

WT + sh-luciferase Standard diet
 WT + shOGT Standard diet

1

0

THLE-2 OA + siOGT

(%)

5000

0--00

10000 5000

> -00 0-

(%)

2

Primary hepatocytes + NM
 Primary hepatocytes + MCD + si0
 Primary hepatocytes + MCD + siOGT

Primary hepatocytes + vehicle
 Primary hepatocytes + PUGNAc 6h
 Primary hepatocytes + PUGNAc 24h

Α

Fig 1A

Fig 2C

Fig 2F

Fig 3A

Fig 3G

Fig 4A

32

CONFO +500T COMED 500 92 100. OPHED COM FO + 5 06 7 STO . BARAM

Fig 7C

Fig S2

Carby and the Carbo 2w
Liber storew , CONFO Alus
WED. 5TO XUU, CONFO JEW
CGA STO YW , MCA YW

50 - C	STO YW .	nco 4w
Dish Jab(D Dis ~ Ano m m m	S70	PHED
6A40U JileCD 13	250 , Can	46 ·

Fig S3G

SER. WIGHT STD , NCO , MCO + Shard
COPON WELL STO, MCA, MCD HUNGER 37
WERE SD , MCD , MCD + Shiplet
soloni whe sto use year year
WHE STO , NLO , MLOL POUR
CAPASI
PARA STD MAD MUCH-ALOUN
with sto, when incorstophing
Store and the store and the store

Fig S4A

MER STP MER MER THE
ADD , ALCO , ALC
anter and , and , and the
150~ MCP, MCP, MCP+7126
PERM STD MCD ACONTEN
CALLER ALCO ALCO ALCO ALCO ALCO ALCO ALCO ALCO
CUTA STD MOD ACCONTRANT

Uncropped blots of each figure. Red squares indicate the selected bands of each gel shown in each figure.

Supplementary Figure 10 (cont)

Fig S4A

MERK STO MCO MCO MCO MCO MONTHON	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Abdu Andrew Con Con Abdu	•
and the the most short short short short	2
STA STA , MCD , MCD + SKEN	1 A
MACO . MACO . MACO	100
which the state which the short	1 . T.
will a sto were the	1 . S.
1000 NCO	100 000
WO LOA STD ALL MOT THE	1

Fig S6

Uncropped blots of each figure. Red squares indicate the selected bands of each gel shown in each figure.

Supplementary Figure 1. Hematoxylin and eosin staining and Masson's trichrome staining in healthy (normal liver) and patients with NASH and fibrosis. Representative microphotographs are shown of hematoxylin and eosin staining (H&E; upper panel) and Masson's trichrome staining in healthy (normal liver) and patients at different stages of fibrosis.

Supplementary Figure 2. Protein levels of OGT and OGA in *in vivo* preclinical **models of NASH.** A) OGT protein levels in the liver of mice fed a choline-deficient high-fat diet (CD-HFD) for 3 and 12 weeks (n=6-7). OGA protein levels in the liver of mice fed a: B) standard diet (STD) and methionine-and-choline-deficient diet (MCDD) or STD and choline-deficient high-fat diet (CD-HFD) for one year (n=7).

Supplementary Figure 3. Early OGT inhibition ameliorates MCD-induced hepatic fibrosis. A) OGT inhibition in wild-type (WT) mice fed a MCD diet compared to mice fed a standard diet (STD) and analysed by: B) Body weight of mice; C) ALT; D) hematoxylin & eosin, Sirius red, collagen 1 and oil red O staining. E, F) Expression of fibrosis (E) and inflammation (F) markers; G) protein levels of endoplasmic reticulum markers in mice injected with sh-luciferase or shOGT and fed a MCD diet (n=3-8). *p <0.05, **p <0.01, ***p<0.001, using a one-way ANOVA followed by a Bonferroni Multiple Comparison Test. Supplementary Figure 4. OGT downregulation in *in vivo* models of liver fibrosis does not affect endoplasmic reticulum stress, apoptosis or proliferation. A) Protein levels of IRE1 α , pPERK/PERK, BIP, XBP1, pEIF2 α /EIF2 α and CHOP in the liver (n=3-8); B-C) Representative microphotographs are shown of cleaved caspase 3 (CC3) and ki67 staining of liver sections of WT: B) mice fed with MCD diet, and C) mice fed with CD-HFD injected with shLuciferase or shOGT. *p<0,05, **p<0.01, ***p<0.001, using a one-way ANOVA followed by a Bonferroni Multiple Comparison Test.

Supplementary Figure 5. OGT inhibition in mice fed a standard diet induces hepatic lipid accumulation. OGT inhibition in WT mice fed a standard diet injected with shluciferase or shOGT (n=4). ***p<0.001, using a two-tail Student's *t*-test.

Supplementary Figure 6. OGT is increased in *in vitro* models of hepatocyte injury. A-D) OGT protein levels in primary hepatocytes (upper panel) and human THLE-2 cells (lower panel) treated with methionine and choline-deficient media (MCD) and BSA or oleic acid (OA) (n=5-6). Oil red O staining of primary mouse hepatocytes challenged with BSA or OA, and then treated with E) vehicle or OSMI-1, or F) empty siRNA or siRNA against OGT. Oil red O staining of human THLE-2 cells challenged with BSA or OA, and then treated of burner of the size of **Supplementary Figure 7.** *O*-GlcNAcylation mediates lipid accumulation in hepatocytes. Oil Red O in A) primary hepatocytes from STD-fed mice, and B) THLE-2 cells treated with vehicle or PUGNAc for 6 and 24 hours (n=6-16). Oil Red O in THLE-2 cells treated with C) Glucosamine 10 and 25 mM; and D) glucosamine 25 mM, and empty siRNA or siRNA against OGT (n=8-16). *p <0.05, **p <0.01, ***p<0.001, using a one-way ANOVA followed by a Bonferroni Multiple Comparison Test.

Supplementary Figure 8. Inhibition of *O*-GlcNAcylation increases mitochondrial activity in *in vitro* models. A) Oxygen consumption rate (OCR) in primary hepatoctyes treated with BSA or oleic acid (OA) and then with empty si-RNA or si-RNA-OGT. Arrows indicate the timepoint at which mitochondrial respiration modulators (oligomycin [Oligo], phenylhydrazone [FCCP], or rotenone/antimycin A [Rot/AA]) were added to the assay. Right, graph depicting the effect of OA and si-RNA-OGT on aerobic or quiescent metabolic states, based on quantification of glycolysis and oxygen consumption rate during basal metabolism. B) Parameters of mitochondrial function (n=10-12). C) Oxygen consumption rate (OCR) in primary hepatoctyes incubated with normal medium (NM) or MCD media, and then with empty siRNA or siOGT. Arrows indicate the timepoint at which mitochondrial respiration modulators were added to the assay. Right, graph depicting the effect of MCD and siOGT on aerobic or quiescent metabolic states, based on quantification silver added to the assay. Right, graph depicting the effect of MCD and siOGT on aerobic or quiescent metabolic states, based on quantification of glycolysis and oxygen consumption rate during basal metabolism. D) Parameters of mitochondrial function (n=9-12). **p <0.01 and ***p<0.001, using a one-way ANOVA followed by a Bonferroni multiple comparison test.

Supplementary Figure 9. Activation of *O*-GlcNAcylation reduces mitochondrial activity in *in vitro* models. A) Oxygen consumption rate (OCR) in primary hepatoctyes treated with vehicle or PUGNAc. Arrows indicate the timepoint at which mitochondrial respiration modulators (oligomycin [Oligo], phenylhydrazone [FCCP], or rotenone/antimycin A [Rot/AA]) were added to the assay. Right, graph depicting the effect of OA and si-RNA-OGT on aerobic or quiescent metabolic states, based on quantification of glycolysis and oxygen consumption rate during basal metabolism. B) Parameters of mitochondrial function (n=10-12). **p <0.01 and ***p<0.001, using a one-way ANOVA followed by a Bonferroni multiple comparison test.

Supplementary Figure 10. Uncropped blots of each figure. Red squares indicate the selected bands of each gel shown in each figure.

Supplementary Tables

Table S1. Anthropometric, biochemical and clinical characteristics of patients with NASH used for O-GlcNAc immunostaining analysis. BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; AST, aspartate transaminase; ALT, alanine transaminase.

Variable	Normal liver (n=3)	NASH with fibrosis (n=13)	
Weight (kg)	122,7 \pm 8,6	107,2 ± 3,9	
ВМІ	42,4±1,8	36,6±1,0	
Glucose (mg/dl)	90,7 ± 2,9	118,8 ± 10,6	
Urea (mg/dl)	34 ± 3	32,7 ± 2,6	
Cr (mg/dl)	$0,8\pm0,2$	$\textbf{0,7}\pm\textbf{0,05}$	
ALT (U/I)	$37,7\pm12,5$	61,6±7,9	
AST (U/I)	27,7 ± 7,5	47,5 ± 7,0	
GGT (U/I)	22,3±9,1	121,4 ± 39,2	
Fatty acids (U/I)	$68,3\pm15,5$	88,4±9,9	
Bilirubin (mg/dl)	$\textbf{0,6}\pm\textbf{0,1}$	0,75 ± 0,1	
Triglycerides (mg/dl)	$\textbf{208,5} \pm \textbf{93,5}$	226,6 ± 74,2	
Total cholesterol (mg/dl)	$\textbf{178,3} \pm \textbf{10,9}$	171,2 ± 7,3	
LDL (mg/dl)	88 ± 17	100,9 \pm 9,6	
HDL (mg/dl)	57 ± 11	40,2 ± 3,6	
Albumin (g/dl)	$\textbf{4,4}\pm\textbf{0,1}$	4,5 ± 0,03	
Ferritin (ng/ml)	$\textbf{236,7} \pm \textbf{148,2}$	$\textbf{178,8} \pm \textbf{36}$	
Hemoglobin (g/dl)	$\textbf{14,9} \pm \textbf{1,3}$	$14,7\pm0,5$	
Platelets x10 ³ /ul	$\textbf{263,7} \pm \textbf{54,7}$	217,7 ± 21,3	
AP (%)	$\textbf{86} \pm \textbf{4,2}$	89,6±3,8	
Steatosis (0-3)	0,0±0,0	$\textbf{1,7}\pm\textbf{0,1}$	
Lobular inflammation (0-3)	0,0±0,0	1±0,1	
Ballooning (0-2)	$\textbf{0,3}\pm\textbf{0,3}$	$\textbf{1,3}\pm\textbf{0,1}$	
Fibrosis (0-4)	0,0±0,0	2,3±0,3	

NAS Score (0-8)	$\textbf{0,3}\pm\textbf{0,3}$	4 ± 0,2

 Table S2. Anthropometric, biochemical and clinical characteristics of patients with

 NASH used for O-GlcNAc western blot analysis.

Variable	Normal liver (n=9)	NASH with fibrosis (n=9)	
Weight (kg)	122,1±7,3	117,9 ± 10,7	
ВМІ	40,7 ± 1,9	38,3 ± 1,6	
Glucose (mg/dl)	$110,6\pm17,3$	112 ± 10,2	
ALT (U/I)	$\textbf{25,6} \pm \textbf{3,6}$	28,8±8,3	
AST (U/I)	18,7 ± 1,9	21,3 ± 5,2	
GGT (U/I)	25,5 ± 3,9	36,7±16,1	
Bilirubin (mg/dl)	0,67 ± 0,12	0,61 ± 0,27	
Triglycerides (mg/dl)	$\textbf{108,2} \pm \textbf{16,9}$	$159\pm93{,}5$	
Total cholesterol (mg/dl)	$\textbf{184} \pm \textbf{9,9}$	220,6 ± 28,2	
LDL (mg/dl)	109,2 \pm 7,9	131,4 ± 23,1	
HDL (mg/dl)	52,5 ± 5,7	48,4 ± 9,4	
Fibrosis (0-4)	0,0±0,0	2±0,1	
NAS Score (0-8)	1±0,2	4 ± 0,5	

BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; AST, aspartate transaminase; ALT, alanine transaminase.

Ta	abl	le	S3 .	Pı	rimers	and	probes	used	for	gene	am	plificat	ion.
										– –			

Name	Primer sequence $5' \rightarrow 3'$	
Mus musculus Callagan 1g1	FW cctaatgctgccttttctgc	
Mus musculus Collagen 101	RV atgtcccagcaggatttgag	
Mus musculus Collogon 1g2	FW ccgtgcttctcagaacatca	
Mus musculus Collagen 102	RV cttgccccattcatttgtct	
Mus musculus $F4/80$	FW tgcatctagcaatggacagc	
Mus musculus F4/80	RV gccttctggatccatttgaa	
Mus musculus HDDT	FW aagcttgctggtgaaaagga	
Mus musculus HFK1	RV ttgcgctcatcttaggcttt	
Mus musculus II 6	FW agttgccttcttgggactga	
	RV tccacgatttcccagagaac	
Mus musculus a Smooth Muscle Actin	FW ctgacagaggcaccactgaa	
Mus museulus a-smooth Musele Actin	RV catctccagagtccagcaca	
Mus musculus TGER1	FW ttgcttcagctccacagaga	
Mus musculus TOFP1	RV tggttgtagagggcaaggac	
Mus musculus TNE	FW agcccccagtctgtatcctt	
Mus musculus TNFa	RV ctccctttgcagaactcagg	
Mus museulus OCT	FW caccgttcagtattctgtgccgcc	
	RV tagggcaattctcctgtgcg	

Table S4. Antibodies used for western blot.

Protein target	Manufacturer (catalog number)	Species reactivity	Dilution
<i>O</i> -GlcNAc transferase (OGT)	Cell Signaling (D1D8Q)	Rabbit monoclonal	1:1000
Glyceraldehyde 3- phosphate dehydrogenase (GAPDH)	Merck (CB1001)	Mouse monoclonal	1:5000
O-GlcNAcase (OGA)	Abcam (ab124807)	Rabbit monoclonal	1:1000
OXPHOS	Abcam (ab110413)	Mouse cocktail	1:1000
Heat shock protein 90 (HSP90)	Santa Cruz Biotechnology (Sc-13119)	Mouse monoclonal	1:5000
Protein Kinase RNA-Like ER Kinase (PERK)	Cell Signaling Technology (3192S)	Rabbit monoclonal	1:1000
Protein Kinase RNA-Like ER Kinase Thr980 (phospho-PERK)	Cell Signaling Technology (3179S)	Rabbit monoclonal	1:1000
Inositol requiring enzyme 1 alpha (IRE1α)	Abcam (ab37073)	Rabbit monoclonal	1:1000
Binding immunoglobulin protein (BIP)	Cell Signaling Technology (3183S)	Rabbit monoclonal	1:1000
X-Box Binding Protein 1 (XBP1)	Abcam (ab220783)	Rabbit monoclonal	1:1000
Eukaryotic translation initiation factor 2 alpha (EIF2a)	Santa Cruz Biotechnology (Sc-11386)	Rabbit polyclonal	1:1000
Eukaryotic translation initiation factor 2 alpha Ser52 (phospho-EIF2α)	Santa Cruz Biotechnology (Sc-101670)	Rabbit polyclonal	1:1000

C/EBP Homologous Protein (CHOP)	Santa Cruz Biotechnology (Sc-793)	Rabbit polyclonal	1:1000
---------------------------------	---	----------------------	--------