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César Piñeiro and Juan C. Pichel  

 

Answers to the reviewers  

 

We would like to thank the reviewers and editors for their insightful comments and suggestions about the 

paper. All the changes in the revised manuscript are highlighted in red. Detailed responses to reviewers are 

given below.  

 

——————————————————————————–  

 

Reviewer #1: The manuscript addresses the problem of processing and manipulating large amounts of 

sequencing data stored in FASTA and FASTQ files. Based on the observation that most processing tools 

take a sequential approach, the authors present BigSeqKit, a parallelized and optimized toolkit that can be 

used on various hardware platforms and is tens to hundreds of times faster than other modern tools. It is 

described as a comprehensive and user-friendly toolkit for processing and manipulating large FASTA and 

FASTQ files. The paper also includes the results of experiments showing the superior performance of 

BigSeqKit compared to seqkit, its sequential counterpart, and other tools when a large number of 

processing kernels are used. Indeed, despite their very simple and inefficient structure, the FASTA and 

FASTQ file formats are still very common and will not be completely replaced by anything else in the 

foreseeable future. Against this background, the contribution of this paper might be of interest. However, I 

am not sure that the problem of speeding up traditional processing tools is as dramatic as the authors 

claim. A time saving of about 8 minutes for sorting the D3 dataset thanks to the use of 256 cores may not 

be so dramatic if the other steps of the analysis pipeline take hours or days, as can be the case for 

sequence alignments. That being said, I think the authors should provide a more solid justification for their 

contribution. This includes discussing, or at least anticipating, an application scenario where conventional 

tools fail in the first place and their approach is then needed.  

 

****RESPONSE*****  

 

We agree with the reviewer that it is important in the revised manuscript to better motivate/demonstrate 

why our approach is needed. With that goal in mind, we have extended our experimental evaluation 

including two larger datasets with the following characteristics (page 6):  

 

• D5 (uniprot_trembl - FASTA - 104 GB): Number of sequences: 229.9M, Minimum length: 7, Average 

length: 351.6, Maximum length: 45.3K.  

• D6 (DRR002180 2 - FASTQ - 395 GB): Number of sequences: 1.625B, Minimum length: 101, Average 

length: 101, Maximum length: 101.  

 

In the original manuscript, D5 was only used with the faidx routine. Note that D6 is larger than the 

memory of one computing node (395 GB vs. 256 GB).  

 

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the discussion about them is in 

pages 7, 8, 9 and 10 (changes highlighted in red in the revised manuscript). According to the new results, 

we prove our contribution taking into account the following arguments:  

 

• pyfastx, samtools and seqkit take hours (and even days) to execute the different routines when 

considering the new datasets (see Tables 3-9). In this way, processing times are now significant in an 

analysis pipeline. For instance, the best sequential time of faidx, locate, replace, rmdup, sample, seq with 



D6 is about 2.1, 75.1, 2.5, 2.8, 2.6, hours, respectively. It means that, for example, the locate command 

requires more than 3 days of computation!  

 

• seqkit and samtools were unable to process D6 with some routines (locate and sort) due to memory 

issues, which confirms that current state-of-the-art tools are not well fitted for processing very large files. 

In addition, it is expected that the size of the FASTA and FASTQ files increase even more in the near 

future. Note that BigSeqKit stores D6 compressed in memory when using one computing node since it 

exceeds the memory capacity of an individual server (see the Raw memory storage option in the 

Background section -page 4).  

 

• For all the commands considered and the new very large datasets, BigSeqKit is again the fastest tool. In 

addition, speedups are higher as data size grows, both considering 1, 2, 4 and 8 computing nodes. For 

instance, BigSeqKit is 169.7. faster than the sequential execution when considering D6 and the seq 

command (Table 8).  

 

• BigSeqKit is able to reduce the time necessary to execute the locate command with our largest dataset 

D6 from 3 days to only 0.8 hours (Table 4). Therefore, the impact of using BigSeqKit is noticeable.  

 

We have also modified the Conclusions (page 10) in the revised paper to include some of the results 

commented above. There is also a small change in the Intro (page 2). Links and IDs of the new datasets 

are provided in page 10 ("Availability of supporting data").  

 

###################  

###################  

 

I have then some more punctual remarks:  

 

-After a short review of existing FASTA/Q manipulation tools, the authors conclude that none of these tools 

is well fitted for the manipulation of large files of tens of GB. Why? As far as I can see, the same datasets 

used by the authors for their experiments are even larger than one hundred GB, however the authors have 

been able to process them using these tools.  

 

****RESPONSE*****  

 

This question is related to the previous one. To demonstrate the benefits of our approach we have included 

two larger datasets in our experimental evaluation for all the considered routines: D5 (104 GB) and D6 

(395 GB). As we explained above, according to the results observed when processing both datasets, there 

are two main consequences that demonstrate that current state-of-the-art tools (pyfastx, samtools and 

seqkit) are not well fitted for very large files:  

 

• There is a significant boost in the processing times when considering very large files. Now for all the 

commands studied, times range from 2 hours to more than 3 days. Therefore, the impact on the total time 

required by an analysis pipeline is very important. BigSeqKit is able to reduce those times noticeably. For 

example, pyfastx and seqkit require more than 2 hours to execute the sample command with D6, while 

BigSeqKit takes 109 seconds (see Table 7).  

 

• If the dataset is big enough, there are memory issues that prevent samtools and seqkit to process the file 

when using several routines (locate and sort). These tools, and also pyfastx, are limited to store the data in 

the memory of a single node. BigSeqKit can use the memory of several nodes to split the data. In any 

case, even if there is only one computing node available, BigSeqKit can use additional storage options that 

allows it to process huge files larger than the memory of a node (see Background section in the manuscript 

-page 4):  

 

– Raw memory: data is stored in a memory buffer using a serialized binary format. The buffer is 

compressed by Zlib.  

 

– Disk: similar to raw memory but the buffer is stored as a POSIX file. Although the performance is 



significantly worse, it enables working with vast amounts of data that cannot be entirely kept in memory.  

 

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the discussion about them is in 

pages 7, 8, 9 and 10 (changes highlighted in red in the revised manuscript).  

 

###################  

###################  

 

-The paper gives the impression that BigSeqKit uses (at least) some of the code that imple.ments seqtk. 

However, it is unclear how this integration is done. Is seqtk executed as a child process in the BigSeqKit 

tasks, or has it been integrated at the source code or library level?  

 

****RESPONSE*****  

 

The reviewer is right in the sense that BigSeqKit reuses some parts of the seqkit code. However, BigSeqKit 

does not use seqkit as a child process or library. BigSeqKit is a reimplementation of seqkit functionalities 

that uses the IgnisHPC framework to deal with parallelism and performance. We analyzed the source code 

of seqkit and designed and implemented a new version of the commands that maintain the same behavior 

(and arguments) but operate in parallel. To do that we used the IgnisHPC API functions (see Background 

section). In addition, there are additional important changes explained in pages 4 and 5.  

 

###################  

###################  

 

-The authors say that the use of IgnisHPC partitions makes it possible to improve seqtk in all operations 

where input data must be processed in multiple passes, since this data is held in memory. I expect this 

feature to be of great benefit when working with very large data sets. I would suggest the authors 

explicitly state in their experimental study which seqtk operations require multiple passes.  

 

****RESPONSE*****  

 

We did not use the multiple passes option in any of our experimental tests with seqkit. Note that this 

parameter reduces noticeably the performance of seqkit, so we have chosen not to use it to ensure a fair 

comparison with our tool. It is important to highlight that not all the seqkit commands support the ”two-

pass” option. In our case, only sample and sort. For our new largest dataset D6, sample can still be 

executed without this parameter (see Table 7). On the other hand, the sort operation in seqkit cannot be 

executed with D6 due to memory issues even using the ”two-pass” argument.  

 

Following the suggestion of the reviewer, the revised manuscript includes the fol.lowing sentence (page 6): 

”Note that the ”two-pass” argument of seqkit was not used in the experiments.”  

 

###################  

###################  

 

-To my surprise, no information was given about the overhead required to load the sequences to be 

processed into memory. In fact, some of the operations considered are I/O-bound and the resulting 

execution time is mainly due to the time required to read the sequences from disk to memory and vice 

versa. Is the load time included in the results reported by the authors?  

 

****RESPONSE*****  

 

Execution times for all the tools considered (BigSeqKit, seqkit, samtools and pyfastx) include the overhead 

of loading sequences into memory and the subsequent writing of results to disk.  

 

Now the revised manuscript includes specifically that information (page 6).  

 

###################  



###################  

 

In the IgnisHPC scenario, does each computational unit read a portion of the input files itself or are they 

loaded by a driver application and then distributed across the distributed system?  

 

****RESPONSE*****  

 

Each worker reads its portion of the input files, so the I/O operation is performed in parallel. There is one 

worker per computing node. Within each worker, its portion of the file is further divided among the 

available threads, improving the overall I/O performance.  

 

Now the revised manuscript includes specifically that explanation (”Another implementation details” section 

-page 4).  

 

###################  

###################  

 

In addition, the authors used an Infiniband-connected HPC infrastructure for their experiment. Do they use 

a remote storage server that exports a file system to all nodes of the distributed system? And, when using 

BigSeqKit to analyze very large files on all processing cores of a workstation, is there a potential 

performance/I/O bottleneck due to the controller’s limited bandwidth?  

 

****RESPONSE*****  

 

Our experiments were conducted using the Infiniband-connected HPC infrastructure at CESGA (Galicia 

Supercomputing Center, Spain). Within this infrastructure, a distributed Lustre file system is employed. It 

is a common practice to have dedicated storage nodes that handle the storage operations separately from 

the computational nodes. The Lustre system at CESGA is designed with data distribution and replication 

techniques to enhance performance and ensure data availability.  

 

Now the revised manuscript explains that Lustre was used as distributed file system (page 6).  

 

The reviewer is right that could be a potential bottleneck in the I/O performance due to the limited 

bandwidth of the memory controller when processing very large files. This could happen when executing 

commands with a very low ratio of operations per sequence. For example, the seq command. However, 

based on our experimental findings, that scenario is not happening since for all the commands and 

datasets considered, the scalability within a computing node is good.  

 

——————————————————————————–  

 

Reviewer #2:  

 

This paper provides a novel parallel toolkit named BigSeqKit to manipulate FASTA and FASTQ files. 

BigSeqKit takes advantage of the IgnisHPC to run on the distributed and local environment. And It takes 

advantage of the distributed performance of IgnisHPC to optimize various operations of seqkit, and 

provides some new functions. Moreover, it solves the data dependency problem of some commands in a 

distributed environment. BigSeqKit is tens to hundreds of times faster than several state-of-the-art tools. 

At the same time, BigSeqKit is easy to use and install on any kind of hardware platform (local server or 

cluster), and its routines can be used as a bioinformatics library or from the command line.  

 

###################  

###################  

 

Questions:  

1. In Figure 4. the locate operation is an independent operation according to the paper. But in D4, with 256 

cores, why did it only achieve a 50x speedup?  

 



****RESPONSE*****  

 

The speedup is not higher due to a small fraction of the locate routine that should be executed 

sequentially. Amdahl’s law states that the overall speedup is limited by the proportion of the program or 

task that cannot be parallelized, even if the parallelizable portion is improved significantly. In other words, 

the impact of optimizing a specific part of a system is limited by the non-parallelizable components. For 

instance, if only 1.5% of the code is sequential (that is, 98.5% executed in parallel), the theoretical 

maximum speedup achievable using 256 cores would be 53.. Note that this percentage varies depending of 

the dataset.  

Now the revised manuscript includes this information in pages 6-7: ”Note that speedups of some routines 

are not higher when using 256 cores due to there is a small fraction of the code that should be executed 

sequentially (Amdahl’s law)”.  

 

###################  

###################  

 

2. Different data of the same type have very different speedups, for example, locate operation on dataset 

D1 and D3, can you explain why?  

 

****RESPONSE*****  

 

The differences in speedup between the locate operation on datasets D1 and D3 can be attributed to the 

characteristics of the datasets. D1 consists of 1.2 million sequences ranging from 85 to 19.7K in length, 

while D3 has only 639 sequences ranging from 970 to 248.9M in length (see page 6 in the revised 

manuscript). When processing both datasets in parallel, especially when the number of cores is high, it is 

difficult to find a good load balance between threads when the number of sequences is low and they are of 

very different size (up to 248.9M bases). That is the case of D3, and the reason why the speedups are 

different.  

 

Now the revised paper includes this information in page 10: ”Finally, we must high.light that one of the 

main reasons for the differences in the speedups between datasets running the same command with 

BigSeqKit is the load balance between threads. It will depend on the characteristics of the dataset: number 

of sequences and their length.”.  

 

###################  

###################  

 

3. How BigSeqKit ensure the integrity of the division data? For example, how to solve if a FASTQ sequence 

is divided into two partitions?  

 

****RESPONSE*****  

 

Each worker reads its portion of the input files, so the I/O operation is performed in parallel. There is one 

worker per computing node. Within each worker, its portion of the file is further divided among the 

available threads, improving the overall I/O performance.  

In a text file, the separator is represented by ’\n’, while in FASTA and FASTQ files, it is ’\n¿’ and ’\n@’, 

respectively. If a thread begins reading its assigned portion and does not encounter the separator, it will 

ignore the entire input until the separator is found. Furthermore, if a thread has completed processing its 

portion, it will continue reading until the separator is encountered. This approach ensures a fully parallel 

and coordinated reading of the input file across multiple processes and threads, as specified by the user.  

 

Now the revised manuscript includes specifically a summary of that explanation (”An.other implementation 

details” section -page 4).  

 

###################  

###################  

 



4. In the conclusion section, the authors say: ”Considering an 8-nodes cluster, BigSeqKit is even faster, 

reaching speedups higher than 100.”, but only one data reaches speedup over 100x, why?  

 

Following the suggestion of the first reviewer, we have we have extended our experimental evaluation 

including two larger datasets with the following characteristics (page 6):  

• D5 (uniprot_trembl - FASTA - 104 GB): Number of sequences: 229.9M, Minimum length: 7, Average 

length: 351.6, Maximum length: 45.3K.  

• D6 (DRR002180 2 - FASTQ - 395 GB): Number of sequences: 1.625B, Minimum length: 101, Average 

length: 101, Maximum length: 101.  

 

In the original manuscript, D5 was only used with the faidx routine. Note that D6 is larger than the 

memory of one computing node (395 GB vs. 256 GB).  

 

As a result for all the commands considered and the new very large datasets, BigSeqKit is again the fastest 

tool. In addition, speedups are higher as data size grows, both considering 1, 2, 4 and 8 computing nodes. 

In particular, BigSeqKit is 144., 89.5., 159.8., 48.2., 101.1., 169.7. and 131.1. faster than the sequential 

execution when considering D6 and faidx, locate, replace, rmdup, sample, seq and sort commands, 

respectively. It means that in 5 of 7 routines achieves speedups higher than 100.  

 

New performance results were added to Tables 3, 4, 5, 6, 7, 8 and 9, and the discussion about them is in 

pages 7, 8, 9 and 10 (changes highlighted in red in the revised manuscript). Conclusions (page 10) were 

also modified to reflect those results.  

 

——————————————————————————–  

 

Editor:  

 

In addition, please register any new software application in the bio.tools and SciCrunch.org databases to 

receive RRID (Research Resource Identification Initiative ID) and biotoolsID identifiers, and include these in 

your manuscript. Computational workflows should be regis.tered in workflowhub.eu and the DOIs cited in 

the relevant places in the manuscript. These will facilitate tracking, reproducibility and re-use of your tool.  

 

****RESPONSE*****  

 

Following the suggestion of the editor, BigSeqKit was registered in bio.tools and SciCrunh.org. Both IDs 

(and their corresponding links) were added to the repository information in the revised manuscript (page 

10):  

• BiotoolsID: biotools:bigseqkit  

• RRID: SCR_023592 

Close
 

 


