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Abstract
Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes frommetagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyse genomessourced directly from environmental samples. There are, however, technical challenges associated with this process, most notablythe complexity of computational workflows required to process metagenomic data, which include dozens of bioinformaticssoftware tools, each with their own set of customisable parameters that affect the final output of the workflow. At the core of theseworkflows are the processes of assembly - combining the short input reads into longer, contiguous fragments (contigs), andbinning - clustering these contigs into individual genome bins. Both processes can be done for each sample separately or bypooling together multiple samples to leverage information from a combination of samples. Here we present Metaphor, afully-automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRM workflows byoffering flexible approaches for the assembly and binning of the input data, and by combining multiple binning algorithms with abin refinement step to achieve high quality genome bins. Moreover, Metaphor generates reports to evaluate the performance ofthe workflow. We showcase the functionality of Metaphor on different synthetic datasets, and the impact of available assembly andbinning strategies on the final results.
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Introduction

Genome-resolved metagenomics (GRM) is a set of techniques forthe recovery of genomes from high-throughput sequencing data.In recent years, applications of GRM have led to unprecedented in-

sight into microbial diversity, ecology, and evolution, due to the re-covery of (mostly uncultivated) metagenome-assembled genomes(MAGs) [1, 2, 3, 4]. MAGs are essentially “bins” of contigs that areclustered together based on differential coverage and sequence com-position; a bin is considered a MAG when it displays a high degree
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of completeness and a low degree of redundancy/contamination,which is usually calculated through the presence of marker genesin the bin. Advances in GRM have consistently improved the qual-ity of recovered MAGs, and large-scale studies reconstructing andanalysing thousands of MAGs have become prominent in micro-biology research. Even with the inherent biases that accompanythe generation of MAGs, it is evident that the benefits outweigh therisks, and researchers are increasingly in need of automated dataprocessing methods for assembling and binning metagenomes [5].Data pipelines that perform such experiments are inherently com-plex, have high computing cost, use heterogeneous data sources,have dozens of customisable parameters, and depend on severalspecialised bioinformatics software [6, 7].
An additional domain-specific challenge for GRM studies is thestrategy used for assembling and binning each sequenced sam-ple. Data (raw reads generated by the sequencer) originating frommultiple samples may be assembled separately or pooled together,depending whether they come from the same population, speci-men, or environment. This results in either a set of contigs foreach sample or a ‘coassembly’ of the pooled samples. Similarly,in the metagenome binning step, where contigs are clustered intogenome bins, one may do this individually for each set of assembledcontigs, or by pooling together contigs from multiple samples andthen mapping each individual sample to this catalogue of contigs(‘cobinning’) [8]. The latter approach allows binning algorithms toaccount for differential coverage of contigs across samples, enrich-ing the information available for clustering. The chosen strategyfor assembly and binning may have important consequences for thefinal results, i.e., the quality of the assembly and of the recoveredbins [8]. It is hypothesised that pooled assembly and binning maylead to improved results when analysing communities with highgenetic diversity, and to poorer results when there is a high level ofintraspecies/strain-level diversity [9],
Here we present Metaphor, an automated and flexible work-flow for the assembly and binning of metagenomes, which recoversprokaryotic genomes from metagenomes efficiently and with highsensitivity, and provides taxonomic and functional abundance datafor quantitative metagenome analyses. Our software advances ex-isting metagenomic pipelines by combining two core features: theusage of multiple binning software along with a binning refine-ment step, and the possibility of defining groups for assembly andbinning of samples. This effectively allows scaling Metaphor toprocess multiple datasets in a single execution, performing assem-bly and binning in separate batches for each dataset, and avoidingthe need for repeated executions with different input datasets. Theworkflow includes native functionality for downstream integrationwith ‘omics statistical toolkits [10, 11], so that abundance data canbe easily imported into these tools, and with the Anvi’o [12] plat-form, which allows importing the collections of bins generated byMetaphor along with contig coverage data.. Metaphor generatesdetailed performance metrics at the end of each module of the work-flow to provide users with a high-level summary of their analysis,and has been designed to be user-friendly, portable, and flexible,as users can choose between different strategies for assembly andbinning. We demonstrate its functionality using different syntheticdatasets and discuss how these different strategies can impact dataanalyses in terms of quality of the resulting assembly and genomebins.

Design and Implementation

Metaphor stands out from existing GRM pipelines by offeringflexible options for assembly and binning combined with mul-tiple binning software and a binning refinement step. See Ta-ble 1 for a comparison of Metaphor’s features with other state-of-the-art GRM workflows. The workflow is implemented withSnakemake [13], a widely-used scientific workflow management

system. In each module, computing steps (called “rules” bySnakemake) consist of both third-party bioinformatics software[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and customscripts that connect different parts of the workflow, listed on Ta-ble 2.
The workflow consists of six modules: quality control (QC), as-sembly, annotation, mapping, binning, and postprocessing. In theQC module, raw sequencing reads are filtered and trimmed. Metage-nomic assembly is then performed. Coding sequences are predictedfrom the assembled contigs and used for functional and taxonomicannotation. The quality-filtered reads are mapped against the con-tigs, generating coverage statistics employed by the binning algo-rithms. After binning is complete, bins are refined and dereplicated.Lastly, the postprocessing module renders runtime and memoryusage metrics and generates an HTML report. A simplified versionof the flow of data between the different modules of the workflowis show on Fig 1.

Figure 1. Simplified workflow diagram. Workflow modules are represented by
rectangular blue shapes and data files are represented by oval yellow shapes, except
for entrypoint files shown in a dashed yellow rectangle. Arrows indicate input and
output of data between modules.

The choice of bioinformatics tools was informed by the results ofthe 2nd Critical Assessment for Metagenome Interpretation (CAMIII) [8, 36], striving for the maximum trade-off between perfor-mance, efficiency, and software sustainability. Although the latteris a subjective factor, selecting and streamlining dependencies withregard to code quality, maintenance, and community support is acritical factor when maintaining complex bioinformatics pipelines[6, 37]. Each third-party software (along with its version) is de-fined in an individual requirements file that is used by Snakemaketo create a virtual environment and run that particular step. Tofacilitate citing these tools, Metaphor packages a bibs/ directorycontaining all citations in the Bibtext format.
The workflow takes two files as input: a tab-delimited file con-taining sample names and file paths to the raw reads, and a con-figuration file in the YAML format, which will set the workflowparameters (see Fig 1). These files can be automatically generated
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Table 1. Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [29]. Data adapted to include Metaphor.
Features Metaphor v1.7.3 ATLAS [30] MetaWRAP [31] nf-core/mag [32] MAGNETO [29]

PreprocessingReads trimming ✓ ✓ ✓ ✓ ✓Contamination ✓ ✓ ✓ ✓ ✓

AssemblyCoassembly possible ✓ ✓ ✓ ✓Coassembly by groups ✓Compute sets to coassemble ✓Assembly evaluation ✓

BinningCobinning possible ✓ ✓ ✓ ✓Multiple binning software ✓ ✓ ✓Bin refinement ✓ ✓ ✓Bin reassembly ✓ ✓

PostprocessingMAGs quality check ✓ ✓ ✓ ✓ ✓Dereplication step ✓ ✓ ✓ ✓ ✓Genome annotation ✓ ✓ ✓ ✓ ✓Gene catalogue ✓ ✓ ✓HTML Report ✓ ✓ ✓ ✓

ReproducibilityWorkflow management ✓ ✓ ✓ ✓Packages Management ✓ ✓ ✓ ✓

Table 2. Modules, steps and software used in Metaphor.
Module Step Software

Quality Control (QC) Trim adapters and filter low quality reads fastp [14]Generate QC reports FastQC [15]Combine QC reports MultiQC [16]Assembly Assemble filtered and merged reads into contigs MegaHit [17]Perform assembly evaluation MetaQUAST [18]Assembly report and plots Metaphor script*Mapping Map reads MiniMap2 [19]Sort and index mapped reads Samtools [20]Annotation Prediction of coding sequences from contigs Prodigal[21]Annotation of coding sequences Diamond, NCBI COG [22, 23]Annotation of MAGs Prokka [24]Annotation report and plots Metaphor script*Binning Cluster contigs into bins VAMB [25]Cluster contigs into bins MetaBAT2 [26]Cluster contigs into bins CONCOCT [27]Dereplicate and score bins DAS Tool [28]Binning report and plots Metaphor script*Postprocessing Concatenate benchmarks Metaphor script*Plot benchmarks Metaphor script*
* External libraries used in Metaphor scripts: [33, 34, 35].
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Table 3. Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset, along withthe amount of reference genomes used to generate the dataset
Dataset Identifier No. of samples Size (GB) No. reference genomes

Marine marmg 10 50 622Strain Madness strmg 100 200 408Human Airways h_airways 10 44 1394Human Genital h_urogenital 9 39 1394Human Gut h_gastrointestinal 10 44 1057Human Oral h_oral 10 43 1057Human Skin h_skin 10 44 1394
Table 4. Output files for each strategy. If only one dataset/group is being analysed, assembly and binning results are named as “Coassembly” and“Cobinning” respectively. If multiple datasets/groups are used, the results are named according to the group/dataset’s name.

Strategy Description Reads files Assemblies Bins

SASB Single assembly, Single binning Sample_0.fastq Sample_0_contigs.fasta Sample_0_bins/Sample_1.fastq Sample_1_contigs.fasta Sample_1_bins/Sample_2.fastq Sample_2_contigs.fasta Sample_2_bins/
SACB Single assembly, Cobinning Sample_0.fastq Sample_0_contigs.fasta Cobinning_bins/Sample_1.fastq Sample_1_contigs.fastaSample_2.fastq Sample_2_contigs.fasta
CACB Coassembly, Cobinning Sample_0.fastq Coassembly_contigs.fasta Cobinning_bins/Sample_1.fastqSample_2.fastq

by Metaphor and edited by the user, or created from scratch. Theoutput of Metaphor consists of a directory for each module, furthersubdivided into the rules within each module. This is described indetail in the documentation [38].

Assessment on CAMI II synthetic datasets

To demonstrate the functionality of Metaphor, we analysed datasetsfrom CAMI II [8]. All datasets consist of short and long reads gener-ated by simulation of collections of reference genomes [39]). Onlyshort reads were used for each dataset, as Metaphor does not yetsupport long reads. Specifically, we used the Marine metagenomedataset (identified as ‘marmg’), the Strain Madness dataset (iden-tified as ‘strmg’), and the Human Microbiome dataset, which con-sists of five sets of samples, each corresponding to a differentsampling location in the human body, which were treated as dis-tinct datasets (3). The following strategies were employed for eachdatasets: single assembly, single binning (‘SASB’), where each sam-ple is individually assembled and binned; single assembly, cobin-ning (‘SACB’), where each sample is assembled individually andthen binned with other samples from the same dataset; coassem-bly, cobinning (‘CACB’), where all samples from the dataset wereassembled and binned together. Table 4 illustrates how this worksin practice, in terms of generated output files. Metaphor allowsdefining multiple groups for coassembly or cobinning to analysemultiple independent datasets with a single execution.
In order to assess the effect of different assembly strategies, weused MetaQUAST [18] to compare the assemblies generated by theworkflow with the collections of reference genomes. For the differ-ent binning strategies, we compared metrics obtained from DASTool, the software used for dereplicating and evaluating genomebins, after a second round of dereplication with dRep [40]. This isbecause data generated with the SASB strategy will likely resultsin redundant bins, as for that strategy there is no dereplication

between samples and since samples within a dataset have similarcomposition, it is likely that a genome bin can be generated repeat-edly by different samples. dRep performs dereplication based onthe Average Nucleotide Identity between genomes, a metric whichhas been consistently used as a proxy to differentiate taxonomy atthe species and strain levels [41]. dRep was run with default clus-tering parameters, and without any length, completeness, or con-tamination cutoffs. We used Spartan [42], the High PerformanceComputing (HPC) system at The University of Melbourne to run thepipeline. Jobs were dispatched to nodes with the SLURM scheduler,using up to 64 processors and 300 GB RAM per node.

Results and Discussion

After running Metaphor on the CAMI II Marine, Strain Madness andHuman Microbiome datasets, we illustrate the different outputsgenerated by the workflow, and compare the effects of differentassembly and binning strategies on workflow performance.

Reconstruction of metagenome-assembled genomes

Metaphor produces genome bins generated with three tools: Vamb,MetaBAT2 and CONCOCT [25, 26, 27] that are refined with DAS Tool[28]. The input for each binning tool differs slightly, but they allrely on the catalogue of contigs obtained from the assembly and thecoverage files obtained from the read mapping module (see Fig 1). Areport is generated for each of the binning groups (only one is gener-ated if cobinning is performed), which highlights three key metrics:completeness, redundancy, and bin score. The first two metricsare calculated by the presence/absence of single-copy genes, andthe latter is a function of the former two. Plots generated by anexample report are shown in Fig 2. It is possible to compare theperformance of the different binning software and obtain the pro-
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Figure 2. Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the ‘CACB’ (coassembly, cobinning) setting. Panel A shows a
stacked histogram of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line. Panels B and C show, respectively, the size (in base pairs)
and N50 of bins. The Y-axis is in log-scale. Panel D shows a scatterplot of completeness and redundancy for each bin. Colours indicate the tool used to generate the bin, and
the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of Panel A). Panel E shows how
many bins passed or failed the quality threshold for each binning tool.

portion of bins above a specified particular quality threshold basedon the bin score. The source table for the report is provided, so thatusers can generate custom reports and inspect specific individualbins. Bins that pass the quality threshold are stored in individualFASTA files, so they can easily be used for downstream analyseswith tools such as CheckM or GTDB-Tk [43, 44]. We chose not toinclude these software in the workflow as they rely on fairly largereference databases and/or contain several different steps that aredependent on third-party software, which would affect Metaphor’sportability. Bin collections generated with Metaphor can be im-ported into the Anvi’o along with coverage data (BAM files), sousers can use the interactive interface of Anvi’o to examine thebins.

Contig-level taxonomic and functional profiling

To facilitate quantitative metagenomics applications, Metaphor’sannotation module generates contig-level functional and taxo-nomic profiles based on the NCBI COG database [23]. These areobtained by predicting coding sequences with Prodigal and thenaligning the resulting amino acid files with Diamond [21, 22] inthe “iterative” mode. This setting performs repeated rounds ofalignment, with an increasing degree of sensitivity when no hitsare detected in the previous round. Abundances for each feature arecalculated based on the coverage of all coding sequences which alignto that feature. Fig 3 illustrates the profile visualisations offered byMetaphor: a heatmap of COG categories for the functional profileand a stacked barplot for the most abundant taxa (for the latter, oneplot is generated for each taxonomic rank). The annotation moduleoutputs count tables with both absolute and relative abundance val-ues of taxa and functional categories, and may be directly importedby downstream statistical toolkits such as MixOmics or PhyloSeq[10, 11].

Quality control and performance metrics

Additional outputs produced by Metaphor include the quality con-trol reports from the fastp and FastQC tools, with a summary ofFastQC outputs being produced by MultiQC [14, 15, 16]. A simplereport is produced by the assembly module with sequence statis-tics of the assembled contigs (e.g. N50, number of contigs, totaland mean length of contigs), and performance metrics. At the endof the workflow execution, the postprocessing module generatesfigures obtained from the “benchmark” files provided by Snake-make. These files contain process information such as runtime andmemory consumption. Metaphor plots these metrics in two ways:total per rule and per-sample mean (Fig 4) as some rules run onlyonce across all samples, while other rules run per sample. Theseplots help identify computational bottlenecks and assess whethercomputing resources are adequate.
Assembly and binning strategies

The effects of distinct assembly and binning strategies on the finaloutput of metagenomic workflows are highly dependent on the datasource and research context [8]. As such, the choice of individualor group assembly and binning can only be assessed a posteriori.We compared three different strategies: single assembly and singlebinning (‘SASB’), single assembly and cobinning (‘SACB’), andcoassembly and cobinning (‘CACB’), see Table 4 and Section ‘As-sessment on CAMI II synthetic datasets’ for details. For assembly,we used the five different groups in the Human Microbiome datasetalong with the Strain Madness and Marine datasets. We only usedthe latter two datasets for the binning assessment.We used six metrics to evaluate assembly performance: per-centage of recovered genome fraction, size of the largest contig,duplication ratio, length of misassembled contigs, number of misas-semblies, and number of mismatches per 100 thousand base pairs.High values for the first two metrics and low values for the lastfour indicate better performance. We observed a general trade-offbetween assembly completeness (represented by the first two met-
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Figure 3. Annotation plots generated by Metaphor on the Strain Madness (‘strmg’)
and the Marine (‘marmg’) datasets. Panel A displays the functional profile as a
heatmap of the relative abundance of functional COG categories (Y-axis) across
samples (X-axis) for five samples from Strain Madness and Marine datasets. Panel
B displays the taxonomic profile of the Marine dataset as a stacked barplot of relative
abundance of taxa. In this case, the phylum rank was used, but Metaphor generates
this for the most common taxonomic ranks (phylum, class, order, family, genus,
species). The number of abundant taxa can be easily adjusted in the workflow
settings. For both taxonomic and functional profiles, abundance of each feature is
calculated from coverage values for each gene.

rics), and the number of errors in the assembly (represented bythe last four metrics) (Figure S1). In most datasets, assemblieswere more complete and contiguous, albeit with more errors whenthe Coassembly strategy was used. The exception was the StrainMadness (‘strmg’) dataset, for which the Individual assembly wasmore complete and contiguous, albeit with more errors. This maybe attributed to the high degree of strain/intraspecies diversity inthat dataset [8]. A high degree of similarity between the relatedgenomes likely confounds assembly algorithms, and pooling sam-ples together may aggravate this effect [5].
To evaluate differences between binning strategies, we com-pared the number and quality of bins after refinement with DASTool. Bins generated with each approach were further dereplicatedwith dRep [40]. This is because the SASB strategy generates a setof bins for each sample, and datasets with similar composition willlikely generate redundant bins, as there is no dereplication of binsbetween samples. Results varied significantly between the Marineand Strain Madness datasets. In both datasets, the mean bin scorewas the highest for the CACB strategy (Figure S3). However, in theStrain Madness dataset, CACB produced a significantly lower num-ber of bins (33 compared with 259 and 215 generated with SASB andSACB), which did not occur in the Marine dataset.
Since the binning performance is assessed as a proxy of the com-bination of quantity and quality of generated bins, rather than only

one metric or the other, we calculated the cumulative bin score (thesum of scores of all bins) and the number of bins above an increas-ing score threshold, shown on Fig 6. The higher the threshold, themore significant the differences between the cumulative scores,as only bins with the highest quality compose the score. For theMarine dataset, we observed a higher score and a larger numberof bins in the CACB strategy and the exact opposite in the StrainMadness dataset. In both datasets, there was a clear differencebetween SASB before dereplication and the other strategies, con-firming that several highly similar samples produce redundant bins.That difference was also present in the SACB strategy, albeit notso pronounced (see Figure S4 for the comparison of dereplicatedand non-dereplicated data). This suggests that for both of thesestrategies, further dereplication is recommended [5]. Although theStrain Madness dataset shows fewer bins generated with CACB, thecumulative bin score for that strategy remained similar to SACBand SASB above the 0.8 score threshold, since there are fewer binswith a score lower than that. In that same dataset, SASB showedthe best performance, although differences were small above the0.8 threshold. In the Marine dataset, there were more pronounceddifferences between strategies. CACB produced the larger quantityand higher cumulative score of bins, followed by SASB and SACB.
In summary, our assessment of different assembly and binningstrategies indicate that, for most metagenomic analysis scenarios,coassembly followed by cobinning is samples are sourced from asimilar environment or population, except when there is a highlevel of intraspecies/strain-level diversity across samples, like inthe Strain Madness dataset. In that scenario, single assembly fol-lowed by single binning is preferred, followed by dereplication ofbins between samples. There is, however, a trade-off, as computa-tional requirements are higher for the pooled strategies. Coassem-bly resulted in higher genome recovery fractions and larger contigs,although usually at the expense of a higher number of misassem-blies and higher duplication ratio. When combining coassemblywith cobinning, there is a remarkable improvement in the quan-tity and quality of bins generated for a diverse dataset (representedby the Marine dataset), where the difference was negligible in theStrain Madness dataset.

Availability and Future Directions

Metaphor is available through Bioconda [45], a popular repositoryof bioinformatics software. It can be installed with a single com-mand from the conda package manager [46] or from source usingpip, the Python package manager. The installation of all third-partysoftware used by Metaphor is handled automatically by Snakemakeand conda. It can be easily deployed in different computing en-vironments, such as high performance computing clusters andcloud instances, due to Snakemake’s support of execution profiles.Metaphor is developed with documented best practices in work-flow development [6, 47], striving for reproducibility and trans-parency of its results. Data used for the testing Metaphor’s instal-lation (see documentation for details) is available from GitHub athttps://github.com/vinisalazar/mg-example-data. This data is asubset of the CAMI I challenge data [36] that is reduced in size inorder to run test commands in a reasonable time.
The workflow may be extended to support downstream toolssuch as GTDB-Tk and CheckM, and a new functionality forthe identification of eukaryotic and viral contigs and bins. Theannotation module can also be improved to facilitate the use ofcustom reference databases. In addition, Metaphor would benefitfrom new third-party software to facilitate the generation ofnon-prokaryotic bins in the near future.

https://github.com/vinisalazar/mg-example-data
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Figure 4. Performance metrics report generated by Metaphor on the Marine dataset processed with the SASB strategy. Total runtime per rule (A), mean runtime per
sample (B), total memory usage per rule (C), and mean memory usage per sample (D). X-axis is in log format. Cutoffs are applied to omit rules with short runtime or low
memory usage. Colours indicate the workflow module of each rule.

Availability checklist

Project name: MetaphorProject home page: https://github.com/vinisalazar/metaphorDocumentation: https://metaphor-workflow.readthedocs.io/Operating system(s): Linux, Mac OS (Intel)Programming language: Snakemake (Python 3)Other requirements: Conda, Snakemake v7 or higher, Python 3.7 orhigher.License: MIT

https://github.com/vinisalazar/metaphor
https://metaphor-workflow.readthedocs.io/
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Figure 5. Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the MetaQUAST tool. Data points
above the 98th percentile were classified as outliers and removed from the figure to improve visualisation. See Figure S1 for the full data. The title at the top of each panel
indicates the plotted metric. Panels A and C show percentages along the X-axis, while the remainder show absolute values.
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Figure 6. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Lines show the cumulative bin score (A and B)
and number of bins (C and D) along the Y-axis, for bins above a certain score threshold (X-axis). Left column shows Marine dataset, and right column shows Strain Madness
dataset.
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Supplementary Material

Figure S2. Boxplot of bin scores across different strategies. Eachdata point is a genome bin, and Y-axis depicts bin scores from 0to 1. Columns separate datasets, and colours represent differentstrategies. Numbers underneath each bar show the number of datapoints for that bar. Bins sets were dereplicated with dRep.

FigureS3. Boxplot of bin scores across different strategies for non-
dereplicated data. Same as Figure S2, but with non-dereplicateddata. Each data point is a genome bin, and Y-axis depicts bin scoresfrom 0 to 1. Columns separate datasets, and colours represent dif-ferent strategies. Numbers underneath each bar show the numberof data points for that bar.

Figure S1. Differences between assembly strategies across datasets. Same data as Fig 5, but including outliers.
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Figure S4. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Solid linesshow the same data as Fig 6, and dashed lines show data based on bins prior to dereplication with dRep.
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Dear Editor,

We hereby submit our manuscript ‘Metaphor - A workflow for streamlined assembly and binning of metagenomes’
for consideration to the GigaScience journal as a Technical Note.

In the past 10 years, metagenomics research has led to seminal contributions in our understanding of the ecology and
diversity of uncultivated microbes. However, metagenomics studies are often hindered by the complexity of bioinformatics
pipelines, which has led to the development of automated workflows to recover genomes from metagenomes. Existing
workflows include many independent, third-party software tools where methodological decisions affect the final results
of the analysis – the quality of the metagenomic assembly and recovered genome bins. These workflow generally lack
flexibility of use.

Our manuscript fills this gap by introducing the first automated metagenomics workflow that enables flexible options
for metagenomic assembly and binning, along with different binning software which are combined for optimal performance
of genome recovery. The development of our workflow and choice of third-party tools was informed by the latest results
in benchmarks of metagenomics software and by best practices in scientific workflow development. Moreover, it produces
a number of quantitative reports for each step which allow users to assess the performance of the workflow. In the
manuscript, we describe the different outputs produced by Metaphor and illustrate its flexibility compared to existing tools.
We also discuss how the choice of different assembly and binning strategies may affect the output of metagenomic analyses
– an ongoing debate in the field.

Our workflow will provide researchers with an easy-to-use, powerful, and flexible solution for general-purpose metage-
nomic analysis and is freely available on GitHub (https://github.com/vinisalazar/metaphor), with documentation available
on https://metaphor-workflow.readthedocs.io/.

You may wish to consider the following referees, who are independent to our team:

• Dr. Taylor Reiter, taylor.reiter@cuanschutz.edu, Arcadia Science (previously University of Colorado). Expert in
bioinformatics workflows, has published about best practices in workflow development, will be able to adequately
assess Metaphor’s implementation.

• Dr. Matthew Olm, mattolm@stanford.edu, Stanford University, expert in human microbiome, bioinformatics software
development. Has published widely-used software tools, one of which (dRep) is used on our manuscript. Will be able
to evaluate Metaphor’s software quality and also how we tackled the comparison of different assembly and binning
strategies.

• Dr. Alexandre Almeida, aa2369@cam.ac.uk, University of Cambridge: expert in large-scale metagenomics and human
gut microbiome. Will be able to judge how Metaphor could be used to solve specific biological problems, and the
value that it offers in terms of data outputs.

• Dr. Elizabeth Dinsdale, elizabeth.dinsdale@flinders.edu.au, Flinders University, expert in host-microbe interactions,
metagenomics, marine microbial genomics. Dr. Dinsdale has a vast experience in tackling biological problems from
different perspectives and using a wide range of techniques, such as host-microbe interactions, community analysis,
and functional profiling. Will also be able to judge how Metaphor can be framed for different research questions.

We hope that the proposed manuscript will be of significant interest to the scientifically diverse readership of the
GigaScience journal who wish to capitalise on novel tools and technologies for microbial genomic analysis.

Yours sincerely,
Prof. Kim-Anh Lê Cao
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