rewrite eq 1 as
(c/cy), +Pe(c/cy): =(c/cy)e, )

in which ¢o is the initial solute concentration as measured in the region x < ¢ where the

horizontal distance ¢ is defined in Figure S2-1. The Peclet number, Pe, is defined as Pe = uL/D.

Eq 2 makes reference to the non-dimensional concentration c/co, however, it is advantageous
to consider the evolution of the non-dimensional concentration deficit, defined as ¢ = 1 — c¢/co.

Whereas o solves the same governing equation as c/co, i.e.

o, +Pe 0: =0y, )



we can transform the above equation into a standard heat equation by applying the

transformation
1 1
o(lr)= epr Pe (¢ 3 Pef)}v(é 7), 4)

such that o satisfies
U, =V (5)
Boundary conditions relevant to the above governing equations are as follows. At x =0,

&=0, i.e. on the left-hand side of the capillary,
cOt)=c, = 0(0,7)=0 = 0(0,7)=0. (6)

Atx =L, =1, i.e. on the right-hand side of the capillary,
¢ (L)=0 = o,0)=0 = vé(l,r)+%Pev(lr)=O. @
Also, att=0,7=0,
c=G[1-H-D] = 6EO=HE-1) = olE0=p(-ZPHE—1). @

where H denotes the Heaviside step function.

To solve eq 5, we assume a separable solution of the form
(1) =X()T (). ©)

Substitution of eq 9 into eq 5 shows that

X, (&) = A4,cosi.&(r) + B sinA & (z), (20)



where A, is the sequence of eigenvalues with n = 1, 2, 3 and A, and B, are integration constants.
Subsequent application of the left- and right-hand side boundary conditions confirm that A, =0

whereas the eigenvalues satisfy a transcendental equation of the form

tan A, =-—" (11)

The first (trivial) root of eq 11 is A1 = 0 whereby sin A1 & = 0. Thereafter, and to good

approximation for small Pe,

V4 3 57
A, 0= A0 — A, 0—.
07 g 0> (12

In the interests of maintaining an orthogonal set of basis functions, we consider as a generic

solution for Xx:
X, (&)=B,sin (n—ljné n=12,3
n n 2 , 1699 (13)
such that

2
T, () =C, exp[(n —%j nzt]. (14)

Combining eq 13 and eq 14 and using superposition yields the small-Pe solution for v

2
(&)= gbnsin{(n—%jné}exp[—[n—%j 7[21] (15)

where the Fourier coefficients b, satisfy



1 1 . 1 I
b, =2cj)exp(—5 Peé)smﬁn—z}ré}H(é—tjdl. (16)

Using the above solution for v, eq 4 can be solved for o and the normalized concentration

c/co =1 - o can be found.



F 3
A 4

T
O
1l
O
O
1
o
A
-

: L

Figure S2-1. Capillary tube schematic. We assume that the solute (whose initial
concentration in the region x <l or &£ < I/L is o) is transported by a combination of diffusion

and (slow) left-to-right advection.



