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Methods  
Software implementation  
We developed a Python repository that can generate missing linker defect structures with different 
missing linker types and defect concentrations for arbitrary MOF crystal structures 
(https://github.com/zyu331/mof_defect_builder.git). The pipeline consists of three parts: identification of 
linkers and nodes, capping of OMS, and SRO adjustment. The identification of linkers and nodes is based 
on the MOF_ID work by Bucior et al.1 After the linkers are identified, the charge is assigned using the 
GasteigerCharge method from RDKit. We found that in a small number of cases, RDKit cannot assign 
charges due to internal errors, and these cases were resolved manually. 

Our algorithm for OMS capping was modified from the vector-sum method of Rosen et al, which 
analyses the coordination environment near the metal cluster and then defines the geometrical positions of 
capping agents.2 As already mentioned, due to computational limits we do not consider examples that 
explore the influence of SRO on defects in this paper. In all the examples below we randomly removed 
linkers from the structure with the constraint that linker removal does not create covalently bonded 
fragments that are not connected by any bonds with the extended MOF structure. Nevertheless, the 
reverse Monte Carlo algorithm of Verploegh et al.3 that allows control of SRO via the Warren-Cowley 
parameter is implemented in our code and can be used to generate defective structures with varying SRO. 
As an illustration of the generality of this approach, we created a missing-linker MOFs defect structure 
database for 507 MOFs that had previously been optimized using DFT from the larger collection of CoRE 
MOFs.4 More technical details and the database can be found in the open-source GitHub repository. 

Structure optimization and charge assignment 
MOF structure relaxations were calculated using spatially periodic DFT in the Vienna ab initio simulation 
package,5 along with a plane-wave basis set and projected-augmented wave6 pseudo-potentials. All 
calculations used the Perdew, Burke, and Ernzerhof generalized gradient approximation exchange–
correlation functional7 with D3 dispersion corrections (PBE-D3).8 We simultaneously optimized both the 
lattice parameters and atomic positions using plane-wave cutoff energy of 600 eV and Γ-point sampling 
for Brillouin zone integration. Using a quasi-Newton method, we originally relaxed geometries until the 
force on each atom was smaller than 0.05 eV/Å. The point charges on atoms of the resulting structure 
were assigned using the DDEC6 method.9 

From the perspective of DFT calculations, the unit cells needed for low defect concentrations are often 
large, leading to slow convergence.  If a structure of a MOF with a higher defect concentration converged 
in our DFT calculations without significant changes in the simulated PXRD pattern and surface area, we 
loosened the convergence criteria for the structure(s) with a lower defect concentration. The optimized 
structures and associated convergence criteria are supplied in the SI. 

GCMC Simulations 
Grand Canonical Monte Carlo (GCMC) simulations were used to simulate room-temperature single-
component adsorption. The simulations utilized the RASPA software 10,11 and employed the TraPPE force 
field 12,13 to describe the van der Waals (vdW) interactions between adsorbates. Adsorbate-MOF 
interactions were defined using Lorentz-Berthelot mixing rules, with the vdW parameters for MOF atoms 
obtained from the UFF4MOF.14,15 Lennard-Jones interactions were truncated at 12 Å and Coulombic 
interactions were modeled using the long-range Ewald summation scheme with a relative accuracy of 10-

6. MOF unit cells were replicated to a minimum of 24 Å along each dimension under triclinic periodic 
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boundary conditions in all dimensions. Monte Carlo trial moves including translation, rotation, 
reinsertion, deletion, and insertion moves were attempted with equal probabilities during GCMC. The 
simulations used 105 equilibration and 105 production cycles, which were shown to yield well-converged 
results in initial tests.  

Characterization 
We used the MEGNet, a graph neutral network force field (FF) trained on 60,000 crystals from Material 
Project, to examine the mechanical properties of defective MOFs.16 We used MEGNet because it is easy 
to implement compared to traditional FFs, which are not necessarily straightforward to define for 
defective MOFs, and much quicker than first-principles methods. MEGNet aims to provide a DFT level 
of accuracy, but it has not been benchmarked for crystals containing defects. A comparison of mechanical 
properties predicted by MEGNet and UFF4MOF is illustrated in Figure S13. Bulk Modulus prediction 
from these two levels of theory agrees with each other qualitatively, while the shear modulus differs. 
According to the previous study, we argue MEGNet provides a better approximation to the DFT level of 
accuracy.17,18 Specific simulation procedures can be found in the GitHub document associated with the 
Jupyter Notebook. (https://github.com/materialsvirtuallab/megnet) 

Pymatgen was used to simulate the powder XRD pattern of selected MOFs.19 The Scherrer equation is 
used to broaden the peak by assuming a mean crystal size of 10 μm. Many examples of MOF synthesis 
give crystals that are smaller than this, which would be associated with sharper PXRD peaks. MOF 
surface areas were calculated using Zeo++.20  These calculations used a probe diameter of 1.32 Å to 
mimic Helium. 

Many metrics have been proposed to quantitatively compare PXRD spectra.21 We calculated PXRD 
similarity scores using the second-order Minkowski metric, which is defined as   

 
where PXRD1 and PXRD2 are the normalized PXRD intensities of the defect-free structure and a 
defective structure, respectively. PXRD patterns in calculating this similarity score are normalized to their 
highest peak. This similarity score gives values in the range [0,1], where 1 means the two PXRD patterns 
are identical. 

Data availability 
The data used to make the figures in this paper are all included in the ZIP file in the SI. The CO2/methanol 
adsorption isotherms are in the  Adsorption_CO2_methanol.xlsx, while ethene/ethane adsorption 
sioterhms are in Adsorption_ethene_ethane.xlsx. The Mechanical proprerties calculated by FF and 
MEGNet are in the Mechenical_properties.xlsx. The DFT convergency information and physical 
proprerties are in the 20_random_MOFs.xlsx.  

The generated defective structure database for MOFs and example input for simulation can be found in 
the online Github repository mentioned above. 

Correlation between MPDC and missing linker type 
We have attached the PXRD pattern for MOFs with different missing linker types. As we can see from 
Figures S1 and S4, the identified MPDC does not have a strong difference for the two different missing 
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linker types. On the contrary, the identified MPDC has slight differences in two MOF examples as shown 
in Figures S2 and S3. 

 
Figure S1 PXRD pattern and surface area of AFITIT with two types of missing linkers: (a) C16H12O42-, (b) C10H8N2. The 

associated missing linker is shown below the PXRD pattern. 

 
Figure S2 PXRD pattern and surface area of AFITIT with two types of missing linkers: (a) C16H12O42-, (b) C10H8N2. The 

associated missing linker is shown below the PXRD pattern. 
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Figure S3 PXRD pattern and surface area of COGWEB with two types of missing linkers: (a) C26H16O4N6, (b) C12O4Br62-. The 

associated missing linker is shown below the PXRD pattern. 

 

Figure S4 PXRD pattern and surface area of FEFCUQ with two types of missing linkers: (a) C14H8O42-, (b) C10H8N2. The 
associated missing linker is shown below the PXRD pattern. 

Benchmark using widely studied MOFs 
UiO66 
As shown in Figure 5 (a) and (b), when pressure is below 1 bar, there is no significant uptake difference 
among all structures. The defect-free structures at high concentrations have a slightly lower uptake. 
Because the missing linkers reduce the VDW interactions between adsorbates and the framework, while 
ethane/ethene has no affinity for the metal clusters or the OH/H2O groups. At higher pressure, the uptake 
is higher in structures with higher defective concentration, because the adsorbates start to fill all space 
within the MOFs, and the uptake amount is determined by the pore size. 

CO2 and H2S both have nonzero quadrupole moment, and their adsorption mechanism differs from that 
observed for non-polar molecules. As shown in Figures 5 (c) and (d), defects do not affect the shape of 
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the adsorption isotherm. Below 1 bar, there is also no significant difference among all structures. CO2 is 
mostly absorbed near the organic linkers, avoiding the metal clusters containing OH/H2O groups (which 
are the preferential adsorption sites for molecules that can form hydrogen bonds). Thus, the defects do not 
introduce new binding sites for CO2 at low pressure. At higher pressure, we observe that structures with 
moderate defect concentrations have the highest uptake. This is because of the tradeoff between pore 
volume increasing and the VDW interaction between organic linkers and CO2 decreasing. Note that there 
is a difference between our work and the work of Jajko et al.22, which might be contributed to the 
different capping agent choices and SRO settings. (We have a random defect distribution, and their 
structure has a clustered distribution) 

 
Figure S1 Adsorption isotherms for (a) ethane (b) ethene (c) CO2 (d) H2S in UiO-66 with different defect concentrations at 298 K. 

The lines with different colors represent defective structures with different defect concentrations. 

HKUST-1 

 
Figure S5 Adsorption isotherm for (a) ethane (b) ethene (c) CO2 (d) H2S in HKUST-1 with different defect concentrations at 298 

K. The lines with different colors represent defective structures with different defect concentrations. 
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IRMOF-1 

 
Figure S6 Adsorption isotherm for (a) ethane (b) ethene (c) CO2 (d) H2S in IRMOF-1 with different defect concentrations at 298 

K. The lines with different colors represent defective structures with different defect concentrations. 

ZIF-8 

 
Figure S7 Adsorption isotherm for (a) ethane (b) ethene (c) CO2 (d) H2S in ZIF-8 with different defect concentrations at 298 K. 

The lines with different colors represent defective structures with different defect concentrations. 
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Influence of defects on Ethene adsorption  

 
Figure S8 Normalized ethene uptake distribution in 20 defective MOFs at 298 K. The uptake is normalized to the associated 
defect-free structure and uses a log scale. (a) in structures with a defect concentration of 0.02 (b) in structures with a defect 

concentration of 0.05 (c) in structures with a defect concentration of 0.08 (d) in structures with a defection concentration of 0.1, 
(e) in structures with a defect concentration of 0.12. All structures are under their MPDC and DFT optimized. 
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Influence of defects on Ethane adsorption  

 
Figure S9 Normalized ethane uptake distribution in 20 defective MOFs at 298 K. The uptake is normalized to the associated 
defect-free structure and uses a log scale. (a) in structures with a defect concentration of 0.02 (b) in structures with a defect 

concentration of 0.05 (c) in structures with a defect concentration of 0.08 (d) in structures with a defect concentration of 0.1, (e) 
in structures with a defect concentration of 0.12. All structures are under their MPDC and DFT optimized. 
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Influence of defects on CO2 adsorption  

 
Figure S10 Normalized CO2 uptake distribution in 20 defective MOFs at 298 K. The uptake is normalized to the associated 
defect-free structure and uses a log scale. (a) in structures with a defect concentration of 0.02 (b) in structures with a defect 

concentration of 0.05 (c) in structures with a defect concentration of 0.08 (d) in structures with a defect concentration of 0.1, (e) 
in structures with a defect concentration of 0.12. All structures are under their MPDC and DFT optimized. 
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Influence of defects on methanol adsorption 

 
Figure S11 Normalized methanol uptake distribution in 20 defective MOFs at 298 K. The uptake is normalized to the associated 

defect-free structure and uses a log scale. (a) in structures with a defect concentration of 0.02 (b) in structures with a defect 
concentration of 0.05 (c) in structures with a defect concentration of 0.08 (d) in structures with a defect concentration of 0.1, (e) 

in structures with a defect concentration of 0.12. All structures are under their MPDC and DFT optimized. 

 

MEGNet benchmarking 
The mechanical property prediction by UFF4MOF is obtained using the method described in the work of 
Yu et al.23 The simulation input can be found in the online GitHub repository. 
( https://github.com/zyu331/TAXI_MOF/tree/main/tools_ElasticConstant_MD) Defect-free structures of 
20 randomly selected MOFs are used for the benchmark. As shown in Figure S13, the bulk modulus is 
correlated from two methods while the shear modulus is weakly correlated. The quantitative discrepancy 
can be attributed to the force field accuracy, extrapolation of the Graph Neutral network, etc. According to 
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the previous benchmark results, we anticipate that MEGNet provides a better approximation to the DFT 
level of accuracy.18 Further investigation would be interesting but beyond the scope of this study. Specific 
simulation procedures can be found in the GitHub document: 
https://github.com/materialsvirtuallab/megnet 

 
Figure S12 The mechanical properties comparison between UFF4MOF prediction and MEGNet prediction 

20 randomly selected MOFs  
Table S1 20 randomly selected MOFs and their physical properties 

MOF 
LCD PLD Density  

Accessible 
Surface 
Area MOF 

LCD PLD Density  
Accessible 
Surface 
Area 

 (Å)  (Å) (cm3/g) (m2/g)  (Å)  (Å) (cm3/g) (m2/g) 

KIYMAI 3.95 2.96 1.32 0 GUXLIU 3.77 2.4 1.89 0 

COGWEB 6.37 5.7 0.92 2082 IXODUV 6.95 6.49 1.01 1764 

BUVXOG 6.83 5.21 1.27 613 FUNCAT 9.49 8.78 0.93 1584 

KIXXOG 3.84 2.67 1.17 0 NUYWOU 4.73 2.51 1.29 0 

GINLIA 6.39 4.6 0.88 2497 FIQCEN 13.19 6.66 0.88 2405 

FEFCUQ 8.88 6.35 0.78 2726 AFITIT 7.35 5.37 1.02 1359 

DEYLUQ 7.28 4.67 1.62 604 EKOPOK 7.62 7.3 1.24 1051 

FUNBEW 11.16 9.19 0.67 3135 GAXWEJ 4.4 2.71 1.57 0 

HIFTOG 7.96 4.14 1.17 1628 DEYVUA 5.36 4.43 0.96 2613 

KAYBIX 5.69 5.49 1.21 1102 AROFET 8.29 5.16 0.86 2602 

IBICON 10.1 9.94 1.22 839 ECIWUJ 3.25 2.62 1.49 0 
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