GigaScience

BigSeqKit: a parallel Big Data toolkit to process FASTA and FASTQ files at scale

Manuscript Number:
Full Title:
Article Type:

Funding Information:

Abstract:

Corresponding Author:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:

First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

Response to Reviewers:

--Manuscript Draft--

GIGA-D-23-00061R2
BigSeqKit: a parallel Big Data toolkit to process FASTA and FASTQ files at scale

Technical Note

Ministerio de Ciencia e Innovacion Not applicable
(PLEC2021-007662)

Xunta de Galicia Not applicable
(ED431G/08)

Xunta de Galicia Not applicable
(ED431G-2019/04)

Xunta de Galicia Not applicable
(ED431C 2018/19)

Xunta de Galicia Not applicable
(ED431F 2020/08)

Horizon 2020 Framework Programme Dr César Pifieiro
(HPC-EUROPAS - INFRAIA-2016-1-

730897)

European Regional Development Fund Not applicable

Background. High-throughput sequencing technologies have led to an unprecedented
explosion in the amounts of sequencing data available, which are typically stored using
FASTA and FASTQ files. We can find in the literature several tools to process and
manipulate those type of files with the aim of transforming sequence data into
biological knowledge. However, none of them are well fitted for processing efficiently
very large files, likely in the order of terabytes in the following years, since they are
based on sequential processing. Only some routines of the well-known seqkit tool are
partly parallelized. In any case, its scalability is limited to use few threads on a single
computing node.

Results. Our approach, BigSegKit, takes advantage of an HPC-Big Data framework to
parallelize and optimize the commands included in seqkit with the aim of speeding up
the manipulation of FASTA/FASTQ files. In this way, in most cases it is from tens to
hundreds of times faster than several state-of-the-art tools. At the same time, our
toolkit is easy to use and install on any kind of hardware platform (local server or
cluster), and its routines can be used as a bioinformatics library or from the command
line.

Conclusions. BigSeqKit is a very complete and ultra-fast toolkit to process and
manipulate large FASTA and FASTQ files. It is publicly available at:
https://github.com/citiususc/BigSeqKit

Juan Carlos Pichel
Universidade de Santiago de Compostela
Santiago de Compostela, SPAIN

Universidade de Santiago de Compostela

César Pineiro

César Pineiro

Juan Carlos Pichel

We would like to thank again the reviewers and editors for their insightful comments

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

and suggestions about the paper.
Additional Information:

Question Response

Are you submitting this manuscript to a No
special series or article collection?

Experimental design and statistics Yes

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources Yes

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials Yes

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Manuscript

(GlgA)”
CIEN%.E

PAPER

Click here to k4
access/download;Manuscript;BigSeqKit_GigaScience_final.pdf

GigaScience, 2017, 1-11

Manuscript in Preparation
Paper

César Pifieiro”L* " and Juan C. Pichel “1,*

!CiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

* cesaralfredo.pineiro@usc.es; juancarlos.pichel @usc.es
fCorresponding author

Background. High-throughput sequencing technologies have led to an unprecedented explosion in the amounts of sequencing
data available, which are typically stored using FASTA and FASTQ files. We can find in the literature several tools to process and
manipulate those type of files with the aim of transforming sequence data into biological knowledge. However, none of them are
well fitted for processing efficiently very large files, likely in the order of terabytes in the following years, since they are based on
sequential processing. Only some routines of the well-known seqkit tool are partly parallelized. In any case, its scalability is limited
to use few threads on a single computing node. Results. Our approach, BigSeqKit, takes advantage of an HPC-Big Data framework
to parallelize and optimize the commands included in seqkit with the aim of speeding up the manipulation of FASTA/FASTQ files.
In this way, in most cases it is from tens to hundreds of times faster than several state-of-the-art tools. At the same time, our
toolkit is easy to use and install on any kind of hardware platform (local server or cluster), and its routines can be used as a
bioinformatics library or from the command line. Conclusions. BigSeqKit is a very complete and ultra-fast toolkit to process and
manipulate large FASTA and FASTQ files. It is publicly available at: https://github.com/citiususc/BigSeqKit.

Key words: FASTA/FASTQ files; Performance; Parallelism; Big Data

The history of modern DNA sequencing started several decades ago,
and since then, has seen astounding growth in sequencing capac-
ity and speed. From the first genomes with a few thousand bases,
DNA sequencing has advanced to sequence the human genome of 3
billion bases. In recent years, next-generation sequencing (NGS)
technology, also known as massive parallel sequencing (MPS), has
made it possible to expand the amount of sequencing data available.
For example, the Illumina NovaSeq 6000 [1] platform can gener-
ate a maximum output of 6 Tb of data and read about 20 billion
sequences per run. Note that sequences, commonly named reads,
are composed of ASCII characters representing a nucleotide (base)
from the sequence. In the DNA case, we can only find four possible
bases (A - adenine, C - cytosine, G - guanine and T - thymine).
The NGS raw data are mainly stored in FASTA [2] and FASTQ [3]
text-based file formats. In particular, nucleotide and protein se-
quences are typically stored in the FASTA file format, whereas
FASTQ is the most widely used format for sequencing read data.

An example of FASTA file is shown in Figure 1. A sequence in FASTA
format begins with a single-line description about the sequence in
the subsequent lines. The description line is distinguished from
the sequence data by a greater-than (>) symbol at the beginning.
On the other hand, the FASTQ format was designed to handle the
quality metrics of the sequences obtained from the sequencers. In
FASTQ every four lines describe a sequence or read. An example is
displayed in Figure 2. The information provided per read is: identi-
fier and an optional description (first line), sequence (second line),
and the quality score of the read (fourth line). An extra field, repre-
sented by symbol ‘+’, is used as separator between the data and the
quality information (third line).

Manipulating these files efficiently is essential to analyze and
interpret data in any genomics pipeline. Common operations on
FASTA and FASTQfiles include searching, filtering, sampling, dedu-
plication and sorting, among others. We can find several tools in
the literature for FASTA/Q file manipulation such as HTSeq [5],
FASTX (6], fqtools [7], seqtk [8], Biopython [9], samtools [10], py-
fadix [11], pyfastx [12] and seqkit [13]. These tools can be classified

Compiled on: July 6, 2023.
Draft manuscript prepared by the author.

+

https://orcid.org/0000-0001-6490-7128
https://orcid.org/0000-0001-9505-6493
https://github.com/citiususc/BigSeqKit
https://www.editorialmanager.com/giga/download.aspx?id=157494&guid=23181095-7aa0-4300-8b91-ef6cc3203bb6&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=157494&guid=23181095-7aa0-4300-8b91-ef6cc3203bb6&scheme=1

>NG_008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCTCTTTTCTTATCATTGACATTTAAACTCTGGGGCAGGTCCTCGCGTAGAACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCCCGGGCTCCGGCCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTAARAAG
GAGGCATACAAAGATGGAAGCGAGTTACTGAGGGAGGGATAGGAAGGGGGGTGGAGGAGGGACTTGTCTT
TGCCGAGTGTGCTCTTCTGCAAAAGTAGCAAAATGTTCCACTCCTAAGAGTGGACTTCCAGTCCGGCCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGTCTGCTAAAGCCACTCGCGACCGCGAAAAATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTCACGACATCCACGCTTGGGAAAG
TCCGTACCCGCGCCTGGAGCGCTTAAAGACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCARAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGARAGACGC

Figure 1. Example of FASTA file showing the first part of the PAX6 gene (obtained
from (4]).

|dentifier ———] GHWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1
Sequence 4' TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNNTAGTITCTTGAGA
+sign & idemiﬂer{ +HWI-EAS209_0006_FC706VJ:5:58:5894:211414ATCACG/1

Quality scores—] efcfffffcfeefffcffffffddf feed] ']_Ba_"__ [YBBBBBBBBBBRTT\|]

—5
Base T
phred Quality] =29

[ldddd"

Figure 2. Example of FASTQ file format (obtained from [4]).

according to how the sequences are parsed [12]. In the first category
sequences are processed in order, which causes important over-
heads when extracting and randomly sampling sequences. That is
the case of HTSeq, FASTX, fqtools and seqtk. In the second category
we find tools that support random access to sequences by establish-
ing an index file. Tools belonging to this category are more efficient
in terms of performance and memory consumption. However, none
of them are well fitted for processing very large files of hundreds of
GB (likely TBs in the near future) since they are based on sequential
processing. The exception is seqkit that allows some routines to use
a few threads but, in any case, its scalability is very limited.

To deal with this issue, in this paper we introduce BigSeqKit, a
parallel toolkit to manipulate FASTA and FASTQ files at scale with
speed and scalability at its core. BigSeqKit takes advantage of Ig-
nisHPC [14, 15], a computing engine that unifies the development,
combination and execution of HPC and Big Data parallel tasks using
different languages and programming models. As it was demon-
strated, IgnisHPC outperforms the state-of-the-art framework
Spark [16] in terms of performance and scalability running appli-
cations that represent the most typical algorithmic patterns in Big
Data and scientific computing.

BigSeqKit uses the seqkit routines as basis since that toolkit cov-
ers a wide range of utilities and is one of the most used by the bioin-
formatics research community. As a consequence, BigSeqKit will
offer the same functionalities and command interface [17]. BigSe-
gKit can be used from the command line, but it is at the same time
alibrary, so its routines can also be called from a C/C++, Python,
Go or Java application.

Another important characteristic of BigSeqKit is that it is fully
containerized, which isolates the execution environment from the
physical system and avoids dependency problems. As a conse-
quence, BigSeqKit is very easy to install and can run on a local server
or on any type of cluster since it supports some of the most impor-
tant resource and scheduler managers (e.g., Mesos [18], Nomad [19]
and Slurm [20]).

IgnisHPC [14, 15] unifies the execution of Big Data and HPC work-
loads in the same computing engine. Unlike other frameworks
such as Hadoop [21] and Spark [16], IgnisHPC has native support
for multi-language applications using both JVM (Java Virtual Ma-
chine) and non-JVM-based languages. In this way, applications
can be implemented using one or several programming languages
following an API inspired by Spark’s one.

The previous version of IgnisHPC supported natively C, C++,
Java and Python. However, seqkit was implemented using the Go

Table 1. Some of the most important IgnisHPC API functions.

map, flatmap, mapWithIndex, filter, keyBy,

Map s
keys, values, mapPartitions, mapValues, etc.
reduce, treeReduce, aggregate,

Reduce treeAggregate, reduceByKey, aggregateByKey,
etc.

Group groupBy, groupByKey

Sort sort, sortBy, sortByKey

parallelize,collect, top, take,
1/0 saveAsObjectFile, saveAsTextFile,
saveAsJsonFile, etc

SQL union, join, distinct
sample, sampleByKey, take, takeSample,

Math count, countByKey, countByValue, max, min,
etc.

Balancing repaz.:'t:?.tion, partitiont'(Hésh,
partitionByRandom, partitionBy

Persistence persist, cache, unpersist, uncache

programming language. Since BigSeqKit parallelizes and optimizes
the seqkit routines using IgnisHPC, it was necessary to add support
for this language in the framework. Other solution would require
to port the complete toolkit to a different language, which is a diffi-
cult and prone to errors task. It is worth noting that, to the best of
our knowledge, nowadays IgnisHPC is the first parallel computing
framework to include native support for this language. Consider-
ing Spark instead of IgnisHPC is not an option because, as it was
demonstrated in [14], when using a non-native language code, data
transfers between the JVM and external processes degrade notice-
ably the Spark’s overall performance.

Go is a programming language with a simple syntax that was
designed to be easy tolearn and use. With the release of Go v1.18, the
language included support for Generics, which allows the creation
of functions, types, and methods that can work with any data type.
This makes Go an effective and user-friendly way to implement Big
Data interfaces. The implementation of Go in IgnisHPC is similar
to that of C++, as both are compiled and statically typed languages.
However, Go replaces the concept of inheritance with composition,
which does not change the philosophy of use in IgnisHPC. Big Data
functions are still accessible through the IgnisHPC API, and users
can create their own code by implementing the same interfaces.

One of the key features of IgnisHPC is its use of containers to
isolate and execute code. Containers are lightweight and portable,
making it easy to run IgnisHPC on a variety of different clusters
including both HPC (High-Performance Computing) and Big Data.
IgnisHPC is also tolerant to failures, as the containers or processes
can be easily restarted if there are issues. In particular, if some
data is lost, IgnisHPC has enough information about how it was
derived. In this way, only those operations needed to recompute
the corresponding portion of data are performed.

We must highlight that although the IgnisHPC API [22] uses a
sequential notation, operations on data are performed in parallel.
As we pointed out, the IgnisHPC API was inspired by the Spark API
in such a way that IgnisHPC codes are easily understandable by
users who are familiar with Spark. Table 1 shows a list of some of
the most important functions supported by IgnisHPC. In particular:

+ Map functions: The common characteristic to routines belonging
to this type is that they apply the same function to each element
in the data. As a result of the transformation, the output could
be of different size with respect to the input.

+ Reduce functions: reduce and treeReduce methods aggregate all
the elements in the input data using a function. aggregate and
treeAggregate are a sort of reduction where the type of the in-
put and output data is different. In this case two functions are
necessary, the first one is applied to each element in a data par-

tition, and the second one combines the partial results obtained
for each partition. reduceByKey and aggregateByKey are varia-
tions where the operation is performed only among elements
with the same key in such a way that the final result is a set of
unique pairs with values calculated using reduce or aggregate
operations, respectively.

Group functions: These methods group elements in a data frame

according to their key value (groupByKey) or a user-defined func-

tion (groupBy).

- Sort functions: In order to sort elements, IgnisHPC provides three
functions: sort, sortByKey and sortBy. The first method uses
the natural order and does not need any additional function.
sortByKey sorts the keys using their natural order. sortBy al-
lows to use a user-defined function to specify the order of the
elements. If the result of applying that function to two elements
is true, then the first element should precede the second one. All
methods support ascending and descending order.

+ SQL functions: These functions operate on data frames. union
concatenates two data frames, join merges elements of two
data frames whose keys match, and distinct returns a new data
frame after removing the duplicate records. These methods are
necessary, for example, in many graph processing problems.

- Other functions: IgnisHPC implements several operations that
return a value to the driver code, but they do not modify or gen-
erate new stored data. Spark refers to this type of operations
as actions. For instance, IgnisHPC supports methods such as
count, take, takeSample and collect. The most basic operation
is count that returns the number of elements of a stored data col-
lection. collect returns a collection with all the elements stored
in the executors of a task. take applies a collect operation but
obtains only the first n elements, where n is chosen by the user.
takeSample returns a random sample of n elements from the
distributed data, with or without replacement. Finally, another
interesting routine is parallelize, which distributes the ele-
ments of a collection among the executors to form a distributed
dataset. In this case new stored data is created.

It is worth noting that the IgnisHPC API functions allow users
to parallelize a code with a high level of abstraction. In this way, it
is only necessary to focus on data dependencies.

As we commented previously, BigSeqKit (RRID:SCR_023592) speeds
up the seqkit routines through parallelization and optimization
techniques. Table 2 shows the routines supported by the current
version of BigSeqKit. Despite most of the commands in seqkit are
sequential, we can classify each command implementation into
three categories according to its inherent parallelism:

- Independent: it is a embarrassingly parallel workload. As a con-
sequence, the computation could be applied to all sequences
in parallel. An example is seq, a function that transforms se-
quences. In this case, the transformation only affects each se-
quence individually.

- Partially dependent: computations could be done in parallel, but
the method requires some type of consensus to obtain the result.
For instance, stats should merge the partial results computed
for each sequence to calculate some statistics of the considered
FASTA/Q file.

- Dependent: dependencies between sequences prevent the
method from being executed in parallel. As a consequence,
BigSeqKit requires a complete new algorithm to perform the
same command in parallel. rmdup is a good example because
with the aim of removing duplicated sequences it is necessary
to read all of them before generating a result.

The integration, parallelization and optimization of each seqkit
command in IgnisHPC will be different depending on its category.
More details are provided below.

For these commands the computation can be applied to all se-
quences in parallel because there are no dependencies (communi-
cation) among them. In other words, routines belonging to this cat-
egory can be processed using an embarrassingly parallel approach.
Considering the IgnisHPC (and Spark) AP]I, it is only necessary to
use map functions to parallelize the computations. As we pointed
out, the common characteristic to these API functions is that they
apply the same operation to each element in the data.

The following BigSegKit commands belong to this category: seq,
subseq, stats, fq2fa, fa2fq, translate, grep, locate, duplicate
and replace (see Table 2 for details).

As we mentioned, this category includes commands in which com-
putations can be done in parallel using map functions, but the meth-
ods require some type of consensus to get the desired outcome. This
consensus can be easily implemented using the IgnisHPC API. The
following BigSeqKit commands belong to this category:

- stats: statistics can be generated in parallel but the final result
must be unique, so all partial results must be merged using a
reduction (reduce operation in the IgnisHPC API).

+ head: sequences should know their position inside the file to
check if they are inside the head window. To do that, it is nec-
essary to use mapWithIndex, a special map operation included in
the IgnisHPC API that allows each element to know its global
index within a data structure.

+ head-genome: similar to head, but not all sequences are valid.
In order to determine the window, invalid sequences must be
removed first.

+ range: also similar to head. Sequences should know their posi-
tion inside the file to check if they are within the range window.

- grep: although this command was included in the previous cat-
egory, a command option (-delete-matched) limits the number
of results to just one per search pattern. In such cases, it is
necessary to remove the extra results.

+ faidx: also similar to head, sequences compute their offsets in-
side the input file using mapPartitionWithIndex and exchange
the information between executors to perform a parallel index-
ing operation with a simple map.

Commands belonging to this category have an implementation in
seqkit that by its nature cannot be parallelized. However, IgnisHPC
allows us to define the implementation at a high level, which in-
creases noticeably the productivity. Behaviors and functionalities
will be preserved in BigSeqKit but through a complete new parallel
implementation. In particular:

- sample: a sequential sampling can be performed in parallel if
we split the sequences and run a sample for each partition. It
was mathematically proven that sampling without replacement
follows a hypergeometric function [23]. In this way, we can
calculate the proportion of the sample that corresponds to each
partition.

+ rmdup: sequences are grouped (groupBy API function) using a
hash with the ID, name or sequence. In those groups containing
more than one element, a search for duplicates is carried out to

Table 2. List of commands included in both BigSeqKit and seqkit. Those commands with an asterisk support new functionalities not included in seqkit.

seq Transform sequences (extract ID, filter by length, remove gaps, reverse complement, etc.)
subseq Get subsequences by region/gtf/bed, including flanking sequences
stats Simple statistics of FASTA/Q files: #seqs, min/max length, N50, Q20%, Q30%, etc.
faidx* Create FASTA or FASTQ index file and extract subsequences
fa2fq Retrieve corresponding FASTQ records by a FASTA file
fq2fa Convert FASTQ file to FASTA format
translate Translate DNA/RNA to protein sequence
grep Search sequences by ID/name/sequence/sequence motifs
locate Locate subsequences/motifs
sample Sample sequences by number or proportion
rmdup Remove duplicated sequences by ID/name/sequence
common Find common sequences of multiple files by ID/name/sequence
duplicate Duplicate sequences N times
head Print first N FASTA/Q records
head-genome Print sequences of the first genome with common prefixes in name
pair Match up paired-end reads from two FASTQ files
range Print FASTA/Qrecords in a range (start:end)
concat Concatenate sequences with the same ID from multiple files
replace Replace name/sequence using a regular expression
rename Rename duplicated IDs
sort Sort sequences by ID/name/sequence/length
shuffle Shuffle sequences
remove them. that the fact of splitting the input files between several computing

- pairand concat: sequences of the input files generate key-value
pairs where the key is the ID and the value is the sequence with
its index file (map). Pairs are unified by means of union and
grouped using groupByKey. Afterwards, sequences in the same
group are paired or concatenated if they belong to different files.

- common: the first stage of the command is the same one explained
above for pair and concat. Then if a sequence can be found in
all files, we check its index file, to avoid its deletion.

- rename: sequences are grouped (groupBy) using their ID, then
IDs in the same group are renamed.

- sort: the sequential sort algorithm implemented in seqkit is
replaced by a sample MergeSort [24] algorithm that can be effi-
ciently executed in parallel in a distributed environment.

- shuffle: sequences shuffling can be implemented using the
IgnisHPC API function partitionByRandom.

In order to parallelize and integrate the segkit routines into Ig-
nisHPC it was necessary to start considering the sequence parser.
It takes a stream of characters in FASTA and FASTQ format and
generates a data structure with the sequence representation. In
segkit, this stream can be represented by a file or the standard in-
put. In BigSeqKit, this stream is implemented using the IgnisHPC
iterators, which grant the users access to the data partitions. In this
way, BigSeqKit will read the data from a file and split it in multiple
partitions, which facilitates their parallel processing. In particular,
each worker reads a portion of the input file, so the I/O operation
is performed in parallel. There is one worker per computing node.
Within each worker, its portion of the file is further divided among
the available threads, improving the overall I/O performance. As a
result, the seqkit command arguments that affect file processing
will have no effect in BigSeqKit. For example, the -two-pass option,
which reads a file multiple times instead of storing all the sequences
in memory, does not make sense in BigSeqKit. We must highlight

nodes in BigSeqKit means that the memory consumed by node is
also split, which allows our tool to work with larger datasets. In ad-
dition, BigSeqKit also reduces the memory footprint by only storing
the IDs and indices of each sequence.

Another important advantage of using IgnisHPC is how memory
is handled. Users can choose a type of storage according to their
particular case. For instance, if an input file is too large to be kept
completely in the server memory, it could be stored compressed
in memory or in disk. Performance would be lower, but it could be
successfully processed. That scenario is not considered by seqkit
that simply would raise an "out of memory" error. In particular,
BigSeqKit supports the following storage options:

+ In-Memory: it is the best performer since all data is stored in
memory. It is the default option.

+ Rawmemory: data is stored ina memory buffer using a serialized
binary format. Extra memory consumption is minimal and the
buffer is compressed by Zlib.

Disk: similar to raw memory but the buffer is stored as a POSIX
file. Although the performance is significantly worse, it enables
working with vast amounts of data that cannot be entirely kept
in memory.

On the other hand, rmdup, common and pair commands in seqkit
use hash functions to check duplicates. It is well-known that hash
functions can produce the same result for different values. This
event is commonly known as a hash collision. However, seqkit does
not check for collisions, so it is possible to generate incorrect re-
sults. BigSegKit uses hashes to group sequences but then checks for
collisions by comparing the real values.

Finally, seqkit and other state-of-the-art tools build index files
(faidx routine) to speed up some other tasks (e.g., searches). Al-
though BigSeqKit is also capable of creating those index files, it
does not require them to improve its performance since data within
IgnisHPC is already indexed. In other words, the index is created

while reading the input file.

BigSeqKit not only enables the parallelization of seqkit functions, but
also improves its algorithms to provide benefits even for sequential
executions and includes additional functionalities. In particular, the
faidx command in seqkit implements indexing of FASTA files using
the samtools format, but FASTQ files are not supported. BigSeqKit
adds support for this type of files and generates an index file using
the samtools format as well. Note that this is the most widespread
format and is also supported by other state-of-the-art tools. There-
fore, BigSeqKit allows indexing of both FASTA and FASTQ files using
the same syntax than seqkit.

BigSeqgKit can be used in two different ways. The first one is by
means of a command-line interface (CLI). This approach is similar
to the “command subcommand” structure adopted by seqkit [13].
In this way, it is only necessary to select a subcommand or routine
(seeacomplete list in Table 2) and pass its arguments through com-
mand line. As we mentioned previously, to improve the usability
and facilitate the adoption of BigSeqKit, it implements the same
command interface than seqkit.

Since BigSegKit runs within the IgnisHPC framework, it is
necessary to send the BigSeqKit routine through the IgnisHPC
submitter. For instance, if we are running BigSegKit on a local
server, the following expression uses the routine seq to print the
name of the sequences included in a FASTA file to an output file:

ignis-submit ignishpc/full bigseqkit seq -n -o names.txt
input-file.fa

Therefore, the syntax should be: ignis-submit ignishpc/full
bigseqkit <cmd> <arguments>.

In addition, users can also specify through arguments the
number of instances, cores and memory (in GB) to be used in the
execution. By default, those values are set to 1. For example, we can
execute the previous command using 2 cores:

ignis-submit ignishpc/full -p ignis.executor.cores=2

bigseqkit seq -n -o names.txt input-file.fa

Unlike the other state-of-the-art tools, BigSeqKit can also be ex-
ecuted on a parallel cluster. Typical HPC clusters has Slurm [20] as
the preferred resource manager, and Singularity [25] as container-
based technology. In this case, users will send the job using the
ignis-slurm submitter instead of ignis-submit.

On the other hand, BigSeqKit can also be used as a bioinformatics
library. It is worth noting that BigSeqKit was implemented in Go
language. However, thanks to the multi-language support provided
by IgnisHPC, it is possible to call BigSegKit routines from C/C++,
Python, Java and Go applications without additional overhead. An
example of Python code is shown in Figure 3. This example is equiv-
alent to the previous one used in the explanation of the CLI. Since
BigSeqKit has been created as a library, it only needs to be imported
to be used. Functions in BigSeqKit do not use files as input, they use
DataFrames instead, an abstract representation of parallel data used
by IgnisHPC (similar to RDDs in Spark). Parameters are grouped in
a data structure where each field represents the long names of a pa-
rameter. We must highlight that BigSegKit functions can be linked
(like system pipes using “|”), so the DataFrame generated by one
can be used as input to another. In this way, integrate BigSeqgKit
routines in a more complex code is really easy.

1| import ignis
2| import bigseqgkit
ignis.Ignis.start()

3
4| # Initialization of the framework
5
6

Resources/Configuration of the cluster

7| prop = ignis.IProperties()

8| prop["ignis.executor.image"] = "ignishpc/go"
9| prop["ignis.executor.instances"] = "1"

10| prop["ignis.executor.cores"] = "2"

u| prop["ignis.executor.memory"] = "1GB"

12| # Construction of the cluster

13| cluster = ignis.ICluster(prop)

| # Initialization of a Go Worker

15| worker = ignis.IWorker(cluster, "go")
16| # Sequence reading

17| seqs = bigseqkit.readFASTA("file.fa", worker)
18| # Obtain Sequence names

19| names = bigseqgkit.seq(seqs, name=True)
20| # Save the result

21| names.saveAsTextFile("names.txt")

22| # Stop the framework

3| ignis.Ignis.stop()

Figure 3. Example of Python code using the BigSeqKit routines.

The code starts initializing the IgnisHPC framework (line 5 in
the figure). Next, a cluster of containers is configured and built
(lines from 7 to 15). Multiple parameters can be used to configure
the environment such as image, number of containers, number of
cores and memory per container. In this example, we will use 1 node
(instances) and 2 cores by node. After configuring the IgnisHPC
execution environment, the BigSeqKit code actually starts. First, we
read the input file (line 17). There is a different function for reading
FASTA and FASTQ files. All the input sequences are stored as a
single data structure. The next stage consists of printing the name
of the sequences included in the FASTA file (line 19). The function
takes as parameters the sequences and the options that specify its
behavior. Finally, the names of the sequences are written to disk.
It is important to highlight that lazy evaluation is performed, so
functions are only executed when the result is required to be saved
on disk.

In this section we analyze the performance results obtained by
BigSeqKit with respect to other state-of-the-art tools. In particular,
we have considered samtools, pyfastx and seqkit for their perfor-
mance and number of commands supported. Experiments were
conducted using up to 8 computing nodes of the FinisTerrae III [26]
supercomputer installed at CESGA (Spain). Each node contains a
32-core Intel Xeon Ice Lake 8352Y @2.2GHz processor and 256 GB
of memory interconnected with Infiniband HDR 100. It is a Linux
cluster running Rocky Linux v8.4 (kernel v4.18.0). We have used
SingularityCE v3.9.7 (containers), IgnisHPC v2.2, pyfastx v0.8.4,
samtools v1.16.1 and seqkit v2.3.1 (with Slurm as cluster manager
and Lustre as distributed file system).

The performance evaluation was carried out using as input six
different FASTA/FASTQ files that cover a wide variety of character-
istics and sizes. The main features of these files are the following:

+ Dp (m64013e_210227_222017.hifi_reads - FASTA - 24 GB):
Number of sequences: 1.2M, Minimum length: 85, Average
length: 19.7K, Maximum length: 48.5K.

+ D, (SRR642648_1.filt - FASTQ - 24.1 GB):

Number of sequences: 98.7M, Minimum length: 100, Average
length: 100, Maximum length: 100.

102 102 10
Mlisamools | faidx Oivfasx | 1ocate Eliseqkit r 1
[Cpyfastx Il seqkit igSeqKit eplace
I BigSeqKit lBigSeqKit
o o o
'g 1 3 1ol -g 1
© 10 8 10 o 10
[} 0] 9]
o o o
0) n
10° I‘. I 10° 10°
Bo a0 A o () o) ARG LR CHE e I S «5’L 0 e
o0 o0 oo 0" o 00
Cores 6&@ %\u@%@ Cores 6‘&@ %\‘&fﬁ\‘b Cores 6&@ %\l&f)@@
10" e d 0 1 10*
seqkit rm pyfastx sam e [pyfastx
Il BigSeqKit up Il seqkit p Il seqkit
Il BigSeqKit [l BigSeqKit
=% o o
3 10! 3 10! 3.1
@ 10 © 10 8 10
)) Ja}
o o o
n 2] n
10° 10° 1o°£. I
S N RPN R) 625“\ 4> e R T R RN R 2 (\eﬁ\‘\o(\eﬁ\‘\o(\eﬁ\ b @ A0 qﬂ, ee\ ee) 4
o ©
Cores ,-Lq,\”‘ e Cores bu(L o ® Cores &u@ %\“ @®
102
WElsamtools | SOYXt
Il seqkit
Il BigSeqgKit
S0t
S aatl
5 10
ja}
)
o
%]

R

Cores

2 A e o oD

G\u S

Figure 4. Speedups (in log scale) obtained by BigSeqgKit and other state-of-the-art tools with respect to the BigSeqKit sequential time when executing different commands

using Dy, as input. Note that 1ocate was parallelized in seqkit.

+ Ds (Homo_sapiens.GRCh38.dna_sm.toplevel - FASTA - 59.7 GB):
Number of sequences: 639, Minimum length: 970, Average
length: 98.8M, Maximum length: 248.9M.

- D, (ERR4667750 - FASTQ - 79.1 GB):

Number of sequences: 318.1M, Minimum length: 101, Average
length: 101, Maximum length: 101.

+ D5 (uniprot_trembl - FASTA - 104 GB):

Number of sequences: 229.9M, Minimum length: 7, Average
length: 351.6, Maximum length: 45.3K.

- Dg (DRR002180_2 - FASTQ - 395 GB):

Number of sequences: 1.625B, Minimum length: 101, Average
length: 101, Maximum length: 101.

As example to illustrate the benefits of our tool, we will evalu-
ate the following utilities (see Table 2 for a complete list of com-
mands): faidx builds an index for FASTA/FASTQ files, locate lo-
cates sequences following some search pattern, replace replaces a
name/sequence using a regular expression, rmdup removes dupli-
cated sequences, sample selects sequences by number or proportion,
seq transforms sequences (extract ID, filter by length, etc.) and re-
moves gaps, and sort sorts sequences by ID/name/sequence/length.
We will also include the performance results of the corresponding
utilities, if exist, for samtools, pyfastx and seqkit. Execution times for
all the tools considered include the overhead of loading sequences
into memory and the subsequent writing of results to disk. Note
that the "two-pass" argument of segkit was not used in the experi-
ments. Each result was computed as the median of five experiments.
For the sake of reproducibility, all the codes and scripts used for
performing the benchmarks are freely available at the BigSeqKit
repository.

First, in order to provide an overall idea about the scalability
and performance of BigSeqKit with respect to the other state-of-the

art tools, we will show the speedups obtained for the D, dataset
using different number of cores. The behavior is very similar when
considering the other datasets. Results in log scale are displayed in
Figure 4. Speedups were calculated using as reference the sequen-
tial execution (1 core) of the corresponding BigSeqKit command.
According to the results, several conclusions can be made. It can
be observed that the scalability of BigSeqKit is quite good, reaching
speedups up to 27.7x and 95.7x (seq command) using one server (32
cores) and eight computing nodes (256 cores), respectively. Note
that speedups of some routines are not higher when using 256 cores
due to there is a small fraction of the code that should be executed
sequentially (Amdahl’s law).

While samtools and pyfastx routines are always processed se-
quentially, seqkit uses a multi-threaded approach to (partly) paral-
lelize some commands. However, its scalability is limited to use a
few threads on a single server (computing node). This is the case
of locate. Its best speedup only reaches 11.3x (32 cores) while this
value increases until 19.6 x with BigSeqKit. If eight nodes are used,
BigSeqKit is 49.9 x faster than the sequential execution.

For all the commands studied, BigSeqKit clearly outperforms
samtools, pyfastx and seqkit. There are only a few cases using one
core where the speedups of these tools are slightly greater than 1.
For instance, executing the faidx routine with samtools and pyfastx.
However, other commands such as sort and sample are processed
faster with BigSeqKit even using one core.

Tables from 3 to 9 display, for all the datasets, the execution
times of BigSeqKit and the other state-of-the-art tools when run-
ning faidx, locate, replace, rmdup, sample, seq and sort utilities,
respectively. Speedups with respect the sequential execution of
the corresponding BigSeqKit command are shown between brack-
ets. Highlighted in blue is shown the fastest time overall and the
corresponding speedup. Note that BigSeqKit stores compressed in

C.Pifleiroetal. | 7

Table 3. Execution times (seconds) using different number of cores: faidx command. Highlighted in blue, fastest time and number of times faster

than sequential BigSeqKit.

32 | 64 (2nodes) | 128 (4nodes) | 256 (8 nodes)

16.3 [5.4x] 12.3[7.2x] 12.5

\ 1 2 A 8 16
samtools 86.2 [1.03x] — - - —
pyfastx 109.2 [0.81x] - - - -
seqkit 75.4 [1.17x] - - - -
BigSeqKit 88.4 46.0 353 263 19.4
samtools 165.6 [1.06 x] — - — —
pyfastx 177.9 [0.99x] - - - -
BigSeqKit 175.9 90.8 67.4 50.3 39.1

31.4 [5.6x] 19.1 15.5 [11.3 %]

|
w

samtools 210.0 [0.77x] - - - - - — _ _
pyfastx 131.2 [1.23x] - - - - - _ _ _
seqkit 131.8 [1.23x] - — - - - — _ _
BigSeqKit 161.9 83.9 61.7 24.5 17.5 15.7 [10.3 %] 13.6 13.4 [12.1x] 14.7
Csamtools | 538.4[127x) - — o= = = — = =
pyfastx 615.5 [1.11x] - - - - - — _ _
BigSeqKit 684.2 346.6 1752 903 454 293[233x] 19.6 153 12.5 [54.7x]
b]
~samtools | 7710[L08%x] @ - — — = === =
pyfastx 6343 [1.31x] - - - - - - - _
seqkit 1,096.2 [0.76 x] - - - - - — _ _
BigSeqKit 829.8 361.3 179.4 89.3 49.4 303 [27.4%] 23.6 19.3 16.5 [50.3x]
b]
Csamtools | 7,651.6 [L.14x]) @ — — o= o= o= — - =
pyfastx 7,712.5 [1.13x] - - - - - - - _
BigSeqKit 8,712.3 44233 2,282.2 1,191.9 640.2 350.4[24.9x] 129.5 85.3 60.5 [144 %]

Table 4. Execution times (seconds) using different number of cores: locate command. Highlighted in blue, fastest time and number of times faster

than sequential BigSeqKit.

\ 1 2 4 8 16 32 | 64 (2nodes) | 128 (4nodes) | 256 (8 nodes)
pyfastx 11,523.5 [1.0x] - - - - - - - -
seqkit 12,822.9 6,385.0 3,2109 1,7314 940.5 612.4 [18.8 x] - - -
BigSeqKit 11,486.2 6,286.1 3,180.0 11,6373 850.9 470.6 [24.4.x] 264.6 156.9 110.3 [104.1x]
b |
pyfastx 8,841.2 [1.2x] - - - - - - - -
seqkit 12,319.8 6,009.4 3,335.9 1,746.2 997.3 971.2 [10.5%] - — -
BigSeqKit 10,168.6 5264.5 2711.5 1412.2 814.6 545.4 [18.6 x] 384.7 293.5 234.9 [43.3%]
- D |
pyfastx 13,0753 [1.1x] - - - - - - - -
seqkit 14,281.6 8,161.7 5,009.6 3,184.1 1,832.4 1,054.9 [14.1x] - - -
BigSeqKit 14,834.2 8,2233 4,572.8 2,585.6 1,494.6 872.1[17.0x] 532.8 365.9 262.5[56.5x]

‘
~

pyfastx 30,028.3[1.05x] - - - - — - _ _

seqkit 39,640.5 21,257.6 10,803.1 5,7151 3,369.7 2,795.2[11.3x] - — -

BigSeqKit 31,615.2 16,832.1 8,531.9 4,4333 2,466.8 1,609.9 [19.6x] 1,074.7 794.6 633.5[49.9x]
D |

pyfastx 27,876.5 [1.06x] - - — - — - _ _

seqkit 31,301.8 16,884.7 9,1411 4,698.4 2,971.8 2,802.9 [10.5x] - - -

BigSeqKit 29,540.7 15,4313 8,1202 4,404 24545 1,443.9 [20.5x] 908.1 599.5 440.9 [67x]
Db |
Cpyfastx | 270,214[102x] 0 - - o— o= = | = - =

seqkit Out of Mem. Outof Outof 40,122 23,075 18,309 [15.0%] - - -

Mem. Mem.
BigSeqKit 275,680 141,095 72,110 37,140 19,810 11,477 [24.0x] 7,003 4422, 3,080 [89.5x1]

memory the largest dataset Dg when using one computing node
since it exceeds the memory capacity of an individual server (see
the Raw memory storage option in the Background section).

For all the experiments conducted, BigSeqKit is always the fastest
tool both considering a single server (one node) or several comput-
ing nodes. In any case, let’s take a look in detail of the behavior for
each command:

+ faidx (Table 3): BigSeqKit speedups range from 5.4 x t0 27.4x
considering a single server (32 cores), and from 7.2 x to 144.x
with 8 nodes. It means, for example, building the index file
for our largest dataset D¢ (395 GB) in just 5.8 minutes (single
server), while samtools and pyfastx require about 2.1 hours. This
time decreases to one minute when BigSeqKit uses 8 nodes. As

mentioned previously, the faidx routine in seqkit does not sup-
port FASTQ files (D,, D, and D).

+ locate (Table 4): the searching routines, grep and locate, are
very expensive in terms of computations. Note that consider-
ing sequential processing, locate takes more than 3 hours to
process our smallest dataset D; independently of the tool con-
sidered. This time increases to more than 3 days of computation
for Dg. seqkit has a multi-thread version of 1ocate, which ob-
tains speedups from 10.5x to 18.8 x. These speedups are always
lower to the ones obtained by BigSeqKit on a single server. It is
important to highlight that seqkit raises an out of memory error
when processing Dg with 1, 2 and 4 cores. On the other hand,
when using 8 nodes, BigSegKit achieves noticeable speedups up
to 104.1x. In this way, it is able to reduce the time necessary to

8 | GigaScience, 2017, Vol. 00, No. 0

Table 5. Execution times (seconds) using different number of cores: replace command. Highlighted in blue, fastest time and number of times faster
than sequential BigSeqKit.

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

1

132.4 [1.02x]
134.5

395.7 [1.04x]
£410.6

£410.5[0.99x]
406.7

543.7 [1.05x]
570.3

1,572.1[1.03%]
1,621.7

8,980.8 [1.07x]
9,620.8

819.9

50003 2,6052 1,364.2

A 8 16

18.7

4201 217.2

7177

32
12.7 [1_0.6 x]
29.7 [I3.8 x]
29.5 [13.8 x]

29.4[19.4x]

62.9(25.8]

3875 [24.8x]

64 (2 nodes)

128 (4 nodes)

256 (8 nodes)
12.5 [1_0.8><]
13.5 [3‘_0-4><]
12.9 [;1.5 x]
12.5 [Z5.6><]

18.5 [87.7x]

60.2[159.8 x]

Table 6. Execution times (seconds) using different number of cores: rmdup command. Highlighted in blue, fastest time and number of times faster
than sequential BigSeqKit.

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqKit

seqkit
BigSeqgKit

seqkit
BigSeqgKit

178.9 [1.01x]
180.5

320.6 [1.04x]
333.3

515.5 [0.91x]
£469.5

729.9 [0.99x]
720.5

2,173.6 [0.97x]
2,100.2

9,937.1[1.11x]
11,022.3

5,578.5

3,006.7 1,709.6 1,004.1

15.8 [I1.4 x]
26.5 [Iz.é x]
51.4 [_9.1 x]
54.0 [133 x]

115.2 [18.2x]

600.1[18.4x]

64 (2 nodes)

128 (4 nodes)

256 (8 nodes)

Table 7. Execution times (seconds) using different number of cores: sample command. Highlighted in blue, fastest time and number of times faster
than sequential BigSeqKit.

1 2 A 8 16 32 64 (2nodes) | 128 (4 nodes) | 256 (8 nodes)
pyfastx 308.2[0.67x] - - - - — — _ _
seqkit 196.1[1.05x] - - - - - — _ _
BigSeqKit 205.7 108.2 57.8 36.4 271 17.3 [11.9x] 15.1 15.4 14.1[14.6x]
Cpyfastx | 4587([L12x) 0 - — o— o — — oo
seqkit £492.4,[1.04x] - - — - - _ _ _
BigSeqKit 514.5 271.7 143.8 98.1 76.1 42.2[12.2x] 36.1 30.1 26.4[19.5x]
pyfastx 450.2[0.88 %] - - - - - — _ _
seqkit £491.7[0.80x] - - - - - — _ _
BigSeqKit 3943 207.8 105.2 70.5 52.7 26.1[15.1x] 22.1 19.2 14.3[27.6x]
Cpyfastx | 1,9291[099x] - — = = — = - -
seqkit 1,996.7[0.96x] - - - - — _ _ _
0 |
pyfastx 1,567.7 [0.71x] - - - - - - _ -
seqkit 1,057 [1.06x] - - - - - — _ _
BigSeqKit 1,121.5 5723 299.4 164.2 913 52.4 [21.4x] 33.6 25.1 22.5[49.8x]
Db]
seqkit 9,550 [1.16x] - - - - — _ _ _
BigSeqKit 11,070.2 5539.5 2,8123 1,543.6 8762 5159 [215x%] 202 143.2 109.5 [101.1x]

execute the locate command with our largest dataset D4 from
3 days to only 0.8 hours.
- replace (Table 5): this routine (or an equivalent) is not sup-

ported by samtools and pyfastx. In this case, BigSeqKit is from
tens to hundreds of times faster than seqkit, reaching speedups

up t0159.8 x.

C.Pineiroetal. | 9

Table 8. Execution times (seconds) using different number of cores: seq command. Highlighted in blue, fastest time and number of times faster than

sequential BigSeqKit.

32 | 64 (2nodes) | 128 (4nodes) | 256 (8 nodes)

‘

4.8[17.6x] 47 3.5[24.1x]

10.7 [22.5x] 4.0[60.2x]

‘
[

\ 1 2 4 8 16
1

pyfastx 151.8 [0.56 x] - - - -
seqkit 234.4[036x%] - - - -
BigSeqKit 84.4 43.5 225 11.6 6.3
pyfastx 209.4 [1.15x%] - - - -
seqkit 234.0 [1.03%] - - - -
BigSeqKit 240.9 128.5 65.0 34.6 19.5
pyfastx £400.5[0.90%] - - - -
seqkit 541.2 [0.67x] - - - -
BigSeqKit 360.2 182.7 93.4 481 27.1

20.2 [17.8 %] 8.6 5.1[65.5x]

v
n

‘
~

36.6 [27.7x] 22.5 15.2 10.6 [95.7x]

‘
w

41.5[23.8x] 26.1 17.9 16.2[60.9x]

pyfastx 901.2 [1.13x] - - - -
seqkit 981.7[1.03x] - - - -
BigSeqKit 1,014.7 508.8 257.1 129.1 66.3
pyfastx 1,051.4 [0.94.X] - - - -
seqkit 1,165.5 [0.85x] - - - -
BigSeqKit 987.6 500.2 259.1 135.9 73.6
pyfastx 7,657.6 [1.23x] - - - -
seqkit 9,080.5 [1.04x] - - - -
BigSeqKit 9,420.3 4,712.1 2,4003 1,323.4 7555

430.3[21.9x] 1103 70.2 55.5[169.7x]

Table 9. Execution times (seconds) using different number of cores: sort command. Highlighted in blue, fastest time and number of times faster

than sequential BigSeqKit.

\ 1 2 4 8 16

1

32 | 64 (2nodes) | 128 (4nodes) = 256 (8 nodes)

|

samtools
seqkit
BigSeqKit

1,590.3 [0.10x]
169.0 [0.97x] -
164.4 86.2

46.2 33.5 24.2

14.5[11.3x] 13.8 13.5 12.9 [12.7x]

samtools 1,672.5 [0.25%] - - — -

34.9 [12.1x] 21.5 15.8 13.2 [32.0x]

43.2[12.1x] 26.5 18.6 15.8 [33.1x]

‘
~

94.6 [14.6x] 57.6 46.0 36.0 [38.3x]

|
*n

84.2 [19.1x] 53.4 40.2 39.2 [41.1x]

seqkit 1,050.5 [0.40x] - - - -

BigSeqKit 422.8 221.6 117.6 81.7 62.1

samtools 1,203.5 [0.44 %] - - - -

seqkit 497.5[1.05%] - - - -

BigSeqKit 523.8 272.5 144.2 100.7 77.6

samtools 3,835.1[0.36x] - - - -

seqkit 3,122.2 [0.44%] - - - -

BigSeqKit 1,377.3 708.5 372.5 243.7 171.5

samtools 1,899.6 [0.85x] - - — -

seqkit 3,350.4 [0.48x] - - - -

BigSeqKit 1,612.4 839.2 443.2 239.2 137.2

samtools Out of Mem. - - — -

seqkit Out of Mem. - - - - -
BigSeqKit 18,309.6 9,439.6 4,809.2 2,592.8 1,444.4 839.7[21.8x]

215.8 165.3 139.6 [131.1x]

- rmdup (Table 6): this routine is also not supported by samtools
and pyfastx. In this case, BigSeqKit is tens of times faster than
seqkit, achieving a maximum speedup of 74.7x when removing
the duplicated sequences in Ds.

+ sample (Table 7): operation not supported by samtools. BigSeqKit
is again faster than the other tools, increasing the speedups as
the input datasize grows. It can be observed that BigSeqKit is
able to sample sequences in seconds. For instance, pyfastx and
seqkit take about 3 hours to process D¢, while BigSeqKit requires
just 2 minutes.

- seq(Table 8): operation not supported by samtools. Performance
results are similar to the sample ones in such a way that BigSeqKit
filters sequences by ID in few seconds, achieving a noticeable
speedup of 169.7 x. It should be noted that among the routines
examined in this study, seq is the least computationally demand-
ing.

- sort (Table 9): this routine was not included in pyfastx. In gen-
eral, the performance of samtools and seqkit is poor. And, most

importantly, both tools produce memory errors when process-
ing thelargest dataset Dy so it cannot be sorted. However, BigSe-
gKit sorts Dg 21.8x and 131.1x faster than the sequential version
using a single server and 8 computing nodes, respectively. It
means that the time decreases from 5 hours to barely 2 minutes.

Finally, we must highlight that one of the main reasons for the
differences in the speedups between datasets running the same
command with BigSeqKit is the load balance between threads. It will
depend on the characteristics of the dataset: number of sequences
and their length.

Conclusions

Current state-of-the-art tools such as seqkit, pyfastx and samtools
are not ready for processing and manipulating very large FASTA
and FASTAQ files because all of them are mainly based on sequen-

tial processing. To that end, we have presented BigSeqKit, which
parallelizes and optimizes the seqkit routines using the IgnisHPC
computing framework. Since seqkit was programmed in Go, Ig-
nisHPC was extended to support that language. As a consequence,
IgnisHPC is nowadays the first parallel computing framework that
supports Go. BigSeqKit can be easily installed on a local server or
on a cluster. In addition, it can be used from the command line or
as a library. Thanks to the multi-language support of IgnisHPC,
BigSeqK:it routines can be called from C/C++, Python, Java and Go
codes.

Regarding the experimental results, BigSeqKit clearly outper-
forms seqkit, pyfastx and samtools for all the tasks considered. On
a single server, BigSeqKit is overall tens of times faster than those
state-of-the-art tools, reaching speedups with respect to the Big-
SeqKit sequential time up to 27.7x. Considering an 8-nodes cluster,
BigSeqKit is even faster, reaching speedups higher than 160x. It
means that most of the tasks can be performed in just a few seconds.
For instance, our toolkit effectively reduces the execution time of
the locate command on our largest dataset from 3 days to a mere
0.8 hours. It is important to highlight that seqkit and samtools were
unable to process that dataset with some routines due to memory
issues, which confirms that current state-of-the-art tools are not
well fitted for processing very large files.

As future work we plan to add also the remainder seqkit com-
mands not included in the current version of BigSeqKit: sliding,
sana, fx2tab, tab2fx, convert, amplicon, fish, split, split2,
restart and mutate. Note that all of them are independent routines,
so their implementation using IgnisHPC will be straightforward.

- Project name: BigSeqKit

- Project home page: https://github.com/citiususc/BigSeqKit
+ BiotoolsID: biotools:bigseqkit

- RRID: SCR_023592

- Operating system(s): Linux

- Programming language: Go

- Other requirements: IgnisHPC 2.2

« License: GNU GPL-3.0

The datasets supporting the results of this article are available
in: D; was obtained from the PacBio repository, D,, D, and D¢
from the International Genome Sample Resource (accession ids,
SRR642648 _1.filt, ERR4667750 and DRR002180_2) [27], D5 from
Ensembl [28] (assembly accession id, GCA_000001405.20), and Dy
from UniProtKB - release 2022_03.

All supporting data and materials are available in the Giga-
Science GigaDB database [29].

(CLI) Command-Line Interface, (HPC) High-Performance Com-
puting, (JVM) Java Virtual Machine, (NGS) Next-Generation Se-
quencing, (MPS) Massive Parallel Sequencing.

Not applicable.

Not applicable.

The authors declare that they have no competing interests.

This work was supported by MICINN, Spain [PLEC2021-007662];
Xunta de Galicia, Spain [ED431G/08, ED431G-2019/04, ED431C
2018/19, and ED431F 2020/08]; European Commission RIA - H2020
[HPC-EUROPA3 - INFRAIA-2016-1-730897] and European Re-
gional Development Fund (ERDF).

César Pifieiro: Methodology, Software Development, Conducted
Experiments, and Contributed to Writing.

Juan C. Pichel: Conceptualization, Methodology, Supervision, Writ-
ing and Revision.

C. Pifieiro acknowledges the support of Marco Aldinucci (University
of Torino, Italy) and the computer resources provided by CINECA
(Italy) used in the preliminary tests. Authors also wish to thank
CESGA (Galicia, Spain) for providing access to their supercomputing
facilities.

1. Illumina, NovaSeq 6000 System; 2023. https://www.illumina.
com/systems/sequencing-platforms/novaseq.html [Online;
accessed 28 feb 2023].

2. Pearson WR, Lipman DJ. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences
1988;85(8):2444—2448.

3. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger
FASTQ file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants. Nucleic acids research
2010;38(6):1767—1771.

4. Akalin A. Computational Genomics with R. Chapman and
Hall/CRC; 2020.

5. Anders S, Pyl PT, Huber W. HT'Seq — a Python framework to
work with high-throughput sequencing data. Bioinformatics
2014 09;31(2):166—169.

6. Gordon A, Hannon G, FASTX-Toolkit: FASTQ/A short-reads
pre-processing tools; 2010. http://hannonlab.cshl.edu/
fastx_toolkit [accessed 28 feb 2023].

7. Droop AP. fqtools: an efficient software suite for modern FASTQ
file manipulation. Bioinformatics 2016 02;32(12):1883—1884.

8. LiH, seqtk: toolkit for processing sequences in FASTA/Q for-
mats; 2012. https://github.com/1h3/seqtk [accessed 28 feb
2023].

9. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A,
et al. Biopython: freely available Python tools for computa-
tional molecular biology and bioinformatics. Bioinformatics
2009;25(11):1422—1423.

10. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard
MO, et al. Twelve years of SAMtools and BCFtools. Gigascience
2021;10(2):giabo0o8.

11. Shirley MD, Ma Z, Pedersen BS, Wheelan SJ. Efficient

https://github.com/citiususc/BigSeqKit
https://bio.tools/bigseqkit
https://downloads.pacbcloud.com/public/dataset/Sequel-IIe-202104/rice/m64013e_210227_222017.hifi_reads.fasta.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20150612_chm1_data/sequence_read/SRR642648_1.filt.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/vol1/fastq/ERR466/000/ERR4667750/ERR4667750.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR002/DRR002180/DRR002180_2.fastq.gz
https://ftp.ensembl.org/pub/release-84/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.toplevel.fa.gz
https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2022_03/knowledgebase/knowledgebase2022_03.tar.gz
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
https://github.com/lh3/seqtk

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

"pythonic" access to FASTA files using pyfaidx. Peer] PrePrints;
2015.

DulL, LiuQ, Fan Z, TangJ, Zhang X, Price M, et al. Pyfastx: aro-
bust Python package for fast random access to sequences from
plain and gzipped FASTA/Q files. Briefings in Bioinformatics
2020 12;22(4). https://github.com/lmdu/pyfastx [accessed
28 feb 2023].

Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and
ultrafast toolkit for FASTA/Q file manipulation. PloS One
2016;11(10):€0163962.

Pifieiro C, Martinez-Castafio R, Pichel JC. Ignis: An efficient
and scalable multi-language Big Data framework. Future Gen-
eration Computer Systems 2020;105:705—716.

Pifieiro C, Pichel JC. A unified framework to improve the in-
teroperability between HPC and Big Data languages and pro-
gramming models. Future Generation Computer Systems
2022;134:123—139.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica L.
Spark: Cluster Computing with Working Sets. In: HotCloud;
2010. p. 10—10.

SegKit - Ultrafast FASTA/Q kit - Usage and examples;. https:
//bioinf.shenwei.me/seqkit/usage/ [Online;accessed 28 feb
2023].

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD,
Katz R, et al. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. In: Proc. of the 8th USENIX Conf.
on Networked Systems Design and Implementation; 2011. p.
295—308.

HashiCorp, Nomad: workload orchestration made easy;. [On-
line; accessed 28 feb 2023]. https://www.nomadproject.io.
Yoo AB, Jette MA, Grondona M. Slurm: Simple linux utility
for resource management. In: Workshop on job scheduling
strategies for parallel processing; 2003. p. 44—60.

White T. Hadoop: The Definitive Guide. 4th ed. O’'Reilly Media,
Inc.; 2015.

Pifieiro C, Pichel JC, IgnisHPC API; 2022. https://ignishpc.
readthedocs.io/en/latest/api.html [accessed 28 feb 2023].
Sanders P, Lamm S, Hiibschle-Schneider L, Schrade E, Dachs-
bacher C. Efficient parallel random sampling—vectorized,
cache-efficient, and online. ACM Transactions on Mathemati-
cal Software (TOMS) 2018;44(3):1—14.

Li X, Lu P, Schaeffer J, Shillington J, Wong PS, Shi H. On the
Versatility of Parallel Sorting by Regular Sampling. Parallel
Computing 1993;19:1079—1103.

Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific con-
tainers for mobility of compute. PLOS ONE 2017 05;12(5):1-20.
CESGA (Galician Supercomputing Center) - Computing In-
frastructures;. https://www.cesga.es/en/infrastructures/
computing/ [accessed 28 feb 2023].

Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International
Genome Sample Resource (IGSR) collection of open human
genomic variation resources. Nucleic Acids Research 2019
10;48(D1):D941—-D947.

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode M,
Armean I, et al. Ensembl 2022. Nucleic Acids Research 2021
11;50(D1):D988-D995.

Pifieiro C, Pichel JC. Supporting data for ""BigSeqKit: a parallel
Big Data toolkit to process FASTA and FASTQ files at scale". Gi-
gaScience Database 2023;http://dx.doi.org/10.5524/102409.

https://github.com/lmdu/pyfastx
https://bioinf.shenwei.me/seqkit/usage/
https://bioinf.shenwei.me/seqkit/usage/
https://www.nomadproject.io
https://ignishpc.readthedocs.io/en/latest/api.html
https://ignishpc.readthedocs.io/en/latest/api.html
https://www.cesga.es/en/infrastructures/computing/
https://www.cesga.es/en/infrastructures/computing/
http://dx.doi.org/10.5524/102409

