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S-Ⅰ. Analyzing the tight-binding model 

A. EPs in the non-Hermitian model 

In this subsection, we investigate the Bloch Hamiltonians in Hermitian and non-

Hermitian cases, and show how a Dirac point splits into a pair of EPs connected by a 

bulk Fermi arc. As shown in Fig. 1a of the main text, the Hamiltonian of the tight-

binding lattice in Hermitian case (𝛾 = 0) has the form 

𝐻! = 𝑑"𝜎" + 𝑑#𝜎#,                        (S1) 

where 𝑑" = (𝑡$ + 𝑡%) cos 𝑘" + 2𝑡# cos 𝑘# , 𝑑# = (𝑡$ − 𝑡%) sin 𝑘" . The distance 𝑎/

√2 between sublattices is set to unity for simplicity. 𝐤 = 7𝑘" , 𝑘#9 is the wavevector. 

The corresponding eigenvalue is 

𝐸! = ±<𝑑"% + 𝑑#%.                        (S2) 

The bulk band dispersion near a Dirac point is shown in Fig. S1a, in which the upper 

and lower bands are degenerate at a Dirac point. The positions of the Dirac points can 

be exactly solved by 𝑑" = 0  and 𝑑# = 0 , and obtained at 𝐤!,± =

=0,± arccos =(!)("
%(#

@@ in the first BZ.  

We then consider the loss interaction 𝛾 on hopping 𝑡$. As shown in Fig. 1a of 

the main text, the non-Hermitian Bloch Hamiltonian becomes 

𝐻 = (𝑑" + 𝑖𝛾 cos 𝑘")𝜎" + 7𝑑# + 𝑖𝛾 sin 𝑘"9𝜎#,             (S3) 

with complex eigenvalues 

𝐸 = ±B7𝑑𝑥2 + 𝑑𝑦2 − 𝛾%9 + 2𝑖𝛾7𝑑" cos 𝑘" + 𝑑# sin 𝑘"9.         (S4) 

For further analysis, we write the eigenvalues of Eq. (S4) as argument form  

𝐸 = ±√𝑅𝑒*+ = ±√𝑅 Ecos +% + 𝑖 sin
+
%
F,               (S5) 

where 𝑅 = <𝑃% + 𝑄%  with 𝑃 = 𝑅 cos 𝜃 = 𝑑𝑥2 + 𝑑𝑦2 − 𝛾%  and 𝑄 = 𝑅 sin 𝜃 =

2𝛾7𝑑" cos 𝑘" + 𝑑# sin 𝑘"9. The real part degeneracy of the band dispersion occurs 

when cos 𝜃/2 = 0, i.e.,	𝜃 = ±𝜋, which means that 𝑃 ≤ 0 and 𝑄 = 0, i.e., 

𝑑𝑥2 + 𝑑𝑦2 − 𝛾% ≤ 0,                          (S6) 

2𝛾7𝑑" cos 𝑘" + 𝑑# sin 𝑘"9 = 0.                   (S7) 
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If we limit the range for wave vector in the first Brillouin zone, it is easy to obtain the 

solution of Eqs. S6 and S7 as 

−arctan ,
("-(!

≤ 𝑘" ≤ arctan ,
("-(!

,                   (S8) 

𝑘# = ±arccos =− (!-("
%(#

sin 𝑘" tan 𝑘" −
(!)("
%(#

cos 𝑘"@,           (S9) 

which indicates the bulk Fermi arcs, as shown in the left panel of Fig. S1b. When taking 

the limit of Eq. (S8), we can obtain the EPs solved by 𝑃 = 0 and 𝑄 = 0, locating at 

the ends of the bulk Fermi arc. The second-order EPs are stable in two dimensions. 

Figure S1b shows a bulk Fermi arc is terminated by a pair of EPs, where the red (blue) 

sphere denotes the EPs with topological charge +1 (−1). So the bulk Fermi arc can 

reveal the existence of EPs.  

To summarize, by introducing hopping loss in our model, a Dirac point will split 

into a pair of second-order EPs connected by a bulk Fermi arc. There are four EPs in 

the first BZ at positions 𝐤$,± = 7±𝑘"!, 𝑘#!9, 𝐤%,± = 7±𝑘"!, −𝑘#!9 with topological 

charges +1 , −1 , +1 , −1 , respectively. Here, 𝑘"! = arctan ,
("-(!

, and 𝑘#! =

arccos = ,")(!"-(""

%(#.((!-(")"),"
@. Obviously, they will turn to a pair of Dirac points at positions 

𝐤!,± in the absence of hopping loss with 𝛾 = 0.  

 

 

Fig. S1 | Bulk band dispersion near EPs. a, Bulk band dispersion of Hermitian case 

with 𝛾 = 0 near Dirac point. b, Bulk band dispersion of non-Hermitian case with 𝛾 =

0.2. Left panel: real part of the band dispersion. A pair of EPs split by a Dirac point are 

connected by a bulk Fermi arc (magenta line), which have different topological charges 

+1  (red sphere) and −1  (blue sphere). Right panel: imaginary part of the band 
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dispersion. The parameters are chosen as 𝑡$ = 𝑡# = −1 and 𝑡% = −0.5. 

 

B. Detailed spectra of the tight-binding model 

Here, we provide the detailed spectra of the tight-binding model under periodic 

boundary conditions in Fig. S2, including the dispersion curves (real and imaginary 

parts) along high symmetry lines, as a function of 𝑘" for fixed 𝑘#, and as a function 

of 𝑘# for fixed 𝑘". These results clearly show the exceptional points and bulk Fermi 

arcs existed in the tight-binding model. 

 

 
Fig. S2 | Bulk band dispersions of the tight-binding model for different routes. a, 

Spectral area under periodic boundaries. b, Schematic of routes in momentum space. 

The black dashed line encloses the first Brillouin zone. Red (light blue) spheres denote 

the position of exceptional points with +1 (−1) topological charge. Yellow, cyan, blue 

and green lines represent the chosen routes 1-4, respectively. c-f, Dispersion curves 

containing both real (solid lines) and imaginary parts (dashed lines) along the routes 1-

4, respectively. Degeneracy of the bulk Fermi arc emerges in c, while degeneracies of 

exceptional points occur in d and e. No degeneracy occurs in f. 

 

C. Calculation of topological charge of EPs 

In this subsection, we provide the method to calculate the topological charge of 
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EPs. The topological charge of EP can be described by the discriminant number 

calculated by  

𝜈(𝐤12) =
$
%3* ∮ 𝑑𝐤4$%

∙ ∇𝐤 ln det[𝐻(𝐤) − 𝐸(𝐤12)],           (S10) 

where Γ12  is a closed counterclockwise route enclosing the reference EP. This 

topological invariant is actually the spectral winding number. We can discretize the 

integral for numerical calculation. Before that, we give tacit consent to choose a circle 

as the closed route with radius 𝑟, so that we can parameterize the route with radius 𝑟 

and angle 𝜆. The coordinate of the points on the circle route can be expressed by these 

parameters, i.e., 𝑘" = 𝑘12," + 𝑟 cos 𝜆  and 𝑘# = 𝑘12,# + 𝑟 sin 𝜆 , where 𝐤12 =

(𝑘12," , 𝑘12,#) is the position of reference EP, and 𝜆 takes from 0 to 2𝜋. Now, the 

integral with 𝐤 can be changed 

𝜈(𝐤12) =
$
%3* ∫ 𝑑%3

! ln det[𝐻(𝜆) − 𝐸12] =
$
%3* ∫

6&(7)
6(7)

𝑑𝜆%3
! ,      (S11) 

where 𝐹(λ) = det[𝐻(λ) − 𝐸12]. For numerical calculation, we should discretize the 

integral from 0 to 2𝜋 into the sum of several points 

𝜈(𝐤12) =
$
%3*

∑ 6'(!-6'
6'8 ,                      (S12) 

where 𝑛 is the index of the points on the circle route. This method also is applied to 

calculate the topological charges of EPs in the PC.  

 

D. Relation between the EPs and the GDSE 

The relation between EP and GDSE is that the EP with nonzero topological charge 

can guarantee the emergence of the GDSE, but it is not vice versa. A brief outline of 

the relation is illustrated in Fig. S3a. Firstly (Step I), the EPs host nonzero topological 

charges. Secondly (Step II), the nonzero topological charges lead to the nonzero 

spectral winding numbers along some straight lines (directions) in the first Brillouin 

zone, which is equivalent to nonzero spectral area. Thirdly (Step III), the ribbons under 

open boundaries along the direction with nonzero spectral winding numbers host the 

skin effect, while those with zero winding number do not, giving rise to the GDSE in 

the 1D ribbons. Finally (Step IV), the GDSE in the 1D ribbons can directly result in the 

GDSE in the finite-size samples with fully open boundaries. It is noted that the EPs are 
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not the must for the topological charges (Step I is single arrow), while the others are 

equivalent to each other (Step II-IV are double arrows). 

 

 

Fig. S3 | Relation between EPs and GDSE. a, A brief outline of the relation. The 

double arrows denote the equivalency, while the single arrow means a sufficient but 

not necessary condition. b, Bulk band dispersion near EPs. c, Left panel: A schematic 
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of momentum space. The area enclosed by dash lines is the first Brillouin zone. Red 

(blue) spheres denote EPs with +1 (−1) topological charge. Right panel: Spectral 

loop on the complex plane plotted along the anticlockwise direction of the black circle 

route around the EP in the left panel. d, Left panel: Three chosen routes AA′BB′, A9B 

and B′A  are denoted by magenta, gray and cyan lines, respectively. Right panel: 

Complex spectra of these three routes in the left panel. The blue background denotes 

the spectral area under periodic boundaries. e, Spatial distributions of 𝑊(𝑗) in the 

ribbons under square- (left panel) and diamond- (right panel) stripe geometries. f, 

Spatial distributions of 𝑊(𝑗) in the finite-size samples under square- (left panel) and 

diamond- (right panel) shaped geometries. 

 

Our lattice model is a concrete example to exhibit this relation. Figure S3b displays 

a pair of EPs connected by the bulk Fermi arc. The spectra loop winds the EP (red 

sphere) in an anticlockwise direction (arrow), indicating +1 topological charge of EP, 

as shown in Fig. S3c. Figure S3d demonstrates that the +1 charge of EP leads to 

nonzero	spectral winding numbers along the 𝑘% direction. As shown in the left panel 

of Fig. S3d, when choosing the closed route A → A9 → B → B′ → A encloses two EPs 

with +1 charge, the spectral winding number is the same to the sum of the topological 

charge of these two EPs. The winding number of this route is also equal to the sum of 

winding numbers for straight line loops AA9BB′  (magenta), A9B  (gray) and B′A 

(cyan). Due to the mirror symmetry 𝑀" satisfying 𝑀"𝐻7𝑘" , 𝑘#9𝑀"
-$ = 𝐻7−𝑘" , 𝑘#9, 

the spectral winding number of route A9B satisfies 

𝜈(𝐸12) =
$
%3* ∮ 𝑑𝑘"𝜕:) ln detj𝐻7𝑘" , 𝑘#9k;*&+

  

         = $
%3* ∮ 𝑑𝑘"𝜕-:) ln detj𝐻7−𝑘" , 𝑘#9k;*&+

 

                       = −𝜈(𝐸12) = 0,                            (S13) 

where 𝐿<&=  indicates the integral along route A9B . Similarly, due to the mirror 

symmetry 𝑀#, the spectral winding number of line B′A is also zero. So the winding 

number of straight line AA9BB′ is equal to +2, attributing to the charges of these two 

EPs. Since the straight line AA′BB′ is the result of repeating line MN twice, the 
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winding number of line MN is equal to +1, half of the winding number of AA′BB′. 

Correspondingly, the complex spectrum of line AA′BB′ (magenta) goes anticlockwise 

around the energy of EP twice, forming the spectral loop, while those of lines A′B 

(gray) and B′A (cyan) form spectral lines, as shown in the right panel of Fig. S3d. 

Therefore, the winding numbers along the 𝑘" and 𝑘# directions are zero, but those 

along the 𝑘% direction are nonzero. By a similar way, one can see that the nonzero 

winding numbers also exist along the 𝑘$ direction. These results make the ribbons 

under open boundaries along the 𝑥  and 𝑦 directions have no skin effect, and the 

ribbons under open boundaries along the 1 and 2 directions exhibit the skin effect, 

giving rise to the GDSE in the 1D ribbons, as shown in Fig. S3e. Naturally, the skin 

effect emerges in the finite-size sample under the same open boundaries to the ones in 

the ribbons. So the skin effect disappears in the sample under square-shaped geometry, 

and appears under diamond-shaped geometry, thus is the GDSE, as shown in Fig. S3f. 

Consequently, the EP with nonzero topological charge can ensure the GDSE. 

 

E. Symmetry analysis 

In this subsection, we make analysis for the symmetries of our bulk Hamiltonian 

shown in Eq. (1) of the main text. First of all, the Hamiltonian has spinless anomalous 

time-reversal symmetry (TRS), which satisfies 𝒯-$𝐻(𝐤)𝒯 = 𝐻(−𝐤) and the unitary 

operator 𝒯 satisfies 𝒯% = +1. Due to the existence of anomalous TRS, the current 

functional in our system along any direction will be zero so that the skin effect 

appearing in our system is classified as generalized reciprocal skin effect [1]. Not only 

that, the Hamiltonian also has two mirrors parallel to 𝑥 axis and 𝑦 axis, respectively, 

i.e, 𝑀#𝐻7𝑘" , 𝑘#9𝑀#
-$ = 𝐻7𝑘" , −𝑘#9 and 𝑀"𝐻7𝑘" , 𝑘#9𝑀"

-$ = 𝐻7−𝑘" , 𝑘#9. Due to 

the existence of these two mirrors, the spectral winding number of the straight lines 

perpendicular to them (𝑥 axis and 𝑦 axis) will always be zero, so that we can confirm 

that the open boundaries perpendicular to 𝑥 axis and 𝑦 axis will not have skin effect 

in our system. For this reason, no skin effect emerges in the 1D ribbon under square-

stripe geometry and finite-size sample under square-shaped geometry. Since the mirror 
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symmetries still exist in the PC, this method of judging open boundaries without skin 

effect also can be applied to our PC system and the result perfectly matches that in the 

tight-binding model. 

 

F. Spectral winding numbers of straight lines 

There is a general rule to evaluate the geometry dependence on the skin effect. 

Whether the skin effect emerges at the open boundaries vertical to the 𝑛 direction or 

not, depends on the winding number of the straight lines along the 𝑘8 direction, which 

is defined as 

𝜈(𝐸>) =
$
%3* ∮ 𝑑𝐤 ⋅ ∇𝐤 ln det[𝐻(𝐤) − 𝐸>]; ,              (S14) 

where 𝐿 is the closed straight line along the 𝑘8 direction in the first Brillouin zone, 

and 𝐸> is the energy of reference, a reference point on the complex plane of energy. In 

addition, some spatial symmetries may guarantee the winding numbers along the 

related directions to be zero. Nonzero winding number describes the spectral winding 

around the 𝐸> on the complex plane, which is known as the point gap [2,3]. As a result, 

in the 1D system, the skin effect can also be predicted by the spectral loop of the 

complex energy. For example, we choose four straight lines to calculate their spectral 

loops. As shown in Fig. S4a, routes 1 and 2 match the ribbons under square-stripe 

geometry (Fig. S6), while routes 3 and 4 are related to the ribbons under diamond-stripe 

geometry (Fig. S7). Bulk energies of routes 1-4 in complex plane are shown in Figs. 

S4b and S4c. The routes 3 and 4 form the spectral loops, giving rise to nonzero spectral 

winding numbers for the reference energy 𝐸>  shown in Figs. S4b and S4c and 

indicating the existence of skin effect in the ribbons under diamond-stripe geometry. In 

contrast, the routes 1 and 2 do not form the spectral loops, leading to zero winding 

number and no skin effect in the ribbons under square-stripe geometry.  

To further verify the general rule, we investigate the geometry-dependent skin 

effect in a parallelogram-shaped sample, in which the slope of the sloping open 

boundaries is 2, as shown in Fig. S5. The chosen route	 A → B → C → D → A (straight 

lines in magenta) vertical to the direction of the sloping open boundaries is shown in 
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Fig. S5a, which forms a closed loop in the first Brillouin zone. As shown in Fig. S5b, 

the solid (dashed) line is the spectrum of the upper (lower) band. The spectral winding 

number is nonzero, leading to skin effect on the sloping open boundaries of the 

parallelogram-shaped sample (Fig. S5c). The winding number along the 𝑘# direction 

is zero, same to the case in the square-shaped sample, so no skin effect emerges at the 

horizontal open boundaries. Consequently, the geometry dependence on the skin effect 

can be generally evaluated by the spectral winding number along the corresponding 

direction. 

 

 
Fig. S4 | Spectral winding numbers of straight lines in the first BZ. a, Chosen 

straight lines in momentum space. The area enclosed by black dashed lines is the first 

BZ and the solid lines with different colors are the routes of straight line. b, Spectral 

lines of routes 1 (green solid line) and 3 (cyan solid line). c, Spectral lines of routes 2 

(purple line) and 4 (red line). 𝐸> is the reference energy. The parameters used above 

are the same as Fig. 1 of the main text. 

 

 

Fig. S5 | Skin effect under parallelogram-shaped geometry with sloping open 

boundaries possessing slope 2. a, Chosen route A → B → C → D → A (magenta lines) 

vertical to the direction of the sloping open boundaries in the first Brillouin zone 
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(dashed lines). The arrows denote the direction of the route. b, Complex spectra of 

chosen route in a. Black points denote the energy of A-D points in a. Solid (dashed) 

line is the spectrum of the upper (lower) band. The winding number is +1 when the 

exceptional point (red sphere) is chosen as the energy of reference. c, Spatial 

distribution of eigenstates 𝑊(𝑗)  under parallelogram-shaped geometry. The skin 

effect appears at the two sloping boundaries, and disappears at the two horizontal 

boundaries. 

 

G. GDSE in the 1D ribbons 

In order to demonstrate the existence of GDSE in the 1D ribbon, we investigate 

the ribbons under different shaped geometries, i.e., square-stripe and diamond-stripe 

geometries. The ribbons under square-stripe (diamond-stripe) geometry mean that their 

open boundaries are same to those along a fixed direction in the finite-size sample under 

square-shaped (diamond-shaped) geometry.  

Ribbons under square-stripe geometry. As shown in Fig. S6a, one ribbon model 

has periodic boundaries along the 𝑥  direction and open boundaries along the 𝑦 

direction. The projected band dispersions for Hermitian (𝛾 = 0) and non-Hermitian 

(𝛾 = 0.2) cases are plotted in Figs. S6b and S6c, respectively. In non-Hermitian case, 

states near zero energy are still bulk states similar to Hermitian one. For example, the 

square modulus of an eigenstate (green star) as the bulk state is shown Fig. S6d. We 

further calculate the spatial distribution of all eigenstates 𝑊(𝑗) for 1D ribbon, as 

shown in Fig. S6e, which is defined by the sum of the square modulus of the normalized 

right eigenstate at size 𝑗 in the ribbon for all chosen 𝑘"  from −0.5 to 0.5 with 

interval 0.01. The spatial distribution 𝑊(𝑗) is almost uniform in the whole ribbon, 

indicating that no skin effect emerges in this ribbon. Figure S6f gives a schematic of 

the ribbon model along the other direction, in which there are periodic boundaries along 

the 𝑦 direction and open boundaries along the 𝑥 direction. Figures S6g and S6h are 

the corresponding projected band dispersions in Hermitian and non-Hermitian cases, 

respectively. The degenerate eigenstates denoted by gray dots are the trivial edge states 

induced by open boundaries, as shown in Fig. S6i. Despite existing the trivial edge 
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states, the spatial distribution 𝑊(𝑗) for the ribbon summing for 𝑘#  from −0.5	to 

0.5 with interval 0.01 still locates uniformly in the ribbon (Fig. S6j). The edge states 

do not have influence on the skin effect. Consequently, there is no skin effect in the 

ribbons under square-stripe geometry. 

Ribbons under diamond-stripe geometry. Figure S7a shows the schematic of 

the ribbons under diamond-stripe geometry. The green (red) wireframe represents the 

ribbon with periodic boundaries along the 1 (2) direction. These two ribbons have the 

same configuration, so that we only discuss the ribbon of green wireframe. The 

projected band dispersions are calculated in Figs. S7b and S7c for Hermitian and non-

Hermitian cases, respectively. The gray dots are the trivial edge states, and the others 

are the bulk states. For the non-Hermitian case, we show the degree of localization of 

each eigenstate by using color, in which the redder (bluer) color represents the more 

localization at the upper (lower) boundary. The specific value of the color in Fig. S7c 

is calculated by formula 𝐷 = ∑ |𝜓(𝑥)|%"∈;, −∑ |𝜓(𝑥)|%"∈;- , where 𝐿@  and 𝐿A  are 

the defined boundary lengths for upper and lower boundary, respectively. The whole 

ribbon includes 37 sites and each of the upper and lower boundary length contains 10 

sites closest to them. So that the skin modes locating on the upper (lower) boundary 

possess positive (negative) 𝐷. One can see that lots of bulk states for 𝑘$ > 0 (𝑘$ < 0) 

are the skin modes localized at the upper (lower) boundary. Figure S7d shows the 

concrete examples of the skin and edge modes. Note that the edge state (green star) is 

only localized at one type of sublattices, which is different from the skin modes 

(magenta and blue stars). In Fig. S7e, we calculate the spatial distribution 𝑊(𝑗) for 

𝑘$ from −1 to 1 with interval 0.01, which reveals the skin effect localized at both 

the upper and lower boundaries.  

The skin effect exists in the ribbon under diamond-stripe geometry, but disappears 

in the ribbon under square-stripe geometry. Therefore, the skin effect is called the 

GDSE.  
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Fig. S6 | No skin effect in the 1D ribbons under square-stripe geometry. a, 

Schematic of the ribbon with periodic boundaries along the 𝑥  direction and open 

boundaries along the 𝑦 direction. b, Projected band dispersion in Hermitian case (𝛾 =

0). c, Projected band dispersion in non-Hermitian case (𝛾 = 0.2). Top (bottom) panel 

is the real (imaginary) part. d, Field distribution of an eigenstate denoted by green stars 

in c. e, Spatial distribution of eigenstate 𝑊(𝑗) for the ribbon. f-j, The same to a-e, but 

for the ribbon with periodic boundaries along the 𝑦 direction and open boundaries 

along the 𝑥 direction. 
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Fig. S7 | Skin effect emerging in the 1D ribbons under diamond-stripe geometry. 

a, Schematic of the ribbons under diamond-shaped geometry. The green (red) 

wireframe encloses a ribbon with periodic boundaries along 𝑘$ (𝑘%). b, Projected band 

dispersion in Hermitian case (𝛾 = 0). Gray dots are the edge states. c, Projected band 

dispersion in non-Hermitian case (𝛾 = 0.2). Top (bottom) panel is the real (imaginary) 

part. The color denotes the degree of localization of the eigenstates at the upper and 

lower boundaries. d, Field distributions of three eigenstates denoted by cyan, magenta 

and green stars in c. e, Spatial distribution of eigenstates 𝑊(𝑗). 

 

H. Difference between square-shaped and diamond-shaped geometries 

The fundamental difference between square-shaped and diamond-shaped 

geometries is that their open boundaries are in different directions, and more 

importantly, the spectral winding numbers along these directions are different, leading 

to GDSE, as shown in Fig. S3e. Specifically, the open boundaries of square-shaped 

geometry are in the 𝑥  and 𝑦 directions, and the spectral winding numbers of the 

straight lines along the 𝑘" and 𝑘# directions are zero, thus no skin effect appears in 

the sample under square-shaped geometry. However, the open boundaries of diamond-

shaped geometry are in the 1 and 2 directions, and the spectral winding numbers 
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along the 𝑘$ and 𝑘% directions can be nonzero, guaranteed by the EPs, so the sample 

under diamond-shaped geometry exhibits the skin effect. 

The GDSE is the phenomenon that there is at least one geometry with fully open 

boundary, in which the skin effect does not appear [1]. According to this definition, the 

square- and diamond-shaped geometries do be enough to demonstrate GDSE. The other 

shape can also exhibit the GDSE, such as the sample under parallelogram-shaped 

geometry with sloping open boundaries possessing slope 2, as calculated in Fig. S5. 

No skin effect emerges at the horizontal open boundaries, same to the case under 

square-shaped geometry. But the skin effect appears at the sloping open boundaries, 

owning to the nonzero winding numbers along the corresponding direction.  

 

I. Calculation of volume law 

Different from the skin effect in one dimension and the higher-order skin effect, in 

which all the bulk modes are the skin modes, not all the bulk modes are the skin modes 

in the GDSE. However, the GDSE still satisfies the volume law that the number of the 

skin modes scales with the volume of the system. We define the skin mode with  

∑ |𝜓(𝑥)|% ≥ 80%"∈B ,                      (S15) 

where 𝑆  is the defined boundary area. To verify the volume law, we choose the 

parallelogram-shaped geometry with different boundaries shown in Fig. S8a. The 

sloping open boundaries with slope 1  are the same as the boundaries in the 1 

direction under diamond-shaped geometry, while the horizontal open boundaries are 

the same as the boundaries in the y direction under square-shaped geometry. The area 

outside the dashed lines is the defined boundary area with the width of four atoms on 

both sides. As the width of the whole geometry increases, the width of the boundaries 

also increases proportionally. The bulk Hamiltonian is the same as Eq. (S3) with 𝑡$ =

𝑡# = −1, 𝑡% = −0.5, and we discuss two cases with 𝛾 = 0.2 and 𝛾 = 1, respectively. 

According to the definition of skin modes in Eq. (S15), we obtain the number of skin 

modes NC under different geometry size, as shown in Fig. S8b. The red (blue) straight 

line is the fitting curve for those data points with 𝛾 = 1 (𝛾 = 0.2), which shows that 

the GDSE satisfies volume law, and the relationships between NC  and volume V 
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satisfy δNC ≈ 0.45δV (δNC ≈ 0.17δV). 

 

 

Fig. S8 | The volume law of GDSE. a, Calculated spatial distribution of eigenstates 

𝑊(𝑗) under parallelogram-shaped geometry with sloping open boundaries possessing 

slope 1. The area outside two black dashed lines is the defined boundary area. b, Volume 

law of GDSE in our system. The point graph is plotted by calculating data and the red 

(blue) straight line is the fitting curve showing the relationship δNC ≈ 0.45δV (δNC ≈

0.17δV) for 𝛾 = 1 (𝛾 = 0.2). 

 

S-II. Designed loss in experiments 

The designed loss in experiments can be simulated by the imaginary part of sound 

velocity [4]. A structure with two cavities connected by one waveguide is considered in 

Fig. S9a, and its sizes are same to those in the main text. Two holes on waveguide not 

only induce the loss, but also change the coupling strength and give rise to the frequency 

shift. In order to reduce the frequency shift, sound-absorbing sponges are used to plug 

in the holes. Moreover, the right amount of sponge will increase the designed loss. We 

place a point source in one cavity, and measure the response of pressure in another one. 

The simulated and experimental results of some loss cases are illustrated in Figs. S9b 

and S9c, respectively, where 𝑖 = 0,10, … ,50	m/s  is the imaginary velocity of 

waveguide, and 𝑑 = 0,1.6, … ,3.2	mm represents the diameter of hole on waveguide. 

They are consistent well with each other. In simulation, we add imaginary velocity 

(4.3	m/s) on each cavity as global loss existed in experiment. The results for the 

Hermitian (𝑖 = 0 and 𝑑 = 0 in Fig. S9d) and non-Hermitian (𝑖 = 50	m/s and 𝑑 =

3.2	mm  in Fig. S9e) cases both show a good agreement in the simulation and 
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experiment. Consequently, the designed loss in experiment can be estimated by the 

simulation setting with imaginary velocity 𝑖 = 50	m/s. We note in passing that the two 

resonant peaks indicate the corresponding eigenmodes, which are split from a dipole 

mode in a single cavity [5]. 

 

 

Fig. S9 | Designed loss in experiments. a, Two cavities are connected by waveguide 

with the designed loss. b, Simulated pressure response to different imaginary velocity 

in waveguide. c, Measured pressure response to different diameters of hole on the 

waveguide. d, e, Comparisons between the simulated and measured results for the 

Hermitian (d) and non-Hermitian (e) cases.  

 

S-III. Detailed spectra of the PC 

    In this section, we provide the detailed spectra of the PC, as shown in Fig. S10, 

including the dispersion curves (real and imaginary parts) along high symmetry lines, 

as a function of 𝑘" for fixed 𝑘#, and as a function of 𝑘# for fixed 𝑘". These results 

clearly show the exceptional points and bulk Fermi arcs existed in the PC. 
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Fig. S10 | Bulk band dispersions of the PC for different routes. a-d, Dispersion 

curves containing both real (solid lines) and imaginary parts (dashed lines) along the 

route 1-4 in momentum space shown in Fig. S2b. Degeneracy of the bulk Fermi arc 

emerges in a, while degeneracies of exceptional points occur in b and c. No degeneracy 

occurs in d. 

 

S-IV. Observation of the bulk Fermi arc in the 2D PC 

In this section, we present the observations of the bulk dispersion and bulk Fermi 

arc in details. The experimental sample has been shown in Fig. 2a of the main text. We 

place a point source in the center of structure, and measure the response signal of 

cavities. After the Fourier transform of the response signal, the measured dispersion can 

be obtained and displayed by the color map. Figures S11a and S11b denote the 

simulated and measured bulk band dispersions along the high-symmetry lines, where 

the intersection is one of points on the bulk Fermi arc. To further demonstrate the 

existence of the bulk Fermi arc, we display the simulated (Figs. S11c, S11e, S11g) and 

measured (Figs. S11d, S11f, S11h) isofrequency curves in the first BZ at different 

frequencies near the EP, where magenta lines are the calculated isofrequency contours. 

One can see that the bulk Fermi arcs are observed at frequency 4150 Hz (Figs. S11e 

and S11f). All the experimental results are well consistent with the simulated ones. 
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Fig. S11 | Observation of the bulk Fermi arc. a, b, Simulated and measured bulk band 

dispersions (color map). White lines are the calculated bulk band dispersion. c-h, 

Simulated (c, e, g) and measured (d, f, h) isofrequency curves in the first BZ at different 

frequencies. Magenta lines are the calculated isofrequency contours. The bulk Fermi 

arcs appear at 4150 Hz. 

 

S-V. Band dispersions near the EPs for different temperatures 

The EPs with topological charge ±1  are stable in two dimensions. So, the 

existence of EPs in our system is not sensitive to temperature, but their positions and 

frequencies may be changed by the temperature. Specifically, the temperature can affect 

the sound velocity, thereby acts on the band dispersion in the PC. In general, the relation 

between sound velocity 𝑐  and temperature 𝑇  ( ℃ ) is estimated by 𝑐 =

331<1 + 𝑇/273	m/s. When the temperature is confined at 15 ℃, 24 ℃ and 33 ℃, 

the sound velocity is about 340 m/s, 345 m/s and 350 m/s, respectively. Figure S12 

gives the band dispersions near the EPs for these three temperatures. One can see that 

the EPs emerge in all these cases, and their frequencies lift as the temperature rises. As 

a result, the temperature mainly causes a frequency drift, but does not affect the 

existence of EPs. 
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Fig. S12 | Band dispersions near the EPs for different temperatures. a-c, At the 

temperatures 15 ℃, 24 ℃ and 33 ℃, respectively. In our experiment, the temperature 

is confined at 24 ℃. 

 

S-VI. GDSE in the 1D PC ribbons 

In this section, we discuss the skin effect in the 1D PC ribbons under diamond-

stripe and square-stripe geometries. For the ribbon under diamond-stripe geometry, we 

calculate the projected band dispersion along the 𝑘$ direction, as shown in Fig. S13a. 

As discussed in Fig. 3 of the main text, lots of bulk states for 𝑘$ < 0 (𝑘$ > 0) are the 

skin modes localized at the lower (upper) boundary, which is consistent with the 

theoretical model in Fig. S7. The skin modes and edge modes are visualized by the field 

distributions shown in Fig. S13b. The spatial distribution 𝑊(𝑗) (Fig. S13c) calculated 

by the method same to Fig. S7e but with interval 0.025 reveals that the skin effect 

appears at both boundaries, and the edge states have little influence on the skin effect. 

In contrast, considered a PC ribbon under square-stripe geometry, whose projected band 

dispersion along the 𝑘" direction is shown in Fig. S13d, we find the bulk modes are 

not the skin modes, as shown in Fig. S13e. The corresponding spatial distribution 𝑊(𝑗) 

calculated by summing 𝑘" from −0.5 to 0.5 with interval 0.0125 is shown in Fig. 

S13f. The uniform distribution indicates no skin effect for this case. These results are 

the direct evidences of GDSE.  
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Fig. S13 | GDSE in the 1D PC ribbons. a, Real part of projected band dispersion for 

the PC ribbon under diamond-stripe geometry. The black (grey) dots represent the bulk 

(edge) dispersions. b, Field distributions of three eigenstates denoted by green, cyan, 

and purple stars in a. c, Spatial distribution of eigenstates 𝑊(𝑗). d-f, The same to a-c, 

but for the PC ribbon under square-stripe geometry. 

 

S-VII. No skin effect in the finite-size PC under square-shaped geometry 

For comparison with the diamond-shaped PC in the main text, we construct a 

square-shaped PC, as shown in Fig. S14a. The corresponding spectral area is plotted in 

Fig. S14b (red dots), where the blue area is the spectral area under periodic boundaries 

with details shown in Fig. 2h of the main text. Spectral areas and their density 

distributions under these two boundary conditions coincide with each other, indicating 

that there is no skin effect in this PC sample. The corresponding real part of 

eigenfrequency spectrum is shown in Fig. S14c, in which the color denotes the degree 

of localization for each eigenstate on open boundaries. To keep the similar cavity 

number of the boundary area, it is defined as the outermost three layers cavities, and 

the PC sample under square-shaped geometry has 22 cavities at the outermost boundary. 

One can see that the color is uniform for all the frequency, except the edge modes 

localized at the left and right sides (inset in Fig. S14c), indicating no skin modes in this 
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finite-size sample. In experiment, we measure the response spectrum as shown in Fig. 

S14d, the red line (𝑇$%) is the response spectrum on the edge, where the source (detector) 

is located at point 1 (2) marked in Fig. S14a. Its distribution is similar to it of the 

response spectrum in the bulk 𝑇DE (black line). To visualize the specific modes, we 

further display the measured pressure field distributions at 4003 Hz (bulk mode) and 

4160 Hz (trivial edge mode) in Figs. S14e and S14f, respectively. The results confirm 

no skin effect in the finite-size PC sample under square-shaped geometry. 

In theory, the skin effect can be revealed by the spatial distribution of all 

eigenstates 𝑊(𝑗). As calculated in Fig. S15a, the spatial distribution 𝑊(𝑗) for the 

finite-size PC samples under square-shaped geometry is uniform on the geometry, 

confirming no skin effect. In contrast, the spatial distribution 𝑊(𝑗) under diamond-

shaped geometry calculated in Fig. S15b has a stronger distribution at the boundaries, 

proving the existence of skin effect.  

 

 
Fig. S14 | No skin effect in the finite-size PC sample under square-shaped geometry. 

a, Schematics of the finite-size PC sample. b, Spectral area (red dots) for the square-

shaped PC. Blue shadow area denotes the spectrum under periodic boundaries. c, Real 

part of eigenfrequency spectrum. The color represents the degree of localization for 

each eigenstate on open boundaries. Inset: eigenpressure field of the edge mode. d, 

Measured response spectra at boundary (𝑇$% ) and bulk (𝑇DE ) normalized by their 
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maximum values, which both show the bulk modes. e, f, Measured pressure field 

distributions at 4003 Hz and 4160 Hz, revealing the bulk and edge modes, respectively. 

No skin modes are observed in the square-shaped PC. 

 

 
Fig. S15 | Spatial distribution of all eigenstates 𝑾(𝒋) in the finite-size PC samples. 

a, 𝑊(𝑗) for the sample under square-shape geometry. b, 𝑊(𝑗) for the sample under 

diamond-shaped geometry.  

 

S-VIII. Pressure responses for different distances away from source 

In this section, we display the pressure for different distances away from source. 

As shown in Fig. S16a, the signal can be detected in all the cavities P$-PD , so the 

detectable distance of an excited field in Fig. 3 of the main text is 8 cavities at least. 

While in Fig. 4 of the main text, the signal can be detected in the cavities PE and PF 

for all concerned frequencies, but in the cavity PG only for the higher frequencies, as 

shown in Fig. S16b, so the detectable distance is more than 8 cavities but less than 15 

cavities. 
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Fig. S16 | Observation of the pressure responses for different distances away from 

source. a, Photograph of lower boundary (upper panel) and the measured pressures at 

P$, P% and PD cavities (lower panel). b, Photograph of diamond-shaped sample (left 

panel) and the measured pressures at PE, PF and PG cavities (right panel). 
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