Cell Reports, Volume 42

Supplemental information

A trypanosome-derived immunotherapeutics platform

elicits potent high-affinity antibodies, negating

the effects of the synthetic opioid fentanyl

Gianna Triller, Evi P. Vlachou, Hamidreza Hashemi, Monique van Straaten, Johan P. Zeelen, Yosip Kelemen, Carly Baehr, Cheryl L. Marker, Sandra Ruf, Anna Svirina, Monica Chandra, Katharina Urban, Anastasia Gkeka, Sebastian Kruse, Andreas Baumann, Aubry K. Miller, Marc Bartel, Marco Pravetoni, C. Erec Stebbins, F. Nina Papavasiliou, and Joseph P. Verdi

A. Chemical structure of the fentanyl molecule. B. Synthesis of the fentanyl derivatives used in this study. Reagents and conditions: 1. glutaric acid monomethyl ester chloride (1.0 equiv), pyridine (6.0 equiv), CH₂Cl₂, 0 °C to rt, 16 h, 74%; 2. LiOH (3 equiv), MeOH/H₂O (4:1), rt, 22 h, 85%; 3. Solid-phase peptide synthesis using an Fmoc protection strategy provided fen-G4 (22%) and fen-sort (26%) as trifluoroacetate salts (see experimental section for reaction details). Fen-sort was used to generate Fent-VASTs, while fen-G4 was used to generate fent-BSA for ELISA coating and for some of the co-crystallization studies. Both the sortaggable and poly-glycine versions of fentanyl are missing the extended aromatic ring at the bottom of the molecule. Amino acids are displayed using their single letter codes in black text. Note that this is a modified version of a previously published synthesis^{1,2}.

A. Gel filtration chromatogram (from a Superose 6 increase 10/300 column; Cytiva) showing the re-purification of VSG after a sortagging reaction. The Y-axis depicts the absorbance at 280 nM, represented as milli-absorbance units (mAu). B. Coomassie-stained SDS PAGE separation of the VSG peak from (A). VSG, existing as a >55 kDa monomer, is the only observable protein in the eluted sample. C. The general vaccination schedule according to which mice represented by Figures 2 and 3 were injected with Fent-VASTs, with the time intervals between each vaccination denoted between each injection day. P1 and P2; the two prime injections were composed of UVirradiated fentanyl-coated T. brucei surface coats. B1 and B2; the two boost injections were composed of soluble Srt-VSG3 conjugated to fen-sort. Fentanyl challenge studies were always conducted 10 days post-B2. D. Antifentanyl antibody titers in mice immunized once (blue arrowhead) with soluble fen-sort-conjugated Srt-VSG3. The ELISA units shown in D and E are normalized to the signal generated by a control antibody (an anti-fentanyl mAb) to ensure comparability from graph to graph. Means are shown. E. Anti-fentanyl antibody titers in mice immunized with modified schedules as indicated above each graph. The prime injections were 2 weeks apart (at days 0 and 14), and are marked by red arrowheads. The mice were then boosted one time: 4, 6, 8, or 16 weeks after the second prime injection. The boost injections are marked by the blue arrowheads. F. Antibody titer jumps after each injection of Fent-KLH (adjuvanted with alum) or Fent-VAST in 5 mice per group. Each trajectory indicates the titer jumps in one individual mouse. Red arrowheads indicate the timing of the prime injections, while the blue arrowhead indicates the timing of the boost. The mathematical comparisons from day to day were made based on the calculated midpoint titer at each individual bleed day divided by the midpoint titer from the previous bleed day, although the pre-bleed (day -2) was assigned to 1 for all mice to facilitate the generation of an informative graph.

Suppl. Figure 3. Behavioral assays following active immunization (related to Figure 3)

A. Experimental setup of the hot plate assay is shown. B. Analgesic activity was tested by using the hot plate assay as described in A. Fentanyl's effect on hot plate antinociception was tested in mice immunized with control-VAST and in mice immunized with Fent-VAST. The effect of 100 μ g/kg fentanyl is shown as time-until-movement (latency) in seconds. Means ± standard deviation of 5 mice are shown, with circles representing the individual mice. Red shows mice immunized with control-VAST and blue mice immunized with Fent-VAST. C. Straub-Tail reaction and the position of the tail of normal mice and mice intoxicated with fentanyl is shown.

Suppl. Figure 4. Isolation and characterization of memory B cells (related to Figure 4)

A. Gating strategy for sorting fentanyl-specific B cells from mice immunized as indicated in Supp. Figure 2C. Splenocytes from two mice were stained with a live/dead marker, several B cell markers (CD19-BV421 and CD138-BV510), SA-BSA-PE-AF647 (decoy), and fentanyl-PE as bait. Fentanyl-PE single positive cells were sorted into 384 well plates and processed as described in the methods section. B. Sort gates for splenocytes pre-gated as shown in A for a naïve mouse and two immunized mice. The percentage of fentanyl-binding B cells in the total B cell pool is shown in red. C. UMAP visualizing the expression density of the Cd80, Mki67 and Ighg1 genes and the joint expression is shown. Each UMAP depicts the kernel density estimates of each of the selected genes, using the normalized gene expression as an input. The joint expression is calculated by multiplying the kernel density estimates from all 3 genes. Beige indicates a relatively high simultaneous expression pattern, while purple indicates low simultaneous expression. D. Circos plots show the switched memory B cell variable region repertoire compared to the non-switched B cell repertoire, for both mice combined. The expanded heavy (in blue - IGHV1-74) and light (in pink - IGKV6-15) variable regions are highlighted. In dark gray we show the pairing of the IGHV1-74 variable region of the heavy chain with the corresponding variable region of the light chains. In the switched memory B cell population (Switched MBCs) all the cells expressing a BCR with an IGHV1-74 variable region are paired with a IGKV6-15 light variable region, showing the expansion of this gene usage inside the population. This is not the case for the non-switched cells that belong to the other B cell subpopulations (right panel). There is only one cell expressing a BCR containing both an IGHV1-74 and IGKV6-15.

Suppl. Figure 5. Mass spectrometry and behavioral assays following passive immunizations (related to Figure 5)

for both the hot plate and LABORAS readings were taken prior to fentanyl injection (not shown in the graphic). D. LABORAS heat maps recorded during the experiment described in C. The maps are projections of 15 minutes' worth of movement of individual mice. Mice displaying normal mouse behavior (see the naïve mouse – an individual that was not injected with anything) tend to spend the majority of their time in one corner of the cage, showing a reduction in locomotion as time passes (as they acclimatize to the cage). Fentanyl intoxicated mice move around the periphery of their cage (see control sessions 1 and 2) until the effect of the drug begins to wear off (see control session 3). E. The summation of total distance traveled (in meters) across all three post-treatment LABORAS sessions is shown. These data are collected by the movement tracking software. Means \pm SD of >3 mice per group are shown. *p<0.05, ***p<0.001; Dunnett's multiple comparisons test following one-way ANOVA. F. LABORAS movement tracking maps collected from the mice represented in Figure 5H. A 15-min recording taken immediately after the 5-min timepoint in Figure 5H, thus prior to the 20-min time point, is projected.

Suppl. Figure 6. Purification and crystallography of recombinant antibody-fentanyl complexes (related to Figure 6)

A. Superimposed size exclusion chromatograms characterizing the final material used in crystallization experiments are shown. Elution volumes are depicted along with absorbance units at 280 nm. The individual chromatograms are colored for each Fab and ligand as indicated in the key. An SDS gel stained with Coomassie blue shows the contents of the peak fractions (M indicates molecular weight markers with several of those bands shown on the left side of the gel in kDa, whereas the gel lanes are labeled above for the antibody number). B-C. Three panels are shown for each antibody-ligand complex with the crystallization and cooling conditions (labeled): cryo-cooled crystal mounted in loop at the synchrotron during data collection, sample diffraction, and 2Fo-Fc electron density map focused on the ligand contoured at 1 sigma from final refinements. The protein and ligand are illustrated similar to Figure 6C.

Suppl. Table 1. Data collection and refinement statistics.

	FenAb136	FenAb208	FenAb609	FenAb709
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å)	54.52 - 2.07 (2.14 -	48.49 - 1.92 (1.99 -	45.19 - 1.7 (1.76 -	55.32 - 2.32 (2.40 -
	2.07)	1.92)	1.70)	2.32)
Space group	C121	P 41	P 21 21 21	C 2 2 21
Unit cell Dimensions (Å)	182.98 105.84	153.34 153.34	77.27 111.41	75.19 138.69
	172.77 90 112.24 90	45.99 90 90 90	114.81 90 90 90	101.07 90 90 90
Total reflections	361101 (35110)	414373 (39287)	727900 (70440)	243094 (25540)
Unique reflections	181970 (17881)	82358 (8154)	109391 (10846)	22297 (2274)
Multiplicity	2.0 (2.0)	5.0 (4.8)	6.7 (6.5)	10.9 (11.2)
Completeness (%)	97.51 (96.49)	99.85 (99.88)	99.89 (99.71)	94.77 (100.00)
Mean I/sigma(I)	7.29 (1.20)	11.69 (1.05)	11.31 (0.95)	16.19 (7.30)
Wilson B-factor (Å ²)	35.64	33.63	25.77	25.34
R-merge	0.0637 (0.5982)	0.08342 (1.312)	0.09267 (1.943)	0.09728 (0.2856)
R-meas	0.09008 (0.8459)	0.09322 (1.475)	0.1006 (2.111)	0.1021 (0.2991)
R-pim	0.0637 (0.5982)	0.04106 (0.6656)	0.03887 (0.819)	0.03055 (0.08823)
CC1/2	0.987 (0.584)	0.999 (0.577)	0.999 (0.608)	0.998 (0.978)
CC*	0.997 (0.859)	1 (0.856)	1 (0.87)	0.999 (0.995)
Reflections used in refinement	180911 (17746)	82332 (8148)	109323 (10826)	22035 (2274)
Reflections used for R-free	1986 (185)	4117 (408)	5470 (542)	1110 (149)
R-work	0.2424 (0.3486)	0.1960 (0.3754)	0.2015 (0.4464)	0.2096 (0.2261)
R-free	0.2816 (0.3953)	0.2299 (0.3960)	0.2302 (0.4786)	0.2446 (0.2859)
CC(work)	0.921 (0.540)	0.966 (0.788)	0.962 (0.810)	0.932 (0.896)
CC(free)	0.904 (0.536)	0.960 (0.720)	0.942 (0.808)	0.910 (0.784)
Number of non-hydrogen atoms	21106	7011	7371	3469
macromolecules	19606	6550	6822	3180
ligands	172	50	50	28
solvent	1328	411	499	261
Protein residues	2558	852	855	415
RMS(bonds) (Å)	0.002	0.011	0.010	0.004
RMS(angles) (Å)	0.52	1.14	1.06	0.72
Ramachandran favored (%)	97.94	98.21	98.46	97.27
Ramachandran allowed (%)	2.06	1.67	1.54	2.73
Ramachandran outliers (%)	0.00	0.12	0.00	0.00
Rotamer outliers (%)	1.22	0.93	0.89	3.57
Clashscore	2.86	3.09	1.71	3.68
Average B-factor (Å ²)	45.82	43.26	37.22	32.42
macromolecules	45.85	43.22	37.20	32.69
ligands	46.12	41.48	30.41	27.19
solvent	45.40	44.17	38.13	29.67
Number of TLS groups	50	18	14	8
Statistics for the highest-resolution				
shell are shown in parentheses.				

Suppl. Table 2. Oligo list

Primer	Primer	Primer sequence	Used for	Reference
source	name			
Eurofins	H1_fw	AGTAGCAACTGCAAC	Amplification of FenAb136 heavy chain and addition of	This
		CGG	NEBuilder homology region for Fab vector construction	manuscript
Eurofins	H0_rv	GTCGTTTTGGCTGAG	Amplification of FenAb136, 609, 709, and 024 heavy chains	This
		GAGAC	and addition of NEBuilder homology region for Fab vector	manuscript
			construction	
Eurofins	H0_fw	GTCTCCTCAGCCAAAA	Amplification of Fab heavy chain expression vector and	This
		CGAC	addition of NEBuilder homology region for FenAb136 cloning	manuscript
Eurofins	H1_rv	CGGTTGCAGTTGCTA	Amplification of Fab heavy chain expression vector and	This
		СТА	addition of NEBuilder homology region for FenAb136 cloning	manuscript
Eurofins	k1 fw	GCAACCGGTGTACAT	Amplification of FenAb136 light chain and addition of	This
	_	TCAG	NEBuilder homology region for Fab vector construction	manuscript
Eurofins	k0 nv	TCAGTTGTTCGGAGG	Amplification of EenAb126 light chain and addition of	This
Luionns	KO_IV		NEBuilder homology region for Eab vector construction	manuscrint
Eurotins	KU_TW		Amplification of Fab heavy and light chain expression vectors	INIS
		CIG	and addition of NEBulider homology region for Fenabiso, 609,	manuscript
Furofins	k1 ry		Amplification of Eab light chain expression vector and addition	This
Luionns		TTGC	of NEBuilder homology region for EenAh136 cloping	manuscrint
Eurofing	∐2 fw/		Amplification of EonAb609, 709, and 024 boavy chains and	Thic
LUIUIIIIS	112_100	CTGG	addition of NEBuilder homology region for Eab vector	manuscrint
		000	construction	manuscript
Furofins	H2 rv	CAGGCTGCTGCAGTT	Amplification of Eab heavy chain expression vector and	This
Laronno		GGAC	addition of NEBuilder homology region	manuscript
Eurofins	I_H/I_fw/		Amplification of FenAb208 beavy and light chain and addition	This
Luionns		TATC	of NEBuilder homology region for Eab vector construction	manuscrint
- C	120011	TOTTACCACACACA		-
Eurotins	1208H_rv		Amplification of FenAb208 heavy chain and addition of	INIS
				manuscript
Eurofins	V-H/L_fw	CTCACAGICTCCTCTG	Amplification of Fab heavy and light chain expression vector	This
		CTAAGACCACTGCG	and addition of NEBuilder homology region for FenAb208	manuscript
Eurofing		CATACATCACCATCCC	Complification of Eab beauty chain expression vector and	Thic
Euronns	V206H_IV	ATG	addition of NEBuilder bomology region for EenAb208 cloning	manuscrint
Eurofing	12091/ 12/		Amplification of EonAb208 light chain and addition of	Thic
Euronns	12066_17	TTTCCAGCTTGGTCCC	NERvilder homology region for Eab vector construction	manuscript
Eurofins	V208k_rv	TGGAAATAAAACGGG	Amplification of Fab light chain expression vector and addition	This
		CIGAIGCIGCAC	of NEBuilder homology region for FenAb208 cioning	manuscript
Eurofins	024_N93S	CTGTCAGCAATACAA	Site-directed mutagenesis to create FenAb024 kappa chain	This
	_tw	CAGCTATCCTCTCACG	from the FenAb136 kappa chain template	manuscript
- C	024 1/5211			
Eurotins	024_Y53H		site-directed mutagenesis to create FenAbU24 kappa chain	i fils
	_ ^{IW}		nom a mouneu renabiso kappa chain template	
Eurotins	609_L96Y-		Site-directed mutagenesis to create FenAb609 kappa chain	This
	A100G_fW	ACGIICGGIGGIGGG	Trom the FenAb136 kappa chain template	manuscript
Eurofina	600 11001		Site directed mutagenesis to greate For AbCOO leaves their	Thic
Eurorins	fw		from a modified EenAb136 kappa chain template	11115 manuscript
	_' vv	GCCG		manuscript
Furofins	609 N93T		Site-directed mutagenesis to create FenAh609 kanna chain	This
	fw	CACCTATCCTTACACG	from a modified FenAb136 kappa chain template	manuscript
		TTCGG		

Eurofins	709_Y86- 95F_fw	CTTGGCAGAGTTTTTC TGTCAGCAATACAAC	Site-directed mutagenesis to create FenAb709 kappa chain from the FenAb136 kappa chain template	This manuscript
Eurofins	709_L96Y- A100G fw	AACTTTCCTCTCACG CAACAACTTTCCTTAC ACGTTCGGTGGTGGG	Site-directed mutagenesis to create FenAb709 kappa chain from a modified FenAb136 kappa chain template	This manuscript
Furofins	709 K103	ACCAAGCTG	Site-directed mutagenesis to create FenAh709 kanna chain	This
Laronnis	Q- L106M_fw	TGGAGATGAAACGGG	from a modified FenAb136 kappa chain template	manuscript
Eurofins	024_N93S _rv	CGAACGTGAGAGGAT AGCTGTTGTATTGCTG ACAG	Site-directed mutagenesis to create FenAb024 kappa chain from the FenAb136 kappa chain template	This manuscript
Eurofins	024_Y53H _ ^{rv}	CCACTGTACCGGTGG GATGCCGAGTAAATC	Site-directed mutagenesis to create FenAb024 kappa chain from a modified FenAb136 kappa chain template	This manuscript
Eurofins	609_L96Y- A100G_rv	CAGCTTGGTCCCACCA CCGAACGTGTAAGGA TAGTTGTTG	Site-directed mutagenesis to create FenAb609 kappa chain from the FenAb136 kappa chain template	This manuscript
Eurofins	609_L106I _ ^{rv}	CGGCATCAGCCCGTTT AATCTCCAGCTTGGTC CC	Site-directed mutagenesis to create FenAb609 kappa chain from a modified FenAb136 kappa chain template	This manuscript
Eurofins	609_N93T _rv	CCGAACGTGTAAGGA TAGGTGTTGTATTGCT GACAG	Site-directed mutagenesis to create FenAb609 kappa chain from a modified FenAb136 kappa chain template	This manuscript
Eurofins	709_Y86- 95F_rv	CGTGAGAGGAAAGTT GTTGTATTGCTGACA GAAAAACTCTGCCAA G	Site-directed mutagenesis to create FenAb709 kappa chain from the FenAb136 kappa chain template	This manuscript
Eurofins	709_L96Y- A100G_rv	CAGCTTGGTCCCACCA CCGAACGTGTAAGGA AAGTTGTTG	Site-directed mutagenesis to create FenAb709 kappa chain from a modified FenAb136 kappa chain template	This manuscript
Eurofins	709_K103 Q- L106M_rv	GGAGATGAAACGGG CTGAGCTGGGTCCCA CCAC	Site-directed mutagenesis to create FenAb709 kappa chain from a modified FenAb136 kappa chain template	This manuscript
ThermoF isher	HeavyJ2Re v(609_709)	TGCGAAGTCGACGCT GAGGAGACTGTGAGA GG	To add a Sall restriction site to FenAb609 and FenAb709 heavy chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	HeavyJ4Re v(136_024)	TGCGAAGTCGACGCT GAGGAGACGGTGACT GG	To add a Sall restriction site to FenAb024 and FenAb136 heavy chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	HeavyFwd(709)	CTGCAACCGGTGTAC ATTCACAGGTCCAACT GAGCAACCTGG	To add an Agel restriction site to FenAb709 heavy chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	HeavyFwd(136_024_6 09)	CTGCAACCGGTGTAC ATTCACAGTGCCAACT GCAGCAGCCTGG	To add an Agel restriction site to FenAb024, FenAb609, and FenAb709 heavy chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	FentKappa FabEcoRI	TCGATTCACCATGGG ATGGTCATGTATCAT	To add an EcoRI restriction site to FenAb136 light chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	LightChain Rev	GCCACCGTACGTTTCA GCTCCAGCTTGGTC	To add a BsiWI s restriction ite to FenAb136 light chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	Fab 2 IgG Fwd EcoRI Adder	GCCGCTGAATTCCACC ATGGGATGGTCATGT ATCAT	To add an EcoRI restriction site to FenAb024, FenAb609, and FenAb709 light chain for restriction cloning into IgG vector	This manuscript
ThermoF isher	024Fab 2 IgG Rev BsiWI Adder	CGGCATCCGTACGTTT CAGCTCCAGCTTGGTC	To add a BsiWI restriction site to FenAb024 light chain for restriction cloning into IgG vector	This manuscript

ThermoF	609Fab	2	CGGCATCCGTACGTT	To add a BsiWI restriction site to EenAb609 light chain for	This
	009180		COOCATCCOTACOTT	To add a DSIWI restriction site to reliabous light chain for	11115
isher	lgG	Rev	AATTICCAGCITGGTC	restriction cloning into IgG vector	manuscript
	BsiWI				
	Adder				
ThermoF	709Fab	709Fab 2 CGGCATCCGTACGTTT To add a BsiWI restriction site to FenAb709 light chai		To add a BsiWI restriction site to FenAb709 light chain for	This
isher	lgG	Rev	CATTTCCAGCTGGGTC	restriction cloning into IgG vector	manuscript
	BsiWI				
	Adder				
ThermoF	oF Oligo-dt		AAGCAGTGGTATCAA	Anneals to all RNAs containing a poly-A tail. Used during	Picelli, et al.,
isher	_		CGCAGAGTACTTTTT	RNAseq library preparation	Nature, 2014
			ттттттттттттттттт		
			TTTTTTVN		
Sigma	ISPCR		AAGCAGTGGTATCAA	Used during RNAseq library preparation	Picelli, et al.,
			CGCAGAGT		Nature, 2014 ³
Sigma	TSO		AAGCAGTGGTATCAA	Used during RNAseq library preparation	Picelli, et al.,
			CGCAGAGTACATrGrG		Nature, 2014 ³
			+G		

References

- 1. Raleigh, M.D., Baruffaldi, F., Peterson, S.J., Le Naour, M., Harmon, T.M., Vigliaturo, J.R., Pentel, P.R., and Pravetoni, M. (2019). A Fentanyl Vaccine Alters Fentanyl Distribution and Protects against Fentanyl-Induced Effects in Mice and Rats. J. Pharmacol. Exp. Ther. *368*, 282–291. 10.1124/jpet.118.253674.
- Robinson, C., Gradinati, V., Hamid, F., Baehr, C., Crouse, B., Averick, S., Kovaliov, M., Harris, D., Runyon, S., Baruffaldi, F., et al. (2020). Therapeutic and Prophylactic Vaccines to Counteract Fentanyl Use Disorders and Toxicity. J. Med. Chem. *63*, 14647–14667. 10.1021/acs.jmedchem.0c01042.
- 3. Picelli, S., Faridani, O.R., Björklund, A.K., Winberg, G., Sagasser, S., and Sandberg, R. (2014). Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. *9*, 171–181. 10.1038/nprot.2014.006.