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Abstract: Background. High-throughput sequencing technologies have led to an unprecedented
explosion in the amounts of sequencing data available, which are typically stored using
FASTA and FASTQ files. We can find in the literature several tools to process and
manipulate those type of files with the aim of transforming sequence data into
biological knowledge. However, none of them are well fitted for processing efficiently
very large files, likely in the order of terabytes in the following years, since they are
based on sequential processing. Only some routines of the well-known seqkit tool are
partly parallelized. In any case, its scalability is limited to use few threads on a single
computing node.  
Results. Our approach, BigSeqKit, takes advantage of an HPC-Big Data framework to
parallelize and optimize the commands included in \emph{seqkit} with the aim of
speeding up the manipulation of FASTA/FASTQ files. In this way, in most cases it is
from tens to hundreds of times faster than several state-of-the-art tools. At the same
time, our toolkit is easy to use and install on any kind of hardware platform (local server
or cluster), and its routines can be used as a bioinformatics library or from the
command line.
Conclusions. BigSeqKit is a very complete and ultra-fast toolkit to process and
manipulate large FASTA and FASTQ files. It is publicly available at:
https://github.com/citiususc/BigSeqKit
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César Piñeiro and Juan C. Pichel

Answers to the reviewers

We would like to thank the reviewers and editors for their insightful comments and
suggestions about the paper. All the changes in the revised manuscript are highlighted
in red. Detailed responses to reviewers are given below.

——————————————————————————–

Reviewer #1: The manuscript addresses the problem of processing and manipulating
large amounts of sequencing data stored in FASTA and FASTQ files. Based on the
observation that most processing tools take a sequential approach, the authors present
BigSeqKit, a parallelized and optimized toolkit that can be used on various hardware
platforms and is tens to hundreds of times faster than other modern tools. It is
described as a comprehensive and user-friendly toolkit for processing and
manipulating large FASTA and FASTQ files. The paper also includes the results of
experiments showing the superior performance of BigSeqKit compared to seqkit, its
sequential counterpart, and other tools when a large number of processing kernels are
used. Indeed, despite their very simple and inefficient structure, the FASTA and
FASTQ file formats are still very common and will not be completely replaced by
anything else in the foreseeable future. Against this background, the contribution of this
paper might be of interest. However, I am not sure that the problem of speeding up
traditional processing tools is as dramatic as the authors claim. A time saving of about
8 minutes for sorting the D3 dataset thanks to the use of 256 cores may not be so
dramatic if the other steps of the analysis pipeline take hours or days, as can be the
case for sequence alignments. That being said, I think the authors should provide a
more solid justification for their contribution. This includes discussing, or at least
anticipating, an application scenario where conventional tools fail in the first place and
their approach is then needed.

****RESPONSE*****

We agree with the reviewer that it is important in the revised manuscript to better
motivate/demonstrate why our approach is needed. With that goal in mind, we have
extended our experimental evaluation including two larger datasets with the following
characteristics (page 6):

• D5 (uniprot_trembl - FASTA - 104 GB): Number of sequences: 229.9M, Minimum
length: 7, Average length: 351.6, Maximum length: 45.3K.
• D6 (DRR002180 2 - FASTQ - 395 GB): Number of sequences: 1.625B, Minimum
length: 101, Average length: 101, Maximum length: 101.

In the original manuscript, D5 was only used with the faidx routine. Note that D6 is
larger than the memory of one computing node (395 GB vs. 256 GB).

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the
discussion about them is in pages 7, 8, 9 and 10 (changes highlighted in red in the
revised manuscript). According to the new results, we prove our contribution taking into
account the following arguments:

• pyfastx, samtools and seqkit take hours (and even days) to execute the different
routines when considering the new datasets (see Tables 3-9). In this way, processing
times are now significant in an analysis pipeline. For instance, the best sequential time
of faidx, locate, replace, rmdup, sample, seq with D6 is about 2.1, 75.1, 2.5, 2.8, 2.6,
hours, respectively. It means that, for example, the locate command requires more
than 3 days of computation!

• seqkit and samtools were unable to process D6 with some routines (locate and sort)
due to memory issues, which confirms that current state-of-the-art tools are not well
fitted for processing very large files. In addition, it is expected that the size of the
FASTA and FASTQ files increase even more in the near future. Note that BigSeqKit
stores D6 compressed in memory when using one computing node since it exceeds
the memory capacity of an individual server (see the Raw memory storage option in
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the Background section -page 4).

• For all the commands considered and the new very large datasets, BigSeqKit is again
the fastest tool. In addition, speedups are higher as data size grows, both considering
1, 2, 4 and 8 computing nodes. For instance, BigSeqKit is 169.7. faster than the
sequential execution when considering D6 and the seq command (Table 8).

• BigSeqKit is able to reduce the time necessary to execute the locate command with
our largest dataset D6 from 3 days to only 0.8 hours (Table 4). Therefore, the impact of
using BigSeqKit is noticeable.

We have also modified the Conclusions (page 10) in the revised paper to include some
of the results commented above. There is also a small change in the Intro (page 2).
Links and IDs of the new datasets are provided in page 10 ("Availability of supporting
data").

###################
###################

I have then some more punctual remarks:

-After a short review of existing FASTA/Q manipulation tools, the authors conclude that
none of these tools is well fitted for the manipulation of large files of tens of GB. Why?
As far as I can see, the same datasets used by the authors for their experiments are
even larger than one hundred GB, however the authors have been able to process
them using these tools.

****RESPONSE*****

This question is related to the previous one. To demonstrate the benefits of our
approach we have included two larger datasets in our experimental evaluation for all
the considered routines: D5 (104 GB) and D6 (395 GB). As we explained above,
according to the results observed when processing both datasets, there are two main
consequences that demonstrate that current state-of-the-art tools (pyfastx, samtools
and seqkit) are not well fitted for very large files:

• There is a significant boost in the processing times when considering very large files.
Now for all the commands studied, times range from 2 hours to more than 3 days.
Therefore, the impact on the total time required by an analysis pipeline is very
important. BigSeqKit is able to reduce those times noticeably. For example, pyfastx
and seqkit require more than 2 hours to execute the sample command with D6, while
BigSeqKit takes 109 seconds (see Table 7).

• If the dataset is big enough, there are memory issues that prevent samtools and
seqkit to process the file when using several routines (locate and sort). These tools,
and also pyfastx, are limited to store the data in the memory of a single node.
BigSeqKit can use the memory of several nodes to split the data. In any case, even if
there is only one computing node available, BigSeqKit can use additional storage
options that allows it to process huge files larger than the memory of a node (see
Background section in the manuscript -page 4):

– Raw memory: data is stored in a memory buffer using a serialized binary format. The
buffer is compressed by Zlib.

– Disk: similar to raw memory but the buffer is stored as a POSIX file. Although the
performance is significantly worse, it enables working with vast amounts of data that
cannot be entirely kept in memory.

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the
discussion about them is in pages 7, 8, 9 and 10 (changes highlighted in red in the
revised manuscript).

###################
###################
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-The paper gives the impression that BigSeqKit uses (at least) some of the code that
imple.ments seqtk. However, it is unclear how this integration is done. Is seqtk
executed as a child process in the BigSeqKit tasks, or has it been integrated at the
source code or library level?

****RESPONSE*****

The reviewer is right in the sense that BigSeqKit reuses some parts of the seqkit code.
However, BigSeqKit does not use seqkit as a child process or library. BigSeqKit is a
reimplementation of seqkit functionalities that uses the IgnisHPC framework to deal
with parallelism and performance. We analyzed the source code of seqkit and
designed and implemented a new version of the commands that maintain the same
behavior (and arguments) but operate in parallel. To do that we used the IgnisHPC API
functions (see Background section). In addition, there are additional important changes
explained in pages 4 and 5.

###################
###################

-The authors say that the use of IgnisHPC partitions makes it possible to improve seqtk
in all operations where input data must be processed in multiple passes, since this
data is held in memory. I expect this feature to be of great benefit when working with
very large data sets. I would suggest the authors explicitly state in their experimental
study which seqtk operations require multiple passes.

****RESPONSE*****

We did not use the multiple passes option in any of our experimental tests with seqkit.
Note that this parameter reduces noticeably the performance of seqkit, so we have
chosen not to use it to ensure a fair comparison with our tool. It is important to highlight
that not all the seqkit commands support the ”two-pass” option. In our case, only
sample and sort. For our new largest dataset D6, sample can still be executed without
this parameter (see Table 7). On the other hand, the sort operation in seqkit cannot be
executed with D6 due to memory issues even using the ”two-pass” argument.

Following the suggestion of the reviewer, the revised manuscript includes the fol.lowing
sentence (page 6): ”Note that the ”two-pass” argument of seqkit was not used in the
experiments.”

###################
###################

-To my surprise, no information was given about the overhead required to load the
sequences to be processed into memory. In fact, some of the operations considered
are I/O-bound and the resulting execution time is mainly due to the time required to
read the sequences from disk to memory and vice versa. Is the load time included in
the results reported by the authors?

****RESPONSE*****

Execution times for all the tools considered (BigSeqKit, seqkit, samtools and pyfastx)
include the overhead of loading sequences into memory and the subsequent writing of
results to disk.

Now the revised manuscript includes specifically that information (page 6).

###################
###################

In the IgnisHPC scenario, does each computational unit read a portion of the input files
itself or are they loaded by a driver application and then distributed across the
distributed system?
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****RESPONSE*****

Each worker reads its portion of the input files, so the I/O operation is performed in
parallel. There is one worker per computing node. Within each worker, its portion of the
file is further divided among the available threads, improving the overall I/O
performance.

Now the revised manuscript includes specifically that explanation (”Another
implementation details” section -page 4).

###################
###################

In addition, the authors used an Infiniband-connected HPC infrastructure for their
experiment. Do they use a remote storage server that exports a file system to all nodes
of the distributed system? And, when using BigSeqKit to analyze very large files on all
processing cores of a workstation, is there a potential performance/I/O bottleneck due
to the controller’s limited bandwidth?

****RESPONSE*****

Our experiments were conducted using the Infiniband-connected HPC infrastructure at
CESGA (Galicia Supercomputing Center, Spain). Within this infrastructure, a
distributed Lustre file system is employed. It is a common practice to have dedicated
storage nodes that handle the storage operations separately from the computational
nodes. The Lustre system at CESGA is designed with data distribution and replication
techniques to enhance performance and ensure data availability.

Now the revised manuscript explains that Lustre was used as distributed file system
(page 6).

The reviewer is right that could be a potential bottleneck in the I/O performance due to
the limited bandwidth of the memory controller when processing very large files. This
could happen when executing commands with a very low ratio of operations per
sequence. For example, the seq command. However, based on our experimental
findings, that scenario is not happening since for all the commands and datasets
considered, the scalability within a computing node is good.

——————————————————————————–

Reviewer #2:

This paper provides a novel parallel toolkit named BigSeqKit to manipulate FASTA and
FASTQ files. BigSeqKit takes advantage of the IgnisHPC to run on the distributed and
local environment. And It takes advantage of the distributed performance of IgnisHPC
to optimize various operations of seqkit, and provides some new functions. Moreover, it
solves the data dependency problem of some commands in a distributed environment.
BigSeqKit is tens to hundreds of times faster than several state-of-the-art tools. At the
same time, BigSeqKit is easy to use and install on any kind of hardware platform (local
server or cluster), and its routines can be used as a bioinformatics library or from the
command line.

###################
###################

Questions:
1. In Figure 4. the locate operation is an independent operation according to the paper.
But in D4, with 256 cores, why did it only achieve a 50x speedup?

****RESPONSE*****

The speedup is not higher due to a small fraction of the locate routine that should be
executed sequentially. Amdahl’s law states that the overall speedup is limited by the
proportion of the program or task that cannot be parallelized, even if the parallelizable
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portion is improved significantly. In other words, the impact of optimizing a specific part
of a system is limited by the non-parallelizable components. For instance, if only 1.5%
of the code is sequential (that is, 98.5% executed in parallel), the theoretical maximum
speedup achievable using 256 cores would be 53.. Note that this percentage varies
depending of the dataset.
Now the revised manuscript includes this information in pages 6-7: ”Note that
speedups of some routines are not higher when using 256 cores due to there is a small
fraction of the code that should be executed sequentially (Amdahl’s law)”.

###################
###################

2. Different data of the same type have very different speedups, for example, locate
operation on dataset D1 and D3, can you explain why?

****RESPONSE*****

The differences in speedup between the locate operation on datasets D1 and D3 can
be attributed to the characteristics of the datasets. D1 consists of 1.2 million sequences
ranging from 85 to 19.7K in length, while D3 has only 639 sequences ranging from 970
to 248.9M in length (see page 6 in the revised manuscript). When processing both
datasets in parallel, especially when the number of cores is high, it is difficult to find a
good load balance between threads when the number of sequences is low and they
are of very different size (up to 248.9M bases). That is the case of D3, and the reason
why the speedups are different.

Now the revised paper includes this information in page 10: ”Finally, we must high.light
that one of the main reasons for the differences in the speedups between datasets
running the same command with BigSeqKit is the load balance between threads. It will
depend on the characteristics of the dataset: number of sequences and their length.”.

###################
###################

3. How BigSeqKit ensure the integrity of the division data? For example, how to solve if
a FASTQ sequence is divided into two partitions?

****RESPONSE*****

Each worker reads its portion of the input files, so the I/O operation is performed in
parallel. There is one worker per computing node. Within each worker, its portion of the
file is further divided among the available threads, improving the overall I/O
performance.
In a text file, the separator is represented by ’\n’, while in FASTA and FASTQ files, it is
’\n¿’ and ’\n@’, respectively. If a thread begins reading its assigned portion and does
not encounter the separator, it will ignore the entire input until the separator is found.
Furthermore, if a thread has completed processing its portion, it will continue reading
until the separator is encountered. This approach ensures a fully parallel and
coordinated reading of the input file across multiple processes and threads, as
specified by the user.

Now the revised manuscript includes specifically a summary of that explanation
(”An.other implementation details” section -page 4).

###################
###################

4. In the conclusion section, the authors say: ”Considering an 8-nodes cluster,
BigSeqKit is even faster, reaching speedups higher than 100.”, but only one data
reaches speedup over 100x, why?

Following the suggestion of the first reviewer, we have we have extended our
experimental evaluation including two larger datasets with the following characteristics
(page 6):
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• D5 (uniprot_trembl - FASTA - 104 GB): Number of sequences: 229.9M, Minimum
length: 7, Average length: 351.6, Maximum length: 45.3K.
• D6 (DRR002180 2 - FASTQ - 395 GB): Number of sequences: 1.625B, Minimum
length: 101, Average length: 101, Maximum length: 101.

In the original manuscript, D5 was only used with the faidx routine. Note that D6 is
larger than the memory of one computing node (395 GB vs. 256 GB).

As a result for all the commands considered and the new very large datasets,
BigSeqKit is again the fastest tool. In addition, speedups are higher as data size grows,
both considering 1, 2, 4 and 8 computing nodes. In particular, BigSeqKit is 144., 89.5.,
159.8., 48.2., 101.1., 169.7. and 131.1. faster than the sequential execution when
considering D6 and faidx, locate, replace, rmdup, sample, seq and sort commands,
respectively. It means that in 5 of 7 routines achieves speedups higher than 100.

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the
discussion about them is in pages 7, 8, 9 and 10 (changes highlighted in red in the
revised manuscript). Conclusions (page 10) were also modified to reflect those results.

——————————————————————————–

Editor:

In addition, please register any new software application in the bio.tools and
SciCrunch.org databases to receive RRID (Research Resource Identification Initiative
ID) and biotoolsID identifiers, and include these in your manuscript. Computational
workflows should be regis.tered in workflowhub.eu and the DOIs cited in the relevant
places in the manuscript. These will facilitate tracking, reproducibility and re-use of
your tool.

****RESPONSE*****

Following the suggestion of the editor, BigSeqKit was registered in bio.tools and
SciCrunh.org. Both IDs (and their corresponding links) were added to the repository
information in the revised manuscript (page 10):
• BiotoolsID: biotools:bigseqkit
• RRID: SCR_023592

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources Yes
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A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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BigSeqKit: a parallel Big Data toolkit to process FASTAand FASTQ files at scale
César Piñeiro1,*,† and Juan C. Pichel1,*
1CiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
*cesaralfredo.pineiro@usc.es; juancarlos.pichel@usc.es†Corresponding author

Abstract
Background. High-throughput sequencing technologies have led to an unprecedented explosion in the amounts of sequencingdata available, which are typically stored using FASTA and FASTQ files. We can find in the literature several tools to process andmanipulate those type of files with the aim of transforming sequence data into biological knowledge. However, none of them arewell fitted for processing efficiently very large files, likely in the order of terabytes in the following years, since they are based onsequential processing. Only some routines of the well-known seqkit tool are partly parallelized. In any case, its scalability is limitedto use few threads on a single computing node. Results. Our approach, BigSeqKit, takes advantage of an HPC-Big Data frameworkto parallelize and optimize the commands included in seqkitwith the aim of speeding up the manipulation of FASTA/FASTQ files.In this way, in most cases it is from tens to hundreds of times faster than several state-of-the-art tools. At the same time, ourtoolkit is easy to use and install on any kind of hardware platform (local server or cluster), and its routines can be used as abioinformatics library or from the command line. Conclusions. BigSeqKit is a very complete and ultra-fast toolkit to process andmanipulate large FASTA and FASTQ files. It is publicly available at: https://github.com/citiususc/BigSeqKit.
Key words: FASTA/FASTQ files; Performance; Parallelism; Big Data

Introduction
The history of modern DNA sequencing started several decades ago,and since then, has seen astounding growth in sequencing capac-ity and speed. From the first genomes with a few thousand bases,DNA sequencing has advanced to sequence the human genome of 3billion bases. In recent years, next-generation sequencing (NGS)technology, also known as massive parallel sequencing (MPS), hasmade it possible to expand the amount of sequencing data available.For example, the Illumina NovaSeq 60001 platform can generate amaximum output of 6 Tb of data and read about 20 billion sequencesper run. Note that sequences, commonly named reads, are com-posed of ASCII characters representing a nucleotide (base) from thesequence. In the DNA case, we can only find four possible bases (A -adenine, C - cytosine, G - guanine and T - thymine).

1 https://www.illumina.com/systems/sequencing-platforms/novaseq.html[accessed 28 feb 2023]

The NGS raw data are mainly stored in FASTA [1] and FASTQ [2]text-based file formats. In particular, nucleotide and protein se-quences are typically stored in the FASTA file format, whereasFASTQ is the most widely used format for sequencing read data.An example of FASTA file is shown in Figure 1. A sequence in FASTAformat begins with a single-line description about the sequence inthe subsequent lines. The description line is distinguished fromthe sequence data by a greater-than (>) symbol at the beginning.On the other hand, the FASTQ format was designed to handle thequality metrics of the sequences obtained from the sequencers. InFASTQ every four lines describe a sequence or read. An example isdisplayed in Figure 2. The information provided per read is: identi-fier and an optional description (first line), sequence (second line),and the quality score of the read (fourth line). An extra field, repre-sented by symbol ‘+’, is used as separator between the data and thequality information (third line).Manipulating these files efficiently is essential to analyze andinterpret data in any genomics pipeline. Common operations onFASTA and FASTQ files include searching, filtering, sampling, dedu-

Compiled on: May 25, 2023.Draft manuscript prepared by the author.
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Figure 1. Example of FASTA file showing the first part of the PAX6 gene (obtained
from [3]).

Figure 2. Example of FASTQ file format (obtained from [3]).

plication and sorting, among others. We can find several tools inthe literature for FASTA/Q file manipulation such as HTSeq [4],FASTX [5], fqtools [6], seqtk [7], Biopython [8], samtools [9], py-fadix [10], pyfastx [11] and seqkit [12]. These tools can be classifiedaccording to how the sequences are parsed [11]. In the first categorysequences are processed in order, which causes important over-heads when extracting and randomly sampling sequences. That isthe case ofHTSeq, FASTX, fqtools and seqtk. In the second categorywe find tools that support random access to sequences by establish-ing an index file. Tools belonging to this category are more efficientin terms of performance and memory consumption. However, noneof them are well fitted for processing very large files of hundreds ofGB (likely TBs in the near future) since they are based on sequentialprocessing. The exception is seqkit that allows some routines to usea few threads but, in any case, its scalability is very limited.To deal with this issue, in this paper we introduce BigSeqKit2, aparallel toolkit to manipulate FASTA and FASTQ files at scale withspeed and scalability at its core. BigSeqKit takes advantage of Ig-nisHPC [13, 14], a computing engine that unifies the development,combination and execution of HPC and Big Data parallel tasks usingdifferent languages and programming models. As it was demon-strated, IgnisHPC outperforms the state-of-the-art frameworkSpark [15] in terms of performance and scalability running appli-cations that represent the most typical algorithmic patterns in BigData and scientific computing.BigSeqKit uses the seqkit routines as basis since that toolkit cov-ers a wide range of utilities and is one of the most used by the bioin-formatics research community. As a consequence, BigSeqKit willoffer the same functionalities and command interface3 than se-qkit. BigSeqKit can be used from the command line, but it is at thesame time a library, so its routines can also be called from a C/C++,Python, Go or Java application.Another important characteristic of BigSeqKit is that it is fullycontainerized, which isolates the execution environment from thephysical system and avoids dependency problems. As a conse-quence, BigSeqKit is very easy to install and can run on a local serveror on any type of cluster since it supports some of the most impor-tant resource and scheduler managers (e.g., Mesos [16], Nomad [17]and Slurm [18]).

2 https://github.com/citiususc/BigSeqKit [accessed 28 feb 2023]3 https://bioinf.shenwei.me/seqkit/usage [accessed 28 feb 2023]

Table 1. Some of the most important IgnisHPC API functions.
Type Functions
Map map, flatmap, mapWithIndex, filter, keyBy,

keys, values, mapPartitions, mapValues, etc.
Reduce reduce, treeReduce, aggregate,

treeAggregate, reduceByKey, aggregateByKey,etc.Group groupBy, groupByKeySort sort, sortBy, sortByKey

I/O parallelize,collect, top, take,
saveAsObjectFile, saveAsTextFile,
saveAsJsonFile, etcSQL union, join, distinct

Math sample, sampleByKey, take, takeSample,
count, countByKey, countByValue, max, min,etc.

Balancing repartition, partitionByHash,
partitionByRandom, partitionByPersistence persist, cache, unpersist, uncache

Background
IgnisHPC [13, 14] unifies the execution of Big Data and HPC work-loads in the same computing engine. Unlike other frameworkssuch as Hadoop [19] and Spark [15], IgnisHPC has native supportfor multi-language applications using both JVM (Java Virtual Ma-chine) and non-JVM-based languages. In this way, applicationscan be implemented using one or several programming languagesfollowing an API inspired by Spark’s one.The previous version of IgnisHPC supported natively C, C++,Java and Python. However, seqkitwas implemented using the Goprogramming language. Since BigSeqKit parallelizes and optimizesthe seqkit routines using IgnisHPC, it was necessary to add supportfor this language in the framework. Other solution would requireto port the complete toolkit to a different language, which is a diffi-cult and prone to errors task. It is worth noting that, to the best ofour knowledge, nowadays IgnisHPC is the first parallel computingframework to include native support for this language. Consider-ing Spark instead of IgnisHPC is not an option because, as it wasdemonstrated in [13], when using a non-native language code, datatransfers between the JVM and external processes degrade notice-ably the Spark’s overall performance.Go is a programming language with a simple syntax that wasdesigned to be easy to learn and use. With the release of Go v1.18, thelanguage included support for Generics, which allows the creationof functions, types, and methods that can work with any data type.This makes Go an effective and user-friendly way to implement BigData interfaces. The implementation of Go in IgnisHPC is similarto that of C++, as both are compiled and statically typed languages.However, Go replaces the concept of inheritance with composition,which does not change the philosophy of use in IgnisHPC. Big Datafunctions are still accessible through the IgnisHPC API, and userscan create their own code by implementing the same interfaces.One of the key features of IgnisHPC is its use of containers toisolate and execute code. Containers are lightweight and portable,making it easy to run IgnisHPC on a variety of different clustersincluding both HPC (High-Performance Computing) and Big Data.IgnisHPC is also tolerant to failures, as the containers or processescan be easily restarted if there are issues. In particular, if somedata is lost, IgnisHPC has enough information about how it wasderived. In this way, only those operations needed to recomputethe corresponding portion of data are performed.We must highlight that although the IgnisHPC API4 uses a se-

4 https://ignishpc.readthedocs.io/en/latest/api.html [accessed 28 feb2023]

https://github.com/citiususc/BigSeqKit
https://bioinf.shenwei.me/seqkit/usage
https://ignishpc.readthedocs.io/en/latest/api.html
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quential notation, operations on data are performed in parallel. Aswe pointed out, the IgnisHPC API was inspired by the Spark API insuch a way that IgnisHPC codes are easily understandable by userswho are familiar with Spark. Table 1 shows a list of some of themost important functions supported by IgnisHPC. In particular:
• Map functions: The common characteristic to routines belongingto this type is that they apply the same function to each elementin the data. As a result of the transformation, the output couldbe of different size with respect to the input.• Reduce functions: reduce and treeReduce methods aggregate allthe elements in the input data using a function. aggregate and

treeAggregate are a sort of reduction where the type of the in-put and output data is different. In this case two functions arenecessary, the first one is applied to each element in a data par-tition, and the second one combines the partial results obtainedfor each partition. reduceByKey and aggregateByKey are varia-tions where the operation is performed only among elementswith the same key in such a way that the final result is a set ofunique pairs with values calculated using reduce or aggregateoperations, respectively.• Group functions: These methods group elements in a data frameaccording to their key value (groupByKey) or a user-defined func-tion (groupBy).• Sort functions: In order to sort elements, IgnisHPC provides threefunctions: sort, sortByKey and sortBy. The first method usesthe natural order and does not need any additional function.
sortByKey sorts the keys using their natural order. sortBy al-lows to use a user-defined function to specify the order of theelements. If the result of applying that function to two elementsis true, then the first element should precede the second one. Allmethods support ascending and descending order.• SQL functions: These functions operate on data frames. unionconcatenates two data frames, join merges elements of twodata frames whose keys match, and distinct returns a new dataframe after removing the duplicate records. These methods arenecessary, for example, in many graph processing problems.• Other functions: IgnisHPC implements several operations thatreturn a value to the driver code, but they do not modify or gen-erate new stored data. Spark refers to this type of operationsas actions. For instance, IgnisHPC supports methods such as
count, take, takeSample and collect. The most basic operationis count that returns the number of elements of a stored data col-lection. collect returns a collection with all the elements storedin the executors of a task. take applies a collect operation butobtains only the first n elements, where n is chosen by the user.
takeSample returns a random sample of n elements from thedistributed data, with or without replacement. Finally, anotherinteresting routine is parallelize, which distributes the ele-ments of a collection among the executors to form a distributeddataset. In this case new stored data is created.
It is worth noting that the IgnisHPC API functions allow usersto parallelize a code with a high level of abstraction. In this way, itis only necessary to focus on data dependencies.

Methods
As we commented previously, BigSeqKit speeds up the seqkit rou-tines through parallelization and optimization techniques. Table 2shows the routines supported by the current version of BigSeqKit.Despite most of the commands in seqkit are sequential, we can clas-sify each command implementation into three categories accordingto its inherent parallelism:
• Independent: it is a embarrassingly parallel workload. As a con-sequence, the computation could be applied to all sequences

in parallel. An example is seq, a function that transforms se-quences. In this case, the transformation only affects each se-quence individually.• Partially dependent: computations could be done in parallel, butthe method requires some type of consensus to obtain the result.For instance, stats should merge the partial results computedfor each sequence to calculate some statistics of the consideredFASTA/Q file.• Dependent: dependencies between sequences prevent themethod from being executed in parallel. As a consequence,BigSeqKit requires a complete new algorithm to perform thesame command in parallel. rmdup is a good example becausewith the aim of removing duplicated sequences it is necessaryto read all of them before generating a result.
The integration, parallelization and optimization of each seqkitcommand in IgnisHPC will be different depending on its category.More details are provided below.

Independent routines
For these commands the computation can be applied to all se-quences in parallel because there are no dependencies (communi-cation) among them. In other words, routines belonging to this cat-egory can be processed using an embarrassingly parallel approach.Considering the IgnisHPC (and Spark) API, it is only necessary touse map functions to parallelize the computations. As we pointedout, the common characteristic to these API functions is that theyapply the same operation to each element in the data.

The following BigSeqKit commands belong to this category: seq,
subseq, stats, fq2fa, fa2fq, translate, grep, locate, duplicateand replace (see Table 2 for details).

Partially dependent routines
As we mentioned, this category includes commands in which com-putations can be done in parallel using map functions, but the meth-ods require some type of consensus to get the desired outcome. Thisconsensus can be easily implemented using the IgnisHPC API. Thefollowing BigSeqKit commands belong to this category:

• stats: statistics can be generated in parallel but the final resultmust be unique, so all partial results must be merged using areduction (reduce operation in the IgnisHPC API).• head: sequences should know their position inside the file tocheck if they are inside the head window. To do that, it is nec-essary to use mapWithIndex, a special map operation included inthe IgnisHPC API that allows each element to know its globalindex within a data structure.• head-genome: similar to head, but not all sequences are valid.In order to determine the window, invalid sequences must beremoved first.• range: also similar to head. Sequences should know their posi-tion inside the file to check if they are within the range window.• grep: although this command was included in the previous cat-egory, a command option (–delete-matched) limits the numberof results to just one per search pattern. In such cases, it isnecessary to remove the extra results.• faidx: also similar to head, sequences compute their offsets in-side the input file using mapPartitionWithIndex and exchangethe information between executors to perform a parallel index-ing operation with a simple map.
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Table 2. List of commands included in both BigSeqKit and seqkit. Those commands with an asterisk support new functionalities not included in seqkit.
Basic commands

seq Transform sequences (extract ID, filter by length, remove gaps, reverse complement, etc.)
subseq Get subsequences by region/gtf/bed, including flanking sequences
stats Simple statistics of FASTA/Q files: #seqs, min/max length, N50, Q20%, Q30%, etc.
faidx∗ Create FASTA or FASTQ index file and extract subsequencesFormat conversion
fa2fq Retrieve corresponding FASTQ records by a FASTA file
fq2fa Convert FASTQ file to FASTA format
translate Translate DNA/RNA to protein sequenceSearching
grep Search sequences by ID/name/sequence/sequence motifs
locate Locate subsequences/motifs Set operations
sample Sample sequences by number or proportion
rmdup Remove duplicated sequences by ID/name/sequence
common Find common sequences of multiple files by ID/name/sequence
duplicate Duplicate sequences N times
head Print first N FASTA/Q records
head-genome Print sequences of the first genome with common prefixes in name
pair Match up paired-end reads from two FASTQ files
range Print FASTA/Q records in a range (start:end)Edit
concat Concatenate sequences with the same ID from multiple files
replace Replace name/sequence using a regular expression
rename Rename duplicated IDs Ordering
sort Sort sequences by ID/name/sequence/length
shuffle Shuffle sequences

Dependent routines
Commands belonging to this category have an implementation inseqkit that by its nature cannot be parallelized. However, IgnisHPCallows us to define the implementation at a high level, which in-creases noticeably the productivity. Behaviors and functionalitieswill be preserved in BigSeqKit but through a complete new parallelimplementation. In particular:
• sample: a sequential sampling can be performed in parallel ifwe split the sequences and run a sample for each partition. Itwas mathematically proven that sampling without replacementfollows a hypergeometric function [20]. In this way, we cancalculate the proportion of the sample that corresponds to eachpartition.• rmdup: sequences are grouped (groupBy API function) using ahash with the ID, name or sequence. In those groups containingmore than one element, a search for duplicates is carried out toremove them.• pair and concat: sequences of the input files generate key-valuepairs where the key is the ID and the value is the sequence withits index file (map). Pairs are unified by means of union andgrouped using groupByKey. Afterwards, sequences in the samegroup are paired or concatenated if they belong to different files.• common: the first stage of the command is the same one explainedabove for pair and concat. Then if a sequence can be found inall files, we check its index file, to avoid its deletion.• rename: sequences are grouped (groupBy) using their ID, thenIDs in the same group are renamed.• sort: the sequential sort algorithm implemented in seqkit isreplaced by a sample MergeSort [21] algorithm that can be effi-ciently executed in parallel in a distributed environment.• shuffle: sequences shuffling can be implemented using theIgnisHPC API function partitionByRandom.

Another implementation details
In order to parallelize and integrate the seqkit routines into Ig-nisHPC it was necessary to start considering the sequence parser.It takes a stream of characters in FASTA and FASTQ format andgenerates a data structure with the sequence representation. Inseqkit, this stream can be represented by a file or the standard in-put. In BigSeqKit, this stream is implemented using the IgnisHPCiterators, which grant the users access to the data partitions. In thisway, BigSeqKitwill read the data from a file and split it in multiplepartitions, which facilitates their parallel processing. In particular,each worker reads a portion of the input file, so the I/O operationis performed in parallel. There is one worker per computing node.Within each worker, its portion of the file is further divided amongthe available threads, improving the overall I/O performance. As aresult, the seqkit command arguments that affect file processingwill have no effect in BigSeqKit. For example, the –two-pass option,which reads a file multiple times instead of storing all the sequencesin memory, does not make sense in BigSeqKit. We must highlightthat the fact of splitting the input files between several computingnodes in BigSeqKitmeans that the memory consumed by node isalso split, which allows our tool to work with larger datasets. In ad-dition, BigSeqKit also reduces the memory footprint by only storingthe IDs and indices of each sequence.

Another important advantage of using IgnisHPC is how memoryis handled. Users can choose a type of storage according to theirparticular case. For instance, if an input file is too large to be keptcompletely in the server memory, it could be stored compressedin memory or in disk. Performance would be lower, but it could besuccessfully processed. That scenario is not considered by seqkitthat simply would raise an "out of memory" error. In particular,BigSeqKit supports the following storage options:
• In-Memory: it is the best performer since all data is stored inmemory. It is the default option.• Rawmemory: data is stored in a memory buffer using a serialized
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binary format. Extra memory consumption is minimal and thebuffer is compressed by Zlib.• Disk: similar to raw memory but the buffer is stored as a POSIXfile. Although the performance is significantly worse, it enablesworking with vast amounts of data that cannot be entirely keptin memory.
On the other hand, rmdup, common and pair commands in seqkituse hash functions to check duplicates. It is well-known that hashfunctions can produce the same result for different values. Thisevent is commonly known as a hash collision. However, seqkit doesnot check for collisions, so it is possible to generate incorrect re-sults. BigSeqKit uses hashes to group sequences but then checks forcollisions by comparing the real values.Finally, seqkit and other state-of-the-art tools build index files(faidx routine) to speed up some other tasks (e.g., searches). Al-though BigSeqKit is also capable of creating those index files, itdoes not require them to improve its performance since data withinIgnisHPC is already indexed. In other words, the index is createdwhile reading the input file.

New functionalities
BigSeqKitnot only enables the parallelization of seqkit functions, butalso improves its algorithms to provide benefits even for sequentialexecutions and includes additional functionalities. In particular, the
faidx command in seqkit implements indexing of FASTA files usingthe samtools format, but FASTQ files are not supported. BigSeqKitadds support for this type of files and generates an index file usingthe samtools format as well. Note that this is the most widespreadformat and is also supported by other state-of-the-art tools. There-fore, BigSeqKit allows indexing of both FASTA and FASTQ files usingthe same syntax than seqkit.

How to use BigSeqKit
BigSeqKit can be used in two different ways. The first one is bymeans of a command-line interface (CLI). This approach is similarto the “command subcommand” structure adopted by seqkit [12].In this way, it is only necessary to select a subcommand or routine(see a complete list in Table 2) and pass its arguments through com-mand line. As we mentioned previously, to improve the usabilityand facilitate the adoption of BigSeqKit, it implements the samecommand interface than seqkit.Since BigSeqKit runs within the IgnisHPC framework, it isnecessary to send the BigSeqKit routine through the IgnisHPCsubmitter. For instance, if we are running BigSeqKit on a localserver, the following expression uses the routine seq to print thename of the sequences included in a FASTA file to an output file:

ignis-submit ignishpc/full bigseqkit seq -n -o names.txt
input-file.fa

Therefore, the syntax should be: ignis-submit ignishpc/full
bigseqkit <cmd> <arguments>.In addition, users can also specify through arguments thenumber of instances, cores and memory (in GB) to be used in theexecution. By default, those values are set to 1. For example, we canexecute the previous command using 2 cores:

ignis-submit ignishpc/full -p ignis.executor.cores=2
bigseqkit seq -n -o names.txt input-file.fa

Unlike the other state-of-the-art tools, BigSeqKit can also beexecuted on a parallel cluster. Typical HPC clusters has Slurm [18] as

1 import ignis
2 import bigseqkit
3
4 # Initialization of the framework
5 ignis.Ignis.start()
6 # Resources/Configuration of the cluster
7 prop = ignis.IProperties()
8 prop["ignis.executor.image"] = "ignishpc/go"
9 prop["ignis.executor.instances"] = "1"

10 prop["ignis.executor.cores"] = "2"
11 prop["ignis.executor.memory"] = "1GB"
12 # Construction of the cluster
13 cluster = ignis.ICluster(prop)
14 # Initialization of a Go Worker
15 worker = ignis.IWorker(cluster, "go")
16 # Sequence reading
17 seqs = bigseqkit.readFASTA("file.fa", worker)
18 # Obtain Sequence names
19 names = bigseqkit.seq(seqs, name=True)
20 # Save the result
21 names.saveAsTextFile("names.txt")
22 # Stop the framework
23 ignis.Ignis.stop()

Figure 3. Example of Python code using the BigSeqKit routines.

the preferred resource manager, and Singularity [22] as container-based technology. In this case, users will send the job using the
ignis-slurm submitter instead of ignis-submit.

On the other hand, BigSeqKit can also be used as a bioinformaticslibrary. It is worth noting that BigSeqKit was implemented in Golanguage. However, thanks to the multi-language support providedby IgnisHPC, it is possible to call BigSeqKit routines from C/C++,Python, Java and Go applications without additional overhead. Anexample of Python code is shown in Figure 3. This example is equiv-alent to the previous one used in the explanation of the CLI. SinceBigSeqKit has been created as a library, it only needs to be importedto be used. Functions in BigSeqKit do not use files as input, they useDataFrames instead, an abstract representation of parallel data usedby IgnisHPC (similar to RDDs in Spark). Parameters are grouped ina data structure where each field represents the long names of a pa-rameter. We must highlight that BigSeqKit functions can be linked(like system pipes using “|”), so the DataFrame generated by onecan be used as input to another. In this way, integrate BigSeqKitroutines in a more complex code is really easy.
The code starts initializing the IgnisHPC framework (line 5 inthe figure). Next, a cluster of containers is configured and built(lines from 7 to 15). Multiple parameters can be used to configurethe environment such as image, number of containers, number ofcores and memory per container. In this example, we will use 1 node(instances) and 2 cores by node. After configuring the IgnisHPCexecution environment, the BigSeqKit code actually starts. First, weread the input file (line 17). There is a different function for readingFASTA and FASTQ files. All the input sequences are stored as asingle data structure. The next stage consists of printing the nameof the sequences included in the FASTA file (line 19). The functiontakes as parameters the sequences and the options that specify itsbehavior. Finally, the names of the sequences are written to disk.It is important to highlight that lazy evaluation is performed, sofunctions are only executed when the result is required to be savedon disk.

Experimental Results
In this section we analyze the performance results obtained byBigSeqKitwith respect to other state-of-the-art tools. In particular,we have considered samtools, pyfastx and seqkit for their perfor-
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Figure 3

An additional advantage of using BigSeqKit is that if the memoryconsumed by a particular file is too high, it can be split into sev-eral nodes. This is the case of using sort to process our largest file,D3. Both BigSeqKit and seqkit consume too much memory that pre-vent the execution of this command on a single node of our cluster.BigSeqKit deals with that problem using two or more nodes to sortthe input file. In this way, BigSeqKit is able to decrease the time tosort D3 from 20 minutes (2 cores - 2 nodes) to barely 1 minute (128cores - 8 nodes).

Tables from ?? to ?? display the execution times of BigSeqKit andseqkitwhen running seq, grep, rmdup, replace, concat and sort util-ities, respectively. It is important to highlight that speedups shownin Figure ?? were computed using the times included in these ta-bles. Results confirm the benefits of using BigSeqKitwith respectto seqkit in terms of performance and scalability. Note that evenconsidering a single node (up to 16 cores), BigSeqKit always outper-forms seqkit when using more than 1 core. Tables also highlightthe fastest times achieved by BigSeqKit and how many times fasterare those with respect to sequential seqkit. Independently of thecommand considered, BigSeqKit is able to reduce the processingtime at least one order of magnitude. For example, the maximumprocessing time observed for BigSeqKit is only 201 seconds (grepcommand -D3, see Table ??), while the corresponding seqkit time is9,394 seconds. In other words, it means that seqkit takes 2.6 hoursto perform the same operation.

1 import ignis
2 import bigseqkit
3
4 # Initialization of the framework
5 ignis.Ignis.start()
6 # Resources/Configuration of the cluster
7 prop = ignis.IProperties()
8 prop["ignis.executor.image"] = "ignishpc/go"
9 prop["ignis.executor.instances"] = "1"

10 prop["ignis.executor.cores"] = "2"
11 prop["ignis.executor.memory"] = "1GB"
12 # Construction of the cluster
13 cluster = ignis.ICluster(prop)
14 # Initialization of a Go Worker
15 worker = ignis.IWorker(cluster, "go")
16 # Sequence reading
17 seqs = bigseqkit.readFASTA("file.fa")
18 # Obtain Sequence names
19 names = bigseqkit.seq(seqs, name=True)
20 # Save the result
21 names.saveAsTextFile("names.txt")
22 # Stop the framework
23 ignis.Ignis.stop()

Figure 4. BigSeqKit obtains names using Python

How to use BigSeqKit
INLCUIR SECCIÓN CON EJEMPLO DE CÓDIGO DE DRIVER EN C oPYTHON???? para demostrar que mi código no tienen por qué estar
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Figure 4. Speedups (in log scale) obtained by BigSeqKit and other state-of-the-art tools with respect to the BigSeqKit sequential time when executing different commands
using D4 as input. Note that locate was parallelized in seqkit.

mance and number of commands supported. Experiments wereconducted using up to 8 computing nodes of the FinisTerrae III 5
supercomputer installed at CESGA (Spain). Each node contains a32-core Intel Xeon Ice Lake 8352Y @2.2GHz processor and 256 GBof memory interconnected with Infiniband HDR 100. It is a Linuxcluster running Rocky Linux v8.4 (kernel v4.18.0). We have usedSingularityCE v3.9.7 (containers), IgnisHPC v2.2, pyfastx v0.8.4,samtools v1.16.1 and seqkit v2.3.1 (with Slurm as cluster managerand Lustre as distributed file system).The performance evaluation was carried out using as input sixdifferent FASTA/FASTQ files that cover a wide variety of character-istics and sizes. The main features of these files are the following:
• D1 (m64013e_210227_222017.hifi_reads - FASTA - 24 GB):Number of sequences: 1.2M, Minimum length: 85, Averagelength: 19.7K, Maximum length: 48.5K.• D2 (SRR642648_1.filt - FASTQ - 24.1 GB):Number of sequences: 98.7M, Minimum length: 100, Averagelength: 100, Maximum length: 100.• D3 (Homo_sapiens.GRCh38.dna_sm.toplevel - FASTA - 59.7 GB):Number of sequences: 639, Minimum length: 970, Averagelength: 98.8M, Maximum length: 248.9M.• D4 (ERR4667750 - FASTQ - 79.1 GB):Number of sequences: 318.1M, Minimum length: 101, Averagelength: 101, Maximum length: 101.• D5 (uniprot_trembl - FASTA - 104 GB):Number of sequences: 229.9M, Minimum length: 7, Averagelength: 351.6, Maximum length: 45.3K.

5 https://www.cesga.es/en/infrastructures/computing/ [accessed 28 feb2023]

• D6 (DRR002180_2 - FASTQ - 395 GB):Number of sequences: 1.625B, Minimum length: 101, Averagelength: 101, Maximum length: 101.
As example to illustrate the benefits of our tool, we will evalu-ate the following utilities (see Table 2 for a complete list of com-mands): faidx builds an index for FASTA/FASTQ files, locate lo-cates sequences following some search pattern, replace replaces aname/sequence using a regular expression, rmdup removes dupli-cated sequences, sample selects sequences by number or proportion,

seq transforms sequences (extract ID, filter by length, etc.) and re-moves gaps, and sort sorts sequences by ID/name/sequence/length.We will also include the performance results of the correspondingutilities, if exist, for samtools, pyfastx and seqkit. Execution times forall the tools considered include the overhead of loading sequencesinto memory and the subsequent writing of results to disk. Notethat the "two-pass" argument of seqkitwas not used in the experi-ments. Each result was computed as the median of five experiments.For the sake of reproducibility, all the codes and scripts used forperforming the benchmarks are freely available at the BigSeqKitrepository.
First, in order to provide an overall idea about the scalabilityand performance of BigSeqKitwith respect to the other state-of-theart tools, we will show the speedups obtained for the D4 datasetusing different number of cores. The behavior is very similar whenconsidering the other datasets. Results in log scale are displayed inFigure 4. Speedups were calculated using as reference the sequen-tial execution (1 core) of the corresponding BigSeqKit command.According to the results, several conclusions can be made. It canbe observed that the scalability of BigSeqKit is quite good, reachingspeedups up to 27.7× and 95.7× (seq command) using one server (32cores) and eight computing nodes (256 cores), respectively. Note

https://www.cesga.es/en/infrastructures/computing/
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Table 3. Execution times (seconds) using different number of cores: faidx command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1samtools 86.2 [1.03×] – – – – – – – –pyfastx 109.2 [0.81×] – – – – – – – –seqkit 75.4 [1.17×] – – – – – – – –BigSeqKit 88.4 46.0 35.3 26.3 19.4 16.3 [5.4×] 13.6 12.3 [7.2×] 12.5D2samtools 165.6 [1.06×] – – – – – – – –pyfastx 177.9 [0.99×] – – – – – – – –BigSeqKit 175.9 90.8 67.4 50.3 39.1 31.4 [5.6×] 23.4 19.1 15.5 [11.3×]D3samtools 210.0 [0.77×] – – – – – – – –pyfastx 131.2 [1.23×] – – – – – – – –seqkit 131.8 [1.23×] – – – – – – – –BigSeqKit 161.9 83.9 61.7 24.5 17.5 15.7 [10.3×] 13.6 13.4 [12.1×] 14.7D4samtools 538.4 [1.27×] – – – – – – – –pyfastx 615.5 [1.11×] – – – – – – – –BigSeqKit 684.2 346.6 175.2 90.3 45.4 29.3 [23.3×] 19.6 15.3 12.5 [54.7×]D5samtools 771.0 [1.08×] – – – – – – – –pyfastx 634.3 [1.31×] – – – – – – – –seqkit 1,096.2 [0.76×] – – – – – – – –BigSeqKit 829.8 361.3 179.4 89.3 49.4 30.3 [27.4×] 23.6 19.3 16.5 [50.3×]D6samtools 7,651.6 [1.14×] – – – – – – – –pyfastx 7,712.5 [1.13×] – – – – – – – –BigSeqKit 8,712.3 4,423.3 2,282.2 1,191.9 640.2 350.4 [24.9×] 129.5 85.3 60.5 [144×]

Table 4. Execution times (seconds) using different number of cores: locate command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1pyfastx 11,523.5 [1.0×] – – – – – – – –seqkit 12,822.9 6,385.0 3,210.9 1,731.4 940.5 612.4 [18.8×] – – –BigSeqKit 11,486.2 6,286.1 3,180.0 1,637.3 850.9 470.6 [24.4×] 264.6 156.9 110.3 [104.1×]D2pyfastx 8,841.2 [1.2×] – – – – – – – –seqkit 12,319.8 6,909.4 3,335.9 1,746.2 997.3 971.2 [10.5×] – – –BigSeqKit 10,168.6 5264.5 2711.5 1412.2 814.6 545.4 [18.6×] 384.7 293.5 234.9 [43.3×]D3pyfastx 13,075.3 [1.1×] – – – – – – – –seqkit 14,281.6 8,161.7 5,009.6 3,184.1 1,832.4 1,054.9 [14.1×] – – –BigSeqKit 14,834.2 8,223.3 4,572.8 2,585.6 1,494.6 872.1 [17.0×] 532.8 365.9 262.5 [56.5×]D4pyfastx 30,028.3 [1.05×] – – – – – – – –seqkit 39,640.5 21,257.6 10,803.1 5,715.1 3,369.7 2,795.2 [11.3×] – – –BigSeqKit 31,615.2 16,832.1 8,531.9 4,433.3 2,466.8 1,609.9 [19.6×] 1,074.7 794.6 633.5 [49.9×]D5pyfastx 27,876.5 [1.06×] – – – – – – – –seqkit 31,301.8 16,884.7 9,141.1 4,698.4 2,971.8 2,802.9 [10.5×] – – –BigSeqKit 29,540.7 15,431.3 8,120.2 4,401.4 2,454.5 1,443.9 [20.5×] 908.1 599.5 440.9 [67×]D6pyfastx 270,214 [1.02×] – – – – – – – –

seqkit Out of Mem. Out ofMem. Out ofMem. 40,122 23,075 18,309 [15.0×] – – –
BigSeqKit 275,680 141,095 72,110 37,140 19,810 11,477 [24.0×] 7,003 4,422 3,080 [89.5×]

that speedups of some routines are not higher when using 256 coresdue to there is a small fraction of the code that should be executedsequentially (Amdahl’s law).
While samtools and pyfastx routines are always processed se-quentially, seqkit uses a multi-threaded approach to (partly) paral-lelize some commands. However, its scalability is limited to use afew threads on a single server (computing node). This is the caseof locate. Its best speedup only reaches 11.3× (32 cores) while thisvalue increases until 19.6× with BigSeqKit. If eight nodes are used,BigSeqKit is 49.9× faster than the sequential execution.
For all the commands studied, BigSeqKit clearly outperformssamtools, pyfastx and seqkit. There are only a few cases using onecore where the speedups of these tools are slightly greater than 1.For instance, executing the faidx routine with samtools and pyfastx.

However, other commands such as sort and sample are processedfaster with BigSeqKit even using one core.
Tables from 3 to 9 display, for all the datasets, the executiontimes of BigSeqKit and the other state-of-the-art tools when run-ning faidx, locate, replace, rmdup, sample, seq and sort utilities,respectively. Speedups with respect the sequential execution ofthe corresponding BigSeqKit command are shown between brack-ets. Highlighted in blue is shown the fastest time overall and thecorresponding speedup. Note that BigSeqKit stores compressed inmemory the largest dataset D6 when using one computing nodesince it exceeds the memory capacity of an individual server (seethe Rawmemory storage option in the Background section).
For all the experiments conducted,BigSeqKit is always the fastesttool both considering a single server (one node) or several comput-
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Table 5. Execution times (seconds) using different number of cores: replace command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1seqkit 132.4 [1.02×] – – – – – – – –BigSeqKit 134.5 69.5 36.1 25.0 18.7 12.7 [10.6×] 13.1 13.6 12.5 [10.8×]D2seqkit 395.7 [1.04×] – – – – – – – –BigSeqKit 410.6 213.5 110.1 74.5 56.9 29.7 [13.8×] 16.8 13.9 13.5 [30.4×]D3seqkit 410.5 [0.99×] – – – – – – – –BigSeqKit 406.7 209.5 109.4 74.0 56.1 29.5 [13.8×] 15.3 13.6 12.9 [31.5×]D4seqkit 543.7 [1.05×] – – – – – – – –BigSeqKit 570.3 293.5 109.4 74.0 55.1 29.4 [19.4×] 20.3 13.5 12.5 [45.6×]D5seqkit 1,572.1 [1.03×] – – – – – – – –BigSeqKit 1,621.7 819.9 420.1 217.2 115.1 62.9[25.8×] 37.2 24.2 18.5 [87.7×]D6seqkit 8,980.8 [1.07×] – – – – – – – –BigSeqKit 9,620.8 5,000.3 2,605.2 1,364.2 717.7 387.5 [24.8×] 142.1 90.5 60.2 [159.8×]

Table 6. Execution times (seconds) using different number of cores: rmdup command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1seqkit 178.9 [1.01×] – – – – – – – –BigSeqKit 180.5 94.3 50.2 35.1 27.1 15.8 [11.4×] 14.8 14.4 13.8 [13.1×]D2seqkit 320.6 [1.04×] – – – – – – – –BigSeqKit 333.3 174.7 93.5 65.9 49.9 26.5 [12.6×] 15.9 14.1 [23.6×] 15.0D3seqkit 515.5 [0.91×] – – – – – – – –BigSeqKit 469.5 246.7 182.7 127.5 96.1 51.4 [9.1×] 27.4 20.9 20.6 [22.8×]D4seqkit 729.9 [0.99×] – – – – – – – –BigSeqKit 720.5 378.5 197.5 139.7 102.9 54.0 [13.3×] 30.5 16.4 14.1 [51.1×]D5seqkit 2,173.6 [0.97×] – – – – – – – –BigSeqKit 2,100.2 1,110.4 612.3 341.2 195.1 115.2 [18.2×] 70.5 43.2 28.1 [74.7×]D6seqkit 9,937.1 [1.11×] – – – – – – – –BigSeqKit 11,022.3 5,578.5 3,006.7 1,709.6 1,004.1 600.1 [18.4×] 275.2 241.6 228.8 [48.2×]

Table 7. Execution times (seconds) using different number of cores: sample command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1pyfastx 308.2 [0.67×] – – – – – – – –seqkit 196.1 [1.05×] – – – – – – – –BigSeqKit 205.7 108.2 57.8 36.4 27.1 17.3 [11.9×] 15.1 15.4 14.1 [14.6×]D2pyfastx 458.7 [1.12×] – – – – – – – –seqkit 492.4 [1.04×] – – – – – – – –BigSeqKit 514.5 271.7 143.8 98.1 76.1 42.2 [12.2×] 36.1 30.1 26.4 [19.5×]D3pyfastx 450.2 [0.88×] – – – – – – – –seqkit 491.7 [0.80×] – – – – – – – –BigSeqKit 394.3 207.8 105.2 70.5 52.7 26.1 [15.1×] 22.1 19.2 14.3 [27.6×]D4pyfastx 1,929.1 [0.99×] – – – – – – – –seqkit 1,996.7 [0.96×] – – – – – – – –BigSeqKit 1,912.8 1,000.5 529.3 365.8 283.4 156.3 [12.2×] 90.4 56.2 36.5 [52.4×]D5pyfastx 1,567.7 [0.71×] – – – – – – – –seqkit 1,057 [1.06×] – – – – – – – –BigSeqKit 1,121.5 572.3 299.4 164.2 91.3 52.4 [21.4×] 33.6 25.1 22.5 [49.8×]D6pyfastx 9,507.7 [1.16×] – – – – – – – –seqkit 9,550 [1.16×] – – – – – – – –BigSeqKit 11,070.2 5,539.5 2,812.3 1,543.6 876.2 515.9 [21.5×] 202 143.2 109.5 [101.1×]

ing nodes. In any case, let’s take a look in detail of the behavior foreach command: • faidx (Table 3): BigSeqKit speedups range from 5.4× to 27.4×considering a single server (32 cores), and from 7.2× to 144×with 8 nodes. It means, for example, building the index file
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Table 8. Execution times (seconds) using different number of cores: seq command. Highlighted in blue, fastest time and number of times faster thansequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1pyfastx 151.8 [0.56×] – – – – – – – –seqkit 234.4 [0.36×] – – – – – – – –BigSeqKit 84.4 43.5 22.5 11.6 6.3 4.8 [17.6×] 4.7 3.7 3.5 [24.1×]D2pyfastx 209.4 [1.15×] – – – – – – – –seqkit 234.0 [1.03×] – – – – – – – –BigSeqKit 240.9 128.5 65.0 34.6 19.5 10.7 [22.5×] 6.1 4.3 4.0 [60.2×]D3pyfastx 400.5 [0.90×] – – – – – – – –seqkit 541.2 [0.67×] – – – – – – – –BigSeqKit 360.2 182.7 93.4 48.1 27.1 20.2 [17.8×] 8.6 5.1 [65.5×] 5.5D4pyfastx 901.2 [1.13×] – – – – – – – –seqkit 981.7 [1.03×] – – – – – – – –BigSeqKit 1,014.7 508.8 257.1 129.1 66.3 36.6 [27.7×] 22.5 15.2 10.6 [95.7×]D5pyfastx 1,051.4 [0.94×] – – – – – – – –seqkit 1,165.5 [0.85×] – – – – – – – –BigSeqKit 987.6 500.2 259.1 135.9 73.6 41.5 [23.8×] 26.1 17.9 16.2 [60.9×]D6pyfastx 7,657.6 [1.23×] – – – – – – – –seqkit 9,080.5 [1.04×] – – – – – – – –BigSeqKit 9,420.3 4,712.1 2,400.3 1,323.4 755.5 430.3 [21.9×] 110.3 70.2 55.5 [169.7×]

Table 9. Execution times (seconds) using different number of cores: sort command. Highlighted in blue, fastest time and number of times fasterthan sequential BigSeqKit.
1 2 4 8 16 32 64 (2 nodes) 128 (4 nodes) 256 (8 nodes)D1samtools 1,590.3 [0.10×] – – – – – – – –seqkit 169.0 [0.97×] – – – – – – – –BigSeqKit 164.4 86.2 46.2 33.5 24.2 14.5 [11.3×] 13.8 13.5 12.9 [12.7×]D2samtools 1,672.5 [0.25×] – – – – – – – –seqkit 1,050.5 [0.40×] – – – – – – – –BigSeqKit 422.8 221.6 117.6 81.7 62.1 34.9 [12.1×] 21.5 15.8 13.2 [32.0×]D3samtools 1,203.5 [0.44×] – – – – – – – –seqkit 497.5 [1.05×] – – – – – – – –BigSeqKit 523.8 272.5 144.2 100.7 77.6 43.2 [12.1×] 26.5 18.6 15.8 [33.1×]D4samtools 3,835.1 [0.36×] – – – – – – – –seqkit 3,122.2 [0.44×] – – – – – – – –BigSeqKit 1,377.3 708.5 372.5 243.7 171.5 94.6 [14.6×] 57.6 46.0 36.0 [38.3×]D5samtools 1,899.6 [0.85×] – – – – – – – –seqkit 3,350.4 [0.48×] – – – – – – – –BigSeqKit 1,612.4 839.2 443.2 239.2 137.2 84.2 [19.1×] 53.4 40.2 39.2 [41.1×]D6samtools Out of Mem. – – – – – – – –seqkit Out of Mem. – – – – – – – –BigSeqKit 18,309.6 9,439.6 4,899.2 2,592.8 1,444.4 839.7 [21.8×] 215.8 165.3 139.6 [131.1×]

for our largest dataset D6 (395 GB) in just 5.8 minutes (singleserver), while samtools and pyfastx require about 2.1 hours. Thistime decreases to one minute when BigSeqKit uses 8 nodes. Asmentioned previously, the faidx routine in seqkit does not sup-port FASTQ files (D2, D4 and D6).• locate (Table 4): the searching routines, grep and locate, arevery expensive in terms of computations. Note that consider-ing sequential processing, locate takes more than 3 hours toprocess our smallest dataset D1 independently of the tool con-sidered. This time increases to more than 3 days of computationfor D6. seqkit has a multi-thread version of locate, which ob-tains speedups from 10.5× to 18.8×. These speedups are alwayslower to the ones obtained by BigSeqKit on a single server. It isimportant to highlight that seqkit raises an out of memory errorwhen processing D6 with 1, 2 and 4 cores. On the other hand,when using 8 nodes, BigSeqKit achieves noticeable speedups upto 104.1×. In this way, it is able to reduce the time necessary toexecute the locate command with our largest dataset D6 from

3 days to only 0.8 hours.• replace (Table 5): this routine (or an equivalent) is not sup-ported by samtools and pyfastx. In this case, BigSeqKit is fromtens to hundreds of times faster than seqkit, reaching speedupsup to 159.8×.• rmdup (Table 6): this routine is also not supported by samtoolsand pyfastx. In this case, BigSeqKit is tens of times faster thanseqkit, achieving a maximum speedup of 74.7× when removingthe duplicated sequences in D5.• sample (Table 7): operation not supported by samtools. BigSeqKitis again faster than the other tools, increasing the speedups asthe input datasize grows. It can be observed that BigSeqKit isable to sample sequences in seconds. For instance, pyfastx andseqkit take about 3 hours to process D6, while BigSeqKit requiresjust 2 minutes.• seq (Table 8): operation not supported by samtools. Performanceresults are similar to the sample ones in such a way thatBigSeqKitfilters sequences by ID in few seconds, achieving a noticeable



10 | GigaScience, 2017, Vol. 00, No. 0

speedup of 169.7×. It should be noted that among the routinesexamined in this study, seq is the least computationally demand-ing.• sort (Table 9): this routine was not included in pyfastx. In gen-eral, the performance of samtools and seqkit is poor. And, mostimportantly, both tools produce memory errors when process-ing the largest dataset D6, so it cannot be sorted. However,BigSe-qKit sorts D6 21.8× and 131.1× faster than the sequential versionusing a single server and 8 computing nodes, respectively. Itmeans that the time decreases from 5 hours to barely 2 minutes.
Finally, we must highlight that one of the main reasons for thedifferences in the speedups between datasets running the samecommand with BigSeqKit is the load balance between threads. It willdepend on the characteristics of the dataset: number of sequencesand their length.

Conclusions
Current state-of-the-art tools such as seqkit, pyfastx and samtoolsare not ready for processing and manipulating very large FASTAand FASTQ files because all of them are mainly based on sequen-tial processing. To that end, we have presented BigSeqKit, whichparallelizes and optimizes the seqkit routines using the IgnisHPCcomputing framework. Since seqkit was programmed in Go, Ig-nisHPC was extended to support that language. As a consequence,IgnisHPC is nowadays the first parallel computing framework thatsupports Go. BigSeqKit can be easily installed on a local server oron a cluster. In addition, it can be used from the command line oras a library. Thanks to the multi-language support of IgnisHPC,BigSeqKit routines can be called from C/C++, Python, Java and Gocodes.Regarding the experimental results, BigSeqKit clearly outper-forms seqkit, pyfastx and samtools for all the tasks considered. Ona single server, BigSeqKit is overall tens of times faster than thosestate-of-the-art tools, reaching speedups with respect to the Big-SeqKit sequential time up to 27.7×. Considering an 8-nodes cluster,BigSeqKit is even faster, reaching speedups higher than 160×. Itmeans that most of the tasks can be performed in just a few seconds.For instance, our toolkit effectively reduces the execution time ofthe locate command on our largest dataset from 3 days to a mere0.8 hours. It is important to highlight that seqkit and samtoolswereunable to process that dataset with some routines due to memoryissues, which confirms that current state-of-the-art tools are notwell fitted for processing very large files.As future work we plan to add also the remainder seqkit com-mands not included in the current version of BigSeqKit: sliding,
sana, fx2tab, tab2fx, convert, amplicon, fish, split, split2,
restart and mutate. Note that all of them are independent routines,so their implementation using IgnisHPC will be straightforward.
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