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Abstract
Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes frommetagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyse genomessourced directly from environmental samples. There are, however, technical challenges associated with this process, most notablythe complexity of computational workflows required to process metagenomic data, which include dozens of bioinformaticssoftware tools, each with their own set of customisable parameters that affect the final output of the workflow. At the core of theseworkflows are the processes of assembly - combining the short input reads into longer, contiguous fragments (contigs), andbinning - clustering these contigs into individual genome bins. The limitations of assembly and binning algorithms also posedifferent challenges depending on the selected strategy to execute them. Both of these processes can be done for each sampleseparately or by pooling together multiple samples to leverage information from a combination of samples. Here we presentMetaphor, a fully-automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRMworkflows by offering flexible approaches for the assembly and binning of the input data, and by combining multiple binningalgorithms with a bin refinement step to achieve high quality genome bins. Moreover, Metaphor generates reports to evaluate theperformance of the workflow. We showcase the functionality of Metaphor on different synthetic datasets, and the impact ofavailable assembly and binning strategies on the final results.
Key words: Bioinformatics; pipeline; MAGs; Snakemake; high-throughput sequencing; microbial genomics

Introduction

Genome-resolved metagenomics (GRM) is a set of techniques forthe recovery of genomes from high-throughput sequencing data.

Applications of GRM have led to unprecedented insight into mi-crobial diversity, ecology, and evolution, due to the recovery of(mostly uncultivated) metagenome-assembled genomes (MAGs)
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[1, 2, 3, 4]. MAGs are essentially “bins” of contigs that are clus-tered together based on differential coverage and sequence com-position; a bin is considered a MAG when it displays a high degreeof completeness and a low degree of redundancy/contamination,which is usually calculated through the presence of marker genesin the bin. Advances in GRM have consistently improved the qual-ity of recovered MAGs, and large-scale studies reconstructing andanalysing thousands of MAGs have become prominent in micro-biology research. Even with the inherent biases that accompanythe generation of MAGs, it is evident that the benefits outweigh therisks, and researchers are increasingly in need of automated dataprocessing methods for assembling and binning metagenomes [5].Data pipelines that perform such experiments are inherently com-plex, have high computing cost, use heterogeneous data sources,have dozens of customisable parameters, and depend on severalspecialised bioinformatics software [6, 7].
An additional domain-specific challenge for GRM studies is thestrategy used for assembling and binning each sequenced sam-ple. Data (raw reads generated by the sequencer) originating frommultiple samples may be assembled separately or pooled together,depending whether they come from the same population, speci-men, or environment. This results in either a set of contigs foreach sample or a ‘coassembly’ of the pooled samples. Similarly,in the metagenome binning step, where contigs are clustered intogenome bins, one may do this individually for each set of assembledcontigs, or by pooling together contigs from multiple samples andthen mapping each individual sample to this catalogue of contigs(‘cobinning’) [8]. The latter approach allows binning algorithms toaccount for differential coverage of contigs across samples, enrich-ing the information available for clustering. The chosen strategyfor assembly and binning may have important consequences for thefinal results, i.e., the quality of the assembly and of the recoveredbins [8]. It is hypothesised that pooled assembly and binning maylead to improved results when analysing communities with highgenetic diversity, and to poorer results when there is a high level ofintraspecies/strain-level diversity [9],
Here we present Metaphor, an automated and flexible work-flow for the assembly and binning of metagenomes, which recoversprokaryotic genomes from metagenomes efficiently and with highsensitivity, and provides taxonomic and functional abundance datafor quantitative metagenome analyses. Our software advances ex-isting metagenomic pipelines by combining two core features: theusage of multiple binning software along with a binning refine-ment step, and the possibility of defining groups for assembly andbinning of samples. This effectively allows scaling Metaphor toprocess multiple datasets in a single execution, performing assem-bly and binning in separate batches for each dataset, and avoidingthe need for repeated executions with different input datasets. Theworkflow includes native functionality for downstream integra-tion with ‘omics statistical toolkits [10, 11], so that abundance datacan be easily imported into these tools, and with the Anvi’o [12]platform, which allows importing the collections of bins generatedby Metaphor along with contig coverage data. Metaphor generatesdetailed performance metrics at the end of each module of the work-flow to provide users with a high-level summary of their analysis,and has been designed to be user-friendly, portable, and flexible,as users can choose between different strategies for assembly andbinning. We demonstrate its functionality using different syntheticdatasets and discuss how these different strategies can impact dataanalyses in terms of quality of the resulting assembly and genomebins.

Design and Implementation

Metaphor stands out from existing GRM pipelines by offeringflexible options for assembly and binning combined with mul-tiple binning software and a binning refinement step. See Ta-

ble 1 for a comparison of Metaphor’s features with other state-of-the-art GRM workflows. The workflow is implemented withSnakemake [13], a widely-used scientific workflow managementsystem. In each module, computing steps (called “rules” bySnakemake) consist of both third-party bioinformatics software[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and customscripts that connect different parts of the workflow, listed on Ta-ble 2.
The workflow consists of six modules: quality control (QC), as-sembly, annotation, mapping, binning, and postprocessing. In theQC module, raw sequencing reads are filtered and trimmed. Metage-nomic assembly is then performed. Coding sequences are predictedfrom the assembled contigs and used for functional and taxonomicannotation. The quality-filtered reads are mapped against the con-tigs, generating coverage statistics employed by the binning algo-rithms. After binning is complete, bins are refined and dereplicated.Lastly, the postprocessing module renders runtime and memoryusage metrics and generates an HTML report. A simplified versionof the flow of data between the different modules of the workflowis show on Fig 1.

Figure 1. Simplified workflow diagram. Workflow modules are represented by
rectangular blue shapes and data files are represented by oval yellow shapes, except
for entrypoint files shown in a dashed yellow rectangle. Arrows indicate input and
output of data between modules.

The choice of bioinformatics tools was informed by the results ofthe 2nd Critical Assessment for Metagenome Interpretation (CAMIII) [8, 36], striving for the maximum trade-off between perfor-mance, efficiency, and software sustainability. Although the latteris a subjective factor, selecting and streamlining dependencies withregard to code quality, maintenance, and community support is acritical factor when maintaining complex bioinformatics pipelines[6, 37]. Each third-party software (along with its version) is de-fined in an individual requirements file that is used by Snakemaketo create a virtual environment and run that particular step. Tofacilitate citing these tools, Metaphor packages a bibs/ directorycontaining all citations in the Bibtext format.
The workflow takes two files as input: a tab-delimited file con-
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Table 1. Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [29]. Data adapted to include Metaphor.
Features Metaphor v1.7.7 ATLAS [30] MetaWRAP [31] nf-core/mag [32] MAGNETO [29]

PreprocessingReads trimming ✓ ✓ ✓ ✓ ✓Contamination ✓ ✓ ✓ ✓ ✓

AssemblyCoassembly possible ✓ ✓ ✓ ✓Coassembly by groups ✓Compute sets to coassemble ✓Assembly evaluation ✓

BinningCobinning possible ✓ ✓ ✓ ✓Multiple binning software ✓ ✓ ✓Bin refinement ✓ ✓ ✓Bin reassembly ✓ ✓

PostprocessingMAGs quality check ✓ ✓ ✓ ✓ ✓Dereplication step ✓ ✓ ✓ ✓ ✓Genome annotation ✓ ✓ ✓ ✓ ✓Gene catalogue ✓ ✓ ✓HTML Report ✓ ✓ ✓ ✓

ReproducibilityWorkflow management ✓ ✓ ✓ ✓Packages Management ✓ ✓ ✓ ✓

Table 2. Modules, steps and software used in Metaphor.
Module Step Software

Quality Control (QC) Trim adapters and filter low quality reads fastp [14]Generate QC reports FastQC [15]Combine QC reports MultiQC [16]Assembly Assemble filtered and merged reads into contigs MegaHit [17]Perform assembly evaluation MetaQUAST [18]Assembly report and plots Metaphor script*Mapping Map reads MiniMap2 [19]Sort and index mapped reads Samtools [20]Annotation Prediction of coding sequences from contigs Prodigal[21]Annotation of coding sequences Diamond, NCBI COG [22, 23]Annotation of MAGs Prokka [24]Annotation report and plots Metaphor script*Binning Cluster contigs into bins VAMB [25]Cluster contigs into bins MetaBAT2 [26]Cluster contigs into bins CONCOCT [27]Dereplicate and score bins DAS Tool [28]Binning report and plots Metaphor script*Postprocessing Concatenate benchmarks Metaphor script*Plot benchmarks Metaphor script*
* External libraries used in Metaphor scripts: [33, 34, 35].
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Table 3. Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset, along withthe amount of reference genomes used to generate the dataset
Dataset Identifier No. of samples Size (GB) No. reference genomes

Marine marmg 10 50 622Strain Madness strmg 100 200 408Human Airways h_airways 10 44 1394Human Genital h_urogenital 9 39 1394Human Gut h_gastrointestinal 10 44 1057Human Oral h_oral 10 43 1057Human Skin h_skin 10 44 1394
Table 4. Output files for each strategy. If only one dataset/group is being analysed, assembly and binning results are named as “Coassembly” and“Cobinning” respectively. If multiple datasets/groups are used, the results are named according to the group/dataset’s name.

Strategy Description Reads files Assemblies Bins

SASB Single assembly, Single binning Sample_0.fastq Sample_0_contigs.fasta Sample_0_bins/Sample_1.fastq Sample_1_contigs.fasta Sample_1_bins/Sample_2.fastq Sample_2_contigs.fasta Sample_2_bins/
SACB Single assembly, Cobinning Sample_0.fastq Sample_0_contigs.fasta Cobinning_bins/Sample_1.fastq Sample_1_contigs.fastaSample_2.fastq Sample_2_contigs.fasta
CACB Coassembly, Cobinning Sample_0.fastq Coassembly_contigs.fasta Cobinning_bins/Sample_1.fastqSample_2.fastq

taining sample names and file paths to the raw reads, and a con-figuration file in the YAML format, which will set the workflowparameters (see Fig 1). These files can be automatically generatedby Metaphor and edited by the user, or created from scratch. Theoutput of Metaphor consists of a directory for each module, furthersubdivided into the rules within each module. This is described indetail in the documentation [38].

Assessment on CAMI II synthetic datasets

To demonstrate the functionality of Metaphor, we analysed datasetsfrom CAMI II [8]. All datasets consist of short and long reads gener-ated by simulation of collections of reference genomes [39]). Onlyshort reads were used for each dataset, as Metaphor does not yetsupport long reads. Specifically, we used the Marine metagenomedataset (identified as ‘marmg’), the Strain Madness dataset (iden-tified as ‘strmg’), and the Human Microbiome dataset, which con-sists of five sets of samples, each corresponding to a differentsampling location in the human body, which were treated as dis-tinct datasets (3). The following strategies were employed for eachdatasets: single assembly, single binning (‘SASB’), where each sam-ple is individually assembled and binned; single assembly, cobin-ning (‘SACB’), where each sample is assembled individually andthen binned with other samples from the same dataset; coassem-bly, cobinning (‘CACB’), where all samples from the dataset wereassembled and binned together. Table 4 illustrates how this worksin practice, in terms of generated output files. Metaphor allowsdefining multiple groups for coassembly or cobinning to analysemultiple independent datasets with a single execution.
In order to assess the effect of different assembly strategies, weused MetaQUAST [18] to compare the assemblies generated by theworkflow with the collections of reference genomes. For the differ-ent binning strategies, we compared metrics obtained from DASTool, the software used for dereplicating and evaluating genome

bins, after a second round of dereplication with dRep [40]. This isbecause data generated with the SASB strategy will likely resultsin redundant bins, as for that strategy there is no dereplicationbetween samples and since samples within a dataset have similarcomposition, it is likely that a genome bin can be generated repeat-edly by different samples. dRep performs dereplication based onthe Average Nucleotide Identity between genomes, a metric whichhas been consistently used as a proxy to differentiate taxonomy atthe species and strain levels [41]. dRep was run with default clus-tering parameters, and without any length, completeness, or con-tamination cutoffs. We used Spartan [42], the High PerformanceComputing (HPC) system at The University of Melbourne to run thepipeline. Jobs were dispatched to nodes with the SLURM scheduler,using up to 64 processors and 300 GB RAM per node.

Results and Discussion

After running Metaphor on the CAMI II Marine, Strain Madness andHuman Microbiome datasets, we illustrate the different outputsgenerated by the workflow, and compare the effects of differentassembly and binning strategies on workflow performance.

Reconstruction of metagenome-assembled genomes

Metaphor produces genome bins generated with three tools: Vamb,MetaBAT2 and CONCOCT [25, 26, 27] that are refined with DAS Tool[28]. DAS Tool performs bin refinement through a "dereplication,aggregation and scoring" process, in which candidate bins are ini-tially scored based on the presence/absence of single-copy markergenes (SCGs, which are a proxy for bin completeness). Redundantcandidate bin sets are then aggregated and an iterative scoring pro-cess is performed, so only the best-quality, non-redundant binsremain; the bin score (Sb) increases with the number of SCGs and
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Figure 2. Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the ‘CACB’ (coassembly, cobinning) setting. Panel A shows a
stacked histogram of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line. Panels B and C show, respectively, the size (in base pairs)
and N50 of bins. The Y-axis is in log-scale. Panel D shows a scatterplot of completeness and redundancy for each bin. Colours indicate the tool used to generate the bin, and
the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of Panel A). Panel E shows how
many bins passed or failed the quality threshold for each binning tool.

decreases with duplicate SCGs per bin. Please refer to [28], Figure 1and Equation 1 for an overview of the DAS algorithm and the for-mula to determine the bin score, respectively. The input for eachbinning tool differs slightly, but they all rely on the catalogue ofcontigs obtained from the assembly and the coverage files obtainedfrom the read mapping module (see Fig 1). A report is generated foreach of the binning groups (only one is generated if cobinning isperformed), which highlights three key metrics: completeness, re-dundancy, and bin score. The first two metrics are calculated by thepresence/absence of single-copy genes, and the latter is a functionof the former two. Plots generated by an example report are shownin Fig 2. It is possible to compare the performance of the differentbinning software and obtain the proportion of bins above a speci-fied particular quality threshold based on the bin score. The sourcetable for the report is provided, so that users can generate customreports and inspect specific individual bins. Bins that pass the qual-ity threshold are stored in individual FASTA files, so they can easilybe used for downstream analyses with tools such as CheckM orGTDB-Tk [43, 44]. We chose not to include these software in theworkflow as they rely on fairly large reference databases and/orcontain several different steps that are dependent on third-partysoftware, which would affect Metaphor’s portability. Bin collectionsgenerated with Metaphor can be imported into the Anvi’o alongwith coverage data (BAM files), so users can use the interactiveinterface of Anvi’o to examine the bins.

Contig-level taxonomic and functional profiling

To facilitate quantitative metagenomics applications, Metaphor’sannotation module generates contig-level functional and taxo-nomic profiles based on the NCBI COG database [23]. These areobtained by predicting coding sequences with Prodigal and thenaligning the resulting amino acid files with Diamond [21, 22] inthe “iterative” mode. This setting performs repeated rounds ofalignment, with an increasing degree of sensitivity when no hitsare detected in the previous round. Abundances for each feature are

calculated based on the coverage of all coding sequences which alignto that feature. Fig 3 illustrates the profile visualisations offered byMetaphor: a heatmap of COG categories for the functional profileand a stacked barplot for the most abundant taxa (for the latter, oneplot is generated for each taxonomic rank). The annotation moduleoutputs count tables with both absolute and relative abundance val-ues of taxa and functional categories, and may be directly importedby downstream statistical toolkits such as MixOmics or PhyloSeq[10, 11].

Quality control and performance metrics

Additional outputs produced by Metaphor include the quality con-trol reports from the fastp and FastQC tools, with a summary ofFastQC outputs being produced by MultiQC [14, 15, 16]. A simplereport is produced by the assembly module with sequence statis-tics of the assembled contigs (e.g. N50, number of contigs, totaland mean length of contigs), and performance metrics. At the endof the workflow execution, the postprocessing module generatesfigures obtained from the “benchmark” files provided by Snake-make. These files contain process information such as runtime andmemory consumption. Metaphor plots these metrics in two ways:total per rule and per-sample mean (Fig 4) as some rules run onlyonce across all samples, while other rules run per sample. Theseplots help identify computational bottlenecks and assess whethercomputing resources are adequate.

Assembly and binning strategies

The effects of distinct assembly and binning strategies on the finaloutput of metagenomic workflows are highly dependent on the datasource and research context [8]. As such, the choice of individualor group assembly and binning can only be assessed a posteriori.We compared three different strategies: single assembly and singlebinning (‘SASB’), single assembly and cobinning (‘SACB’), andcoassembly and cobinning (‘CACB’), see Table 4 and Section ‘As-
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Figure 3. Annotation plots generated by Metaphor on the Strain Madness (‘strmg’)
and the Marine (‘marmg’) datasets. Panel A displays the functional profile as a
heatmap of the relative abundance of functional COG categories (Y-axis) across
samples (X-axis) for five samples from Strain Madness and Marine datasets. Panel
B displays the taxonomic profile of the Marine dataset as a stacked barplot of relative
abundance of taxa. In this case, the phylum rank was used, but Metaphor generates
this for the most common taxonomic ranks (phylum, class, order, family, genus,
species). The number of abundant taxa can be easily adjusted in the workflow
settings. For both taxonomic and functional profiles, abundance of each feature is
calculated from coverage values for each gene.

sessment on CAMI II synthetic datasets’ for details. For assembly,we used the five different groups in the Human Microbiome datasetalong with the Strain Madness and Marine datasets. We only usedthe latter two datasets for the binning assessment.
We used six metrics to evaluate assembly performance: per-centage of recovered genome fraction, size of the largest contig,duplication ratio, length of misassembled contigs, number of misas-semblies, and number of mismatches per 100 thousand base pairs.High values for the first two metrics and low values for the lastfour indicate better performance. We observed a general trade-offbetween assembly completeness (represented by the first two met-rics), and the number of errors in the assembly (represented bythe last four metrics) (Figure S1). In most datasets, assemblieswere more complete and contiguous, albeit with more errors whenthe Coassembly strategy was used. The exception was the StrainMadness (‘strmg’) dataset, for which the Individual assembly wasmore complete and contiguous, albeit with more errors. This maybe attributed to the high degree of strain/intraspecies diversity inthat dataset [8]. A high degree of similarity between the relatedgenomes likely confounds assembly algorithms, and pooling sam-ples together may aggravate this effect [5].
To evaluate differences between binning strategies, we com-pared the number and quality of bins after refinement with DASTool. Bins generated with each approach were further dereplicated

with dRep [40]. This is because the SASB strategy generates a setof bins for each sample, and datasets with similar composition willlikely generate redundant bins, as there is no dereplication of binsbetween samples. Results varied significantly between the Marineand Strain Madness datasets. In both datasets, the mean bin scorewas the highest for the CACB strategy (Figure S3). However, in theStrain Madness dataset, CACB produced a significantly lower num-ber of bins (33 compared with 259 and 215 generated with SASB andSACB), which did not occur in the Marine dataset. The performanceof each binning tool is also variable between strategies and is con-ditional on the characteristics of the original dataset, with no clear"winner", and each tool favouring particular performance met-rics, in agreement with results from the 2nd CAMI Challenge [8].Tools like DAS Tool attempt to conciliate the output of multiple bin-ning algorithms to generate a consensus output which theoreticallyoutperforms each individual algorithm.
Since the binning performance is assessed as a proxy of the com-bination of quantity and quality of generated bins, rather than onlyone metric or the other, we calculated the cumulative bin score (thesum of scores of all bins) and the number of bins above an increas-ing score threshold, shown on Fig 6. The higher the threshold, themore significant the differences between the cumulative scores,as only bins with the highest quality compose the score. For theMarine dataset, we observed a higher score and a larger numberof bins in the CACB strategy and the exact opposite in the StrainMadness dataset. In both datasets, there was a clear differencebetween SASB before dereplication and the other strategies, con-firming that several highly similar samples produce redundant bins.That difference was also present in the SACB strategy, albeit notso pronounced (see Figure S4 for the comparison of dereplicatedand non-dereplicated data). This suggests that for both of thesestrategies, further dereplication is recommended [5]. Although theStrain Madness dataset shows fewer bins generated with CACB —asummary of the bins recovered with that dataset is displayed on ??.The cumulative bin score for that strategy remained similar to SACBand SASB above the 0.8 score threshold, since there are fewer binswith a score lower than that. In that same dataset, SASB showedthe best performance, although differences were small above the0.8 threshold. In the Marine dataset, there were more pronounceddifferences between strategies. CACB produced the larger quantityand higher cumulative score of bins, followed by SASB and SACB.
In summary, our results indicate that, for most metagenomicanalysis scenarios, coassembly followed by cobinning is recom-mended, assuming that samples are sourced from a similar envi-ronment or population. The exception to this is when when thereis a high level of intraspecies/strain-level diversity across samples,like in the Strain Madness dataset. In that scenario, single assemblyfollowed by single binning is preferred, followed by dereplication ofbins between samples. There is, however, a trade-off between thedifferent approaches, as computational requirements are higherfor the pooled strategies. Coassembly resulted in higher genome re-covery fractions and larger contigs, although usually at the expenseof a higher number of misassemblies and higher duplication ratio.When combining coassembly with cobinning, there is a remark-able improvement in the quantity and quality of bins generated fora diverse dataset (represented by the Marine dataset), where thedifference was negligible in the Strain Madness dataset. Therefore,when deciding the assembly and binning strategy, it is important toconsider the expected strain-level diversity and abundances of eachindividual genome, as the interaction between these factors is likelyto limit the resolution of recovered bins. This is shown in the CAMIII challenge [8] (see Figure 1g); genomes with low strain diversity(i.e. are less than 95% similar with any other genomes) have highercorrelation between sequencing coverage and recovered fractionthan common genomes (≥ 95% similar to other genomes in thesample), although many times sequencing coverage was not allcorrelated with genome recovery fraction, specially for smaller binsthat represent plasmids or circular elements.
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Figure 4. Performance metrics report generated by Metaphor on the Marine dataset processed with the SASB strategy. Total runtime per rule (A), mean runtime per
sample (B), total memory usage per rule (C), and mean memory usage per sample (D). X-axis is in log format. Cutoffs are applied to omit rules with short runtime or low
memory usage. Colours indicate the workflow module of each rule.

Availability and Future Directions

Metaphor is available through Bioconda [45], a popular repositoryof bioinformatics software. It can be installed with a single com-mand from the conda package manager [46] or from source usingpip, the Python package manager. The installation of all third-partysoftware used by Metaphor is handled automatically by Snakemakeand conda. It can be easily deployed in different computing en-vironments, such as high performance computing clusters andcloud instances, due to Snakemake’s support of execution profiles.Metaphor is developed with documented best practices in work-flow development [6, 47], striving for reproducibility and trans-parency of its results. Data used for the testing Metaphor’s instal-lation (see documentation for details) is available from GitHub athttps://github.com/vinisalazar/mg-example-data. This data is asubset of the CAMI I challenge data [36] that is reduced in size inorder to run test commands in a reasonable time.
The workflow may be extended to support downstreamtools such for genome analysis such as GTDB-Tk, CheckM, anddRep. This may help with further improvement of strain-levelresolution in bins; there are a number of strategies for that, suchas identification of misassembled contigs or using the assemblygraph for variant detection [48, 49]. New functionality may alsobe added for the identification of eukaryotic and viral contigs;

Metaphor would benefit from new third-party software to facilitatethe generation of non-prokaryotic bins in the near future. Theoutput of Metaphor’s ‘annotation’ module is suitable for ad hocidentification of eukaryotic and viral contigs; after selecting theannotated prokaryotic contigs, it is possible to filter them out,leaving unannotated (putative) eukaryotic and viral contigs. Thesecan then be used as input for a eukaryotic or viral discoverypipeline [50, 51, 52], but this process could be further improved byfacilitating the use of custom reference databases in the annotationmodule. This can also be done directly with the output of theassembly module, but in that case there won’t be any screeningfor prokaryotic contigs. One drawback of this approach is thateach eukaryotic/viral discovery pipeline has specific input dataformatting requirements. This integration with non-prokaryoticpipelines, along with support for long reads, are priority featuresto be added to future major versions of Metaphor.

Availability checklist

Project name: MetaphorProject home page: https://github.com/vinisalazar/metaphorDocumentation: https://metaphor-workflow.readthedocs.io/

https://github.com/vinisalazar/mg-example-data
https://github.com/vinisalazar/metaphor
https://metaphor-workflow.readthedocs.io/
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Figure 5. Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the MetaQUAST tool. Data points
above the 98th percentile were classified as outliers and removed from the figure to improve visualisation. See Figure S1 for the full data. The title at the top of each panel
indicates the plotted metric. Panels A and C show percentages along the X-axis, while the remainder show absolute values.

Operating system(s): Linux, Mac OS (Intel)Programming language: Snakemake (Python 3)Other requirements: Conda, Snakemake v7 or higher, Python 3.7 orhigher.License: MIT
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Figure 6. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Lines show the cumulative bin score (A and B)
and number of bins (C and D) along the Y-axis, for bins above a certain score threshold (X-axis). Left column shows Marine dataset, and right column shows Strain Madness
dataset.



10 | GigaScience, 2023, Vol. 00, No. 0

Declarations

The authors declare they have no competing interests.

Funding

VWS is funded by a Melbourne Research Scholarship from TheUniversity of Melbourne. VRM is funded by an Australian Re-search Council DECRA Fellowship DE220100965. KALC was sup-ported in part by the National Health and Medical Research Council(NHMRC) Career Development fellowship (GNT1159458). This re-search was also funded by the Australian Research Council projectDP200101613.

Author’s Contributions

VWS - Conceptualization, Data curation, Methodology, Investiga-tion Software, Writing - original draft; BS, MMQ, RT, ET - Concep-tualization, Writing - review and editing; VRM, HV, KALC - Con-ceptualization, Supervision, Funding Acquisition, Writing - reviewand editing.

Acknowledgments

Metaphor benefited strongly from experience gained developingMetaGenePipe [53], a Cromwell-based workflow for assembly andannotation of metagenomic contigs. This research was supportedby The University of Melbourne’s Research Computing Servicesand the Petascale Campus Initiative. We thank Francesco Ricciand Uthpala Pushpakumara for providing datasets for early trialsof Metaphor, and colleagues from the Lê Cao lab for sharing theirfeedback.

References

1. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M,Shi ZJ, et al. A unified catalog of 204,938 reference genomesfrom the human gut microbiome. Nature Biotechnology2021 Jan;39(1):105–114. https://www.nature.com/articles/
s41587-020-0603-3, number: 1 Publisher: Nature PublishingGroup.2. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, WoodcroftBJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Na-ture Microbiology 2017;2(11):1533–1542. http://dx.doi.org/
10.1038/s41564-017-0012-7, publisher: Springer US ISBN:4156401700127.3. Tully BJ, Graham ED, Heidelberg JF. The reconstructionof 2,631 draft metagenome-assembled genomes from theglobal oceans. Scientific Data 2018 Jan;5(1):170203. https:
//www.nature.com/articles/sdata2017203, bandiera_abtest: aCc_license_type: cc_publicdomain Cg_type: Nature Re-search Journals Number: 1 Primary_atype: Research Pub-lisher: Nature Publishing Group Subject_term: Bioin-formatics;Genome;Metagenomics;Water microbiology Sub-ject_term_id: bioinformatics;genome;metagenomics;water-microbiology.4. Setubal JC. Metagenome-assembled genomes: concepts, analo-gies, and challenges. Biophysical Reviews 2021 Dec;13(6):905–909. https://doi.org/10.1007/s12551-021-00865-y.5. Nelson WC, Tully BJ, Mobberley JM. Biases in genome recon-struction from metagenomic data. PeerJ 2020 Oct;8:e10119.
https://peerj.com/articles/10119.6. Reiter T, Brooks PT, Irber L, Joslin SEK, Reid CM,Scott C, et al. Streamlining data-intensive biology

with workflow systems. GigaScience 2021 Jan;10(1).
https://academic.oup.com/gigascience/article/doi/10.
1093/gigascience/giaa140/6092773.7. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgunmetagenomics, from sampling to analysis. Nature Biotech-nology 2017 Sep;35(9):833–844. https://www.nature.com/
articles/nbt.3935, bandiera_abtest: a Cg_type: Nature Re-search Journals Number: 9 Primary_atype: Reviews Publisher:Nature Publishing Group Subject_term: Microbial communi-ties;Computational biology and bioinformatics;MetagenomicsSubject_term_id: communities;computational-biology-and-bioinformatics;metagenomics.8. Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gure-vich A, et al. Critical Assessment of Metagenome Interpre-tation: the second round of challenges. Nature Methods2022 Apr;19(4):429–440. https://www.nature.com/articles/
s41592-022-01431-4, number: 4 Publisher: Nature PublishingGroup.9. Delgado LF, Andersson AF. Evaluating metagenomic as-sembly approaches for biome-specific gene catalogues. Mi-crobiome 2022 May;10(1):72. https://doi.org/10.1186/
s40168-022-01259-2.10. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R pack-age for ‘omics feature selection and multiple data integration.PLoS Computational Biology 2017;.11. McMurdie PJ, Holmes S. phyloseq: An R Package forReproducible Interactive Analysis and Graphics of Mi-crobiome Census Data. PLOS ONE 2013 Apr;8(4):e61217.
https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0061217, publisher: Public Library of Science.12. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS,et al. Community-led, integrated, reproducible multi-omicswith anvi’o. Nature Microbiology 2020 Dec;6(1):3–6. https:
//www.nature.com/articles/s41564-020-00834-3.13. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-TinchCH, Sochat V, et al. Sustainable data analysis with Snake-make. F1000 Research 2021 Apr;https://f1000research.com/
articles/10-33, type: article.14. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-oneFASTQ preprocessor. Bioinformatics 2018 Sep;34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560.15. Andrews S. FastQC A Quality Control tool for High Through-put Sequence Data. Online resource 2020 Jan;https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/.16. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summa-rize analysis results for multiple tools and samples in a singlereport. Bioinformatics 2016;.17. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: anultra-fast single-node solution for large and complex metage-nomics assembly via succinct de Bruijn graph. Bioinformat-ics 2015 May;31(10):1674–1676. https://doi.org/10.1093/
bioinformatics/btv033.18. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST:evaluation of metagenome assemblies. Bioinformatics2016 Apr;32(7):1088–1090. https://doi.org/10.1093/
bioinformatics/btv697.19. Li H. Minimap2: pairwise alignment for nucleotide sequences.Bioinformatics 2018 Sep;34(18):3094–3100. https://doi.org/
10.1093/bioinformatics/bty191.20. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, PollardMO, et al. Twelve years of SAMtools and BCFtools. GigaScience2021 Feb;10(2):giab008.21. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, HauserLJ. Prodigal: prokaryotic gene recognition and translationinitiation site identification. BMC bioinformatics 2010;11:119.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2848648&tool=pmcentrez&rendertype=abstract, iSBN:1471-2105 (Electronic)\r1471-2105 (Linking).

https://www.nature.com/articles/s41587-020-0603-3
https://www.nature.com/articles/s41587-020-0603-3
http://dx.doi.org/10.1038/s41564-017-0012-7
http://dx.doi.org/10.1038/s41564-017-0012-7
https://www.nature.com/articles/sdata2017203
https://www.nature.com/articles/sdata2017203
https://doi.org/10.1007/s12551-021-00865-y
https://peerj.com/articles/10119
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giaa140/6092773
https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giaa140/6092773
https://www.nature.com/articles/nbt.3935
https://www.nature.com/articles/nbt.3935
https://www.nature.com/articles/s41592-022-01431-4
https://www.nature.com/articles/s41592-022-01431-4
https://doi.org/10.1186/s40168-022-01259-2
https://doi.org/10.1186/s40168-022-01259-2
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061217
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061217
https://www.nature.com/articles/s41564-020-00834-3
https://www.nature.com/articles/s41564-020-00834-3
https://f1000research.com/articles/10-33
https://f1000research.com/articles/10-33
https://doi.org/10.1093/bioinformatics/bty560
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/bioinformatics/btv697
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2848648&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2848648&tool=pmcentrez&rendertype=abstract


Salazar et al. | 11

22. Buchfink B, Xie C, Huson DH. Fast and sensitive protein align-ment using DIAMOND. Nature Methods 2014;https://github.
com/bbuchfink/diamond.23. Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, LandsmanD, Koonin EV. COG database update: focus on microbial di-versity, model organisms, and widespread pathogens. NucleicAcids Research 2021 Jan;49(D1):D274–D281.24. Seemann T. Prokka: Rapid prokaryotic genome annotation.Bioinformatics 2014;30(14).25. Nissen JN, Johansen J, Allesøe RL, Sønderby CK, ArmenterosJJA, Grønbech CH, et al. Improved metagenome binningand assembly using deep variational autoencoders. NatureBiotechnology 2021 Jan;http://www.nature.com/articles/
s41587-020-00777-4, publisher: Nature Research.26. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT2: An adaptive binning algorithm for robust and efficientgenome reconstruction from metagenome assemblies. PeerJ2019;2019(7):1–13.27. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, QuickJ, Ijaz UZ, et al. Binning metagenomic contigs by coverageand composition. Nature Methods 2014 Nov;11(11):1144–1146. https://www.nature.com/articles/nmeth.3103,bandiera_abtest: a Cg_type: Nature Research JournalsNumber: 11 Primary_atype: Research Publisher: Na-ture Publishing Group Subject_term: Genome informat-ics;Machine learning;Metagenomics Subject_term_id:genome-informatics;machine-learning;metagenomics.28. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, TringeSG, et al. Recovery of genomes from metagenomes via adereplication, aggregation and scoring strategy. Nature Mi-crobiology 2018 Jul;3(7):836–843. https://www.nature.com/
articles/s41564-018-0171-1, number: 7 Publisher: NaturePublishing Group.29. Churcheward B, Millet M, Bihouée A, Fertin G, Chaffron S.MAGNETO: An Automated Workflow for Genome-ResolvedMetagenomics. mSystems 2022 Jun;0(0):e00432–22.
https://journals.asm.org/doi/10.1128/msystems.00432-22,publisher: American Society for Microbiology.30. Kieser S, Brown J, Zdobnov EM, Trajkovski M, McCue LA. AT-LAS: a Snakemake workflow for assembly, annotation, andgenomic binning of metagenome sequence data. BMC Bioin-formatics 2020 Dec;21(1):1–8. https://link.springer.com/
article/10.1186/s12859-020-03585-4, number: 1 Publisher:BioMed Central.31. Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexi-ble pipeline for genome-resolved metagenomic data analy-sis. Microbiome 2018 Sep;6(1):158. https://doi.org/10.1186/
s40168-018-0541-1.32. Krakau S, Straub D, Gourlé H, Gabernet G, Nahnsen S. nf-core/mag: a best-practice pipeline for metagenome hybrid as-sembly and binning. NAR Genomics and Bioinformatics 2022Mar;4(1):lqac007. https://doi.org/10.1093/nargab/lqac007.33. McKinney W. pandas: a foundational Python library for dataanalysis and statistics. Python for High Performance and Sci-entific Computing 2011;14(9).34. Hunter JD. Matplotlib: A 2D Graphics Environment. Computingin Science & Engineering 2007;9(3):90–95. http://ieeexplore.
ieee.org/document/4160265/.35. Waskom M, Botvinnik O, Ostblom J, Gelbart M, LukauskasS, Hobson P, et al. Seaborn v0.10.0. Online resource 2020Apr;https://zenodo.org/record/3767070.36. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, DrögeJ, et al. Critical Assessment of Metagenome Interpretation- A benchmark of metagenomics software. Nature Methods2017;14(11):1063–1071.37. Wratten L, Wilm A, Göke J. Reproducible, scalable,and shareable analysis pipelines with bioinformaticsworkflow managers. Nature Methods 2021 Sep;p. 1–8.

https://www.nature.com/articles/s41592-021-01254-9,bandiera_abtest: a Cg_type: Nature Research JournalsPrimary_atype: Reviews Publisher: Nature PublishingGroup Subject_term: Computational platforms and environ-ments;Programming language;Software Subject_term_id:computational-platforms-and-environments;programming-language-and-code;software.38. Salazar VW. Metaphor’s documentation. Online re-source 2023;https://metaphor-workflow.readthedocs.io/en/
latest/.39. Fritz A, Hofmann P, Majda S, Dahms E, Dröge J, Fiedler J, et al.CAMISIM: simulating metagenomes and microbial communi-ties. Microbiome 2019 Feb;7(1):17. https://doi.org/10.1186/
s40168-019-0633-6.40. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool forfast and accurate genomic comparisons that enables improvedgenome recovery from metagenomes through de-replication.The ISME Journal 2017 Dec;11(12):2864–2868. https://
www.nature.com/articles/ismej2017126, bandiera_abtest: aCg_type: Nature Research Journals Number: 12 Primary_atype:Research Publisher: Nature Publishing Group Subject_term:Metagenomics;Next-generation sequencing Subject_term_id:metagenomics;next-generation-sequencing.41. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT,Aluru S. High throughput ANI analysis of 90K prokaryoticgenomes reveals clear species boundaries. Nature Commu-nications 2018 Nov;9(1):5114. https://www.ncbi.nlm.nih.gov/
pubmed/30504855, publisher: Nature Publishing Group UK.42. Lafayette L, Wiebelt B. Spartan and NEMO: Two HPC-Cloud Hy-brid Implementations. 2017 IEEE 13th International Conferenceon e-Science (e-Science) 2017 Oct;p. 458–459.43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, TysonGW. CheckM: Assessing the quality of microbial genomes re-covered from isolates, single cells, and metagenomes. GenomeResearch 2015;25(7):1043–1055.44. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the GenomeTaxonomy Database. Bioinformatics 2019;36(6):1925–1927. https://academic.oup.com/bioinformatics/
article-abstract/36/6/1925/5626182.45. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable and comprehensivesoftware distribution for the life sciences. Nature Methods2018 Jul;15(7):475–476. https://www.nature.com/articles/
s41592-018-0046-7, number: 7 Publisher: Nature PublishingGroup.46. Inc A. Conda — Conda documentation. Online resource2023;https://docs.conda.io/en/latest/.47. Jackson M, Kavoussanakis K, Wallace EWJ. Using proto-typing to choose a bioinformatics workflow managementsystem. PLOS Computational Biology 2021 Feb;17(2):e1008622.
https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1008622, publisher: Public Library ofScience.48. Lai S, Pan S, Sun C, Coelho LP, Chen WH, Zhao XM.metaMIC: reference-free misassembly identification and cor-rection of de novo metagenomic assemblies. GenomeBiology 2022 Nov;23(1):242. https://doi.org/10.1186/
s13059-022-02810-y.49. Quince C, Nurk S, Raguideau S, James R, Soyer OS, SummersJK, et al. STRONG: metagenomics strain resolution on assemblygraphs. Genome Biology 2021 Jul;22(1):214. https://doi.org/
10.1186/s13059-021-02419-7.50. Pandolfo M, Telatin A, Lazzari G, Adriaenssens EM, Vitulo N.MetaPhage: an Automated Pipeline for Analyzing, Annotating,and Classifying Bacteriophages in Metagenomics SequencingData. mSystems 2022 Sep;7(5):e00741–22. https://journals.
asm.org/doi/10.1128/msystems.00741-22, publisher: Ameri-

https://github.com/bbuchfink/diamond
https://github.com/bbuchfink/diamond
http://www.nature.com/articles/s41587-020-00777-4
http://www.nature.com/articles/s41587-020-00777-4
https://www.nature.com/articles/nmeth.3103
https://www.nature.com/articles/s41564-018-0171-1
https://www.nature.com/articles/s41564-018-0171-1
https://journals.asm.org/doi/10.1128/msystems.00432-22
https://link.springer.com/article/10.1186/s12859-020-03585-4
https://link.springer.com/article/10.1186/s12859-020-03585-4
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1093/nargab/lqac007
http://ieeexplore.ieee.org/document/4160265/
http://ieeexplore.ieee.org/document/4160265/
https://zenodo.org/record/3767070
https://www.nature.com/articles/s41592-021-01254-9
https://metaphor-workflow.readthedocs.io/en/latest/
https://metaphor-workflow.readthedocs.io/en/latest/
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1186/s40168-019-0633-6
https://www.nature.com/articles/ismej2017126
https://www.nature.com/articles/ismej2017126
https://www.ncbi.nlm.nih.gov/pubmed/30504855
https://www.ncbi.nlm.nih.gov/pubmed/30504855
https://academic.oup.com/bioinformatics/article-abstract/36/6/1925/5626182
https://academic.oup.com/bioinformatics/article-abstract/36/6/1925/5626182
https://www.nature.com/articles/s41592-018-0046-7
https://www.nature.com/articles/s41592-018-0046-7
https://docs.conda.io/en/latest/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008622
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008622
https://doi.org/10.1186/s13059-022-02810-y
https://doi.org/10.1186/s13059-022-02810-y
https://doi.org/10.1186/s13059-021-02419-7
https://doi.org/10.1186/s13059-021-02419-7
https://journals.asm.org/doi/10.1128/msystems.00741-22
https://journals.asm.org/doi/10.1128/msystems.00741-22


12 | GigaScience, 2023, Vol. 00, No. 0

can Society for Microbiology.51. Karlicki M, Antonowicz S, Karnkowska A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioin-formatics 2022 Jan;38(2):344–350. https://doi.org/10.1093/
bioinformatics/btab672.52. Pronk L, Medema M. Whokaryote: distinguishing eukary-otic and prokaryotic contigs in metagenomes based on genestructur; 2021.53. Shaban B, Quiroga MdM, Turnbull R, Tescari E, Lê Cao KA,Verbruggen H. MetaGenePipe: An Automated, Portable Pipelinefor Contig-based Functional and Taxonomic Analysis. Journalof Open Source Software 2023 Feb;https://joss.theoj.org/
papers/c9c52942084258507eeb1693b83153ba.

https://doi.org/10.1093/bioinformatics/btab672
https://doi.org/10.1093/bioinformatics/btab672
https://joss.theoj.org/papers/c9c52942084258507eeb1693b83153ba
https://joss.theoj.org/papers/c9c52942084258507eeb1693b83153ba


Salazar et al. | 13

Supplementary Material



14 | GigaScience, 2023, Vol. 00, No. 0

Figure S1. Differences between assembly strategies across datasets. Same data as Fig 5, but including outliers.

Figure S2. Boxplot of bin scores across different strategies. Eachdata point is a genome bin, and Y-axis depicts bin scores from 0to 1. Columns separate datasets, and colours represent differentstrategies. Numbers underneath each bar show the number of datapoints for that bar. Bins sets were dereplicated with dRep.

FigureS3. Boxplot of bin scores across different strategies for non-
dereplicated data. Same as Figure S2, but with non-dereplicateddata. Each data point is a genome bin, and Y-axis depicts bin scoresfrom 0 to 1. Columns separate datasets, and colours represent dif-ferent strategies. Numbers underneath each bar show the numberof data points for that bar.
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Figure S4. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Solid linesshow the same data as Fig 6, and dashed lines show data based on bins prior to dereplication with dRep.
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Table S1. Summary of genome bins recovered from the Strain Madness dataset, CACB strategy. “Bin ID” indicates the binning algorithmthat generated the bin, “Bin score Sb” is the relative bin score, ‘SCG’ refers to ‘single copy gene’ in “SCG completeness” and “SCGredundancy”, “FastANI reference” and “GTDB classification” refer to the reference genome and corresponding taxonomy assignment.Taxonomy determined with GTDB-Tk v2.3.0, reference data r214 [44].
Bin ID Bin score Sb SCG completeness SCG redundancy FastANI reference GTDB Classificationmetabat2.1221 1 100 0 GCF_004793475.1 Bacteroides sp002491635concoct.122 1 100 0 GCF_024397795.1 Lactobacillus intestinalisvamb.S1C5590 1 100 0 GCF_000614185.1 Phocaeicola sartoriimetabat2.4898 1 100 0 GCF_000969835.1 Parabacteroides goldsteiniiconcoct.156 0.98039216 98 0 GCF_003030305.1 Cutibacterium acnesconcoct.148 0.97843137 100 2 GCF_001436695.1 Lactobacillus taiwanensisconcoct.92 0.95686275 100 4 GCF_014863545.1 Paenibacillus lautus_Aconcoct.121 0.95686275 100 4 GCF_000012845.1 Parabacteroides distasonismetabat2.328 0.95686275 100 4 GCF_000016825.1 Limosilactobacillus reuterivamb.S1C971 0.94117647 94 0 GCF_000392875.1 Enterococcus faecalismetabat2.3846 0.93678431 98 4 GCA_009911065.1 Ventrimonas sp009911065concoct.136 0.91668667 96 4 GCF_001027105.1 Staphylococcus aureusmetabat2.1266 0.87258904 96 8 GCF_001544255.1 Enterococcus_B faeciumconcoct.115 0.67941176 71 2 GCF_016758115.1 Lactococcus sp002492185concoct.58 0.55843137 59 2 GCF_013394695.1 Streptococcus sp013394695metabat2.4512 0.2745098 27 0 GCF_001729805.1 Enterobacter roggenkampiimetabat2.2064 0.26315789 26 0 GCF_000742135.1 Klebsiella pneumoniaemetabat2.1951 0.21568627 22 0 GCF_001457635.1 Streptococcus pneumoniaemetabat2.3969 0.19607843 20 0 GCF_011064845.1 Citrobacter freundiimetabat2.1470 0.18421053 18 0 GCF_000215745.1 Klebsiella aerogenesconcoct.22 0.10526316 11 0 GCF_001729745.1 Enterobacter hormaechei_Aconcoct.103_sub 0.07894737 8 0 Unclassified Bacteriaconcoct.97_sub 0.05882353 6 0 Citrobacterconcoct.124_sub 0.05882353 6 0 Unclassified Bacteriaconcoct.27_sub 0.04473684 16 3 Enterobacterconcoct.91_sub 0.03921569 4 0 GCF_001729745.1 Enterobacter hormaechei_Aconcoct.159 0.02631579 3 0 Unclassified Bacteriaconcoct.64_sub 0.02631579 3 0 Unclassified Bacteriavamb.S1C21648 0.02631579 3 0 Unclassifiedmetabat2.3037_sub 0.01960784 2 0 Unclassified Bacteriaconcoct.13 0.01960784 2 0 Unclassified Bacteriavamb.S1C7072 0.01960784 2 0 Unclassified Bacteriaconcoct.35_sub 0.01417112 86 53 Klebsiella



 

 

 

Professor Kim-Anh Lê Cao 

Statistical Genomics  

NHMRC Career Development Fellow 

School of Mathematics and Statistics 

Melbourne Integrative Genomics 

The University of Melbourne | VIC 3010 

T: +61 (0)3834 43971 | kimanh.lecao@unimelb.edu.au 

         June 5 2023 

 

RE: Revision of manuscript GIGA-D-23-00067 

 

Dear Dr. Nogoy, 

On behalf of the authors of the Metaphor manuscript, please find attached our review 

response letter outlined. In the submission, you will also find a track-change PDF indicating 

the sections that have been modified. We have also fixed the titles in Panels A and C of 

Figures 5 and S1.  

Thank you for handling our manuscript, and we hope to hear from you soon, 

 

 

Yours sincerely, 

Prof Kim-Anh Lê Cao  

Cover letter revision to editor Click here to access/download;Personal
Cover;Cover_revision.docx

https://www.editorialmanager.com/giga/download.aspx?id=155007&guid=b79533c9-76ed-4328-b8d5-b2a9da7c3edb&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=155007&guid=b79533c9-76ed-4328-b8d5-b2a9da7c3edb&scheme=1


 

 

 

 



 

 

Reviewer reports: 

Reviewer #1: the authors present a snakemake-based workflow to automate and chain the main 

computational ingredients (assembly and binning) of genome-centric metagenomics; the authors 

developed a technically sound tool for this purpose, and by itself it is certainly valuable to the research 

community and worth of publication. however,  even if the article is casted as a technical note -hence 

with an emphasis on the design, implementation and assessment of the tool-, I feel that a more thorough 

discussion of both its abilities and inabilities (e.g. strain resolution, detection of low abundance 

organisms, identification of virus bins, etc) would be worth for a more general audience. On the same 

token, a more deep discussion of some of the results obtained with their tool (see below) would be of 

interest and would also illustrate useful use cases. 

 

We thank Reviewer #1 for their suggestions and believe that they have greatly improved the quality of 

the manuscript. We address each comment point-by-point in the following sections.  

 

I would suggest the following modifications/additions: 

 

-the experiments with the strain madness dataset suggest that the genomes (or fragments thereof, i.e. 

the bins) resolved should be viewed as "species" genomes, or composite genomes possibly originating 

from multiple strains. if so, do the authors think this represents a hard limit to the assembly + binning 

approach, or could further existing tools (e.g. performing variant detection on top of cross-assembly 

before the binning step) be integrated or developed in the future for strain-resolution (i.e. to identify 

strains not dominant in any sample)? 

 

Yes, it would be possible to integrate additional tools to further refine strain-resolution with. Metaphor. 

Currently, Metaphor uses DAS Tool as a bin refinement tool which selects a set of best-quality, non-

redundant bins. In scenarios where there is a high level of strain diversity, such as the Strain Madness 

dataset, the selection of bins performed by DAS Tool would indeed present a limit to the strain resolution, 

regardless of the selected strategy. However, in the “Single Binning” (SB) strategy, where each sample 

is binned individually, one can use tools like dRep (Olm et al 2017) to identify species clusters from the 

bins generated by DAS Tool for each sample. It is also possible to perform pre-binning steps which 

could aid binning resolution, such as evaluating the assembly with MetaQUAST (Mikheenko et al 2016) 

(which is supported in Metaphor), or detecting misassembled contigs with a tool such as metaMIC (Lai 

et al 2022). We added a section to the Availability and future directions section addressing this: 

 

The workflow may be extended to support downstream tools such for genome analysis such as 

GTDB-Tk, CheckM, and dRep. This may help with further improvement of strain-level resolution 

in bins; there are a number of strategies for that, such as identification of misassembled contigs 

or using the assembly graph for variant detection [48, 49]. 

 

Something which would also help increase strain-level resolution of bins would be to add support for 

long-reads data. This will be a priority for a future version of Metaphor. Adding such feature depends on 

the complexity, degree of “user-friendliness”, and code quality of  tools that integrate short and long-

reads data. We discuss this in the manuscript in the third paragraph of the Results and Discussion 

section: 
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[...] The choice of bioinformatics tools was informed by the results of the 2nd Critical Assessment 

for Metagenome Interpretation (CAMI II) [8, 36 ], striving for the maximum trade-off between 

performance, efficiency, and software sustainability. Although the latter is a subjective factor, 

selecting and streamlining dependencies with regard to code quality, maintenance, and 

community support is a critical factor when maintaining complex bioinformatics pipelines [6, 37].  

 

 

To conclude, it would definitely be possible to integrate existing tools to Metaphor to further refine strain 

resolution of metagenome-assembled genomes (MAGs). However, there is evidence to support that 

strain-level resolution is limited by sequencing technology, with long reads or hybrid approaches usually 

outperforming short reads (Gehrig et al 2022, Meyer et al 2022). There are tools which focus exclusively 

in obtaining higher resolution in metagenomic assemblies, such as STRONG (Quince et al 2021), and 

groups have achieved lineage-level resolution in MAGs using “a combination of HiFi sequencing, Hi-C 

binning and a computational phasing approach to resolve genome bins.” (Reiter & Brown 2022, Bickhart 

2022). Currently, Metaphor supports only the analysis of short-reads data, as it is designed for large-

scale, general-purpose analyses of massive (short-reads) datasets. We do have plans to integrate long-

reads support as we continue to maintain Metaphor in the future, but for the current version, we do not 

intend to add this particular feature as it may affect the stability of the workflow. As we discuss in the 

text (see: first paragraph of Introduction, third paragraph of Design and Implementation) one of the main 

challenges associated with genome-resolved metagenomic (GRM) workflows is that it is difficult to 

support and maintain such tools, due to the high number of dependencies and steps involved in the data 

analysis. Thus, it is important to manage workflow complexity and ensure that third-party tools use best 

practices in packaging and maintenance. A tool such as STRONG (Quince et al 2021), for example, is 

a separate workflow in and of itself and integrating it into Metaphor would greatly increase the complexity 

of the latter. 

 

-related, a simple summary of the number of individual strains recovered in individual bins for the strain 

madness experiment would be interesting. 

 

We now provide a supplementary table “Table S1” describing the retrieved strains for the CACB 

strategy. We omitted other strategies as they present a similar number of recovered high-quality bins 

(with score ≥ 0.8, Figure 6d). 

 

-another issue that would be worth discussing in my opinion is the impact of genome abundance on the 

recovery of corresponding bins and their quality. the platform developed by the authors appears to be 

well suited for such kind of analyses and the results would be of both theoretical and practical interest. 

to put it simply, what is the minimal initial coverage of genomes required in order for them to be 

recovered in bins of a given size and quality? 



 

 

 
Figure a: Bin score (x axis) by normalised sequencing depth across all contigs in the bin (y axis) for two 

datasets: marmg_cacb on the left and strmg_cacb on the right. Each point is a bin of contigs. Normalised 

sequencing depth of each bin is equal to the the sum of average depth of all contigs in the bin, divided 

by contig lengths, divided by total sequencing depth in all binned contigs of sample, multiplied by 1e9, 

and log-transformed (analogous to a log transcripts-per-million value). 

 

It is difficult to determine a minimal sequencing depth threshold in order to obtain a bin with a certain 

size and quality. As discussed by Nelson et al 2018, some regions of the genome may be harder to 

assemble and bin due to repetitiveness or peculiar nucleotide composition. Our data shows no 

correlation between sequencing depth across contigs in a bin and the resulting bin score (Figure a in 

this document). Meyer et al 2022 also discuss why some bins are more difficult to recover than others, 

due to factors such as e.g. uniqueness of the genome in the sample (low level of strain variation). We 

argue that this question will likely depend on the type of data that is being analysed, subject to variations 

due to source of sample, library preparation and sequencing protocol, and community structure. This is 

discussed in the last paragraph of the Results and Discussion, which also addresses the next point 

raised by the reviewer. 

 

-rem: theses two issues (strain-level diversity and individual strain genome abundances) likely interact 

to limit bin resolution, and this could be mentioned by the authors. 

 

We have edited the last paragraph of the Results and Discussion section to address this comment: 

 
[...] Therefore, when deciding the assembly and binning strategy, it is important to consider the 
expected strain-level diversity and abundances of each individual genome, as the interaction 
between these factors is likely to limit the resolution of recovered bins. This is shown in the CAMI 

II challenge [8] (see Figure 1g); genomes with low strain diversity (i.e. are less than 95% similar 

with any other genomes) have higher correlation between sequencing coverage and recovered 

fraction than common genomes (≥ 95% similar to other genomes in the sample), although many 

times sequencing coverage was not all correlated with genome recovery fraction, specially for 

smaller bins that represent plasmids or circular elements. 

 

 

-the data presented by the authors suggest that the metabat binning engine significantly outperforms 

the other two tools (concoct and vamb, which are both widely used), see e.g Figure 2; what would 



 

 

account for that, and do the authors think this is a general observation (i.e. beyond the specific CACB 

setting or marine metagenome shown in Fig 2)? 

 

To answer the reviewer’s question, we believe that this is not a generalised characteristic, but rather is 

due to the interaction between the binning algorithm and input data characteristics, but pinpointing the 

exact causes would be a challenging task which is out of the scope of the present manuscript. Meyer et 

al (2022) showed that different binning tools perform differently depending on the original dataset, with 

no clear “winner”. The idea behind a tool like DAS Tool is to conciliate the output of multiple binners to 

generate a consensus output which theoretically outperforms each individual binner. So, even if 

MetaBAT may have performed better in these particular datasets/contexts, by combining it with 

CONCOCT and vamb, we are able to obtain an improved end result. We have addressed this in the 

third paragraph to the Results and discussion: Assembly and binning strategies section: 

 

[...] The performance of each binning tool is also variable between strategies and is conditional 

on the characteristics of the original dataset, with no clear "winner", and each tool favouring 

particular performance metrics, in agreement with results from the 2nd CAMI Challenge [8]. 

Tools like DAS Tool attempt to conciliate the output of multiple binning algorithms to generate a 

consensus output which theoretically outperforms each individual algorithm. 

 

 

-a bin refinement step (based on the DAS tool and dereplication) is frequently mentioned but should be 

more detailed (including a precise definition of the bin quality metric used). 

 

We have added a section to Results and Discussion: Reconstruction of metagenome-assembled 

genomes addressing this: 

 

[...] DAS Tool performs bin refinement through a "dereplication, aggregation and scoring" 

process, in which candidate bins are initially scored based on the presence/absence of single-

copy marker genes (SCGs, which are a proxy for bin completeness). Redundant candidate bin 

sets are then aggregated and an iterative scoring process is performed, so only the best-quality, 

non-redundant bins remain; the bin score (Sb) increases with the number of SCGs and 

decreases with duplicate SCGs per bin. Please refer to [28], Figure 1 

and Equation 1 for an overview of the DAS algorithm and the formula to determine the bin score, 

respectively. [...]  

 

further rather minor comments: 

 

-in the abstract, when mentioning "technical challenges associated with...", it would be worth mentioning 

that algorithmic challenges are present as well. 

 

We have edited the Abstract to include this: 

 

[...] The limitations of assembly and binning algorithms also pose different challenges depending 

on the selected strategy to execute them. Both of these processes can be done for each sample 

separately or [...] 

 



 

 

-in the introduction, "It is hypothesised that pooled assembly and binning may lead to improved results 

when analysing communities with high genetic diversity, and to poorer results when there is a high level 

of intraspecies/strain-level diversity". I would assume there are many instances in the real world that are 

both, i.e. that present both high inter-species and intra-species genetic diversity, what then? 

 

Indeed, and Metaphor’s flexibility to change between the different assembly/binning strategies would be 

an advantage when dealing with that, as users can easily tweak their settings to run the workflow with 

different strategies. If that is possible, users could then combine all of the bins generated with the 

different strategies with a tool such as dRep (used in the manuscript). The choice will depend on the 

underlying biological question and on the available sequencing depth. We did not add anything to the 

manuscript for this point. 

 

-in the future directions, the authors mention the identification of eukaryotic and viral contigs and bins, 

and could shortly elaborate how this could be done properly. 

 

We added the following to the Results and discussion section: 

 

[...] The output of Metaphor’s ‘annotation’ module is suitable for ad hoc identification of eukaryotic 

and viral contigs; after selecting the annotated prokaryotic contigs, it is possible to filter them 

out, leaving unnannotated (putative) eukaryotic and viral contigs. These can then be used as 

input for a eukaryotic or viral discovery pipeline [48, 49, 50 ]. This can also be done directly with 

the output of the assembly module, but in that case there won’t be any screening for prokaryotic 

contigs. One drawback of this approach is that each eukaryotic/viral discovery pipeline has 

specific input data formatting requirements. This integration with non-prokaryotic pipelines, along 

with support for long reads, are priority features to be added to future major versions of Metaphor. 

 

-the sentence "In summary, our assessment of ..." at the end of the ms appears to have a syntactic 

problem. 

  

We have rephrased this sentence: 

 

In summary, our results indicate that, for most metagenomic analysis scenarios, coassembly 

followed by cobinning is recommended, assuming that samples are sourced from a similar 

environment or population. The exception to this is when there is a high level of 

intraspecies/strain-level diversity across samples, like in the Strain Madness dataset. In that 

scenario, single assembly followed by single binning is preferred, followed by dereplication of 

bins between samples. There is, however, a trade-off between the approaches, as computational 

requirements are higher for the pooled strategies. [...] 

 

Reviewer #2: The Metaphor is a workflow with high completeness for short-read-based metagenomic 

analysis. I look forward to its compatibility with long-read platforms (ONT and PacBio). This work is 

worth publishing. However, it is still a bioinformatic knowledge and skill-required toolkit. If the Metaphor 

can be integrated into a web-based platform, such as Galaxy or Kbase, it would be more user-friendly 

for much more users. 

 



 

 

We thank Reviewer #2 for their comments. We are considering adding the following two features to 

Metaphor in a future major version release:  

- Support for long reads (as discussed in our answer to Reviewer #1 above)  

- Deployment in a web-based workflow platform. For the latter, we have started drafting an XML 

configuration file to investigate the  deployment of Metaphor on Galaxy (see 

https://github.com/vinisalazar/metaphor/tree/dev/.github/planemo), using the Planemo 

(https://planemo.readthedocs.io/) tool, that is  officially supported by the Galaxy community. In 

the next months we will investigate whether this could be an appealing option to our users. This 

implementation will need to be accompanied by extensive tests, therefore we expect it to be 

released with Metaphor v2.0. 
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Abstract
Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes frommetagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyse genomessourced directly from environmental samples. There are, however, technical challenges associated with this process, most notablythe complexity of computational workflows required to process metagenomic data, which include dozens of bioinformaticssoftware tools, each with their own set of customisable parameters that affect the final output of the workflow. At the core of theseworkflows are the processes of assembly - combining the short input reads into longer, contiguous fragments (contigs), andbinning - clustering these contigs into individual genome bins. Both

:::
The

:::::::::
limitations

:
of
::::::::

assembly
:::
and

:::::::
binning

:::::::::
algorithms

:::
also

::::
pose

:::::::
different

::::::::
challenges

:::::::::
depending

::
on

:::
the

::::::
selected

:::::::
strategy

::
to

::::::
execute

:::::
them.

::::
Both

::
of

:::::
these processes can be done for eachsample separately or by pooling together multiple samples to leverage information from a combination of samples. Here wepresent Metaphor, a fully-automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRMworkflows by offering flexible approaches for the assembly and binning of the input data, and by combining multiple binningalgorithms with a bin refinement step to achieve high quality genome bins. Moreover, Metaphor generates reports to evaluate theperformance of the workflow. We showcase the functionality of Metaphor on different synthetic datasets, and the impact ofavailable assembly and binning strategies on the final results.

Key words: Bioinformatics; pipeline; MAGs; Snakemake; high-throughput sequencing; microbial genomics

Introduction

Genome-resolved metagenomics (GRM) is a set of techniques forthe recovery of genomes from high-throughput sequencing data.

In recent years, applications
:::::::::
Applications of GRM have led to un-precedented insight into microbial diversity, ecology, and evolu-tion, due to the recovery of (mostly uncultivated) metagenome-
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assembled genomes (MAGs) [1, 2, 3, 4]. MAGs are essentially “bins”of contigs that are clustered together based on differential cover-age and sequence composition; a bin is considered a MAG whenit displays a high degree of completeness and a low degree of re-dundancy/contamination, which is usually calculated through thepresence of marker genes in the bin. Advances in GRM have con-sistently improved the quality of recovered MAGs, and large-scalestudies reconstructing and analysing thousands of MAGs have be-come prominent in microbiology research. Even with the inherentbiases that accompany the generation of MAGs, it is evident thatthe benefits outweigh the risks, and researchers are increasinglyin need of automated data processing methods for assembling andbinning metagenomes [5]. Data pipelines that perform such ex-periments are inherently complex, have high computing cost, useheterogeneous data sources, have dozens of customisable param-eters, and depend on several specialised bioinformatics software[6, 7].
An additional domain-specific challenge for GRM studies is thestrategy used for assembling and binning each sequenced sam-ple. Data (raw reads generated by the sequencer) originating frommultiple samples may be assembled separately or pooled together,depending whether they come from the same population, speci-men, or environment. This results in either a set of contigs foreach sample or a ‘coassembly’ of the pooled samples. Similarly,in the metagenome binning step, where contigs are clustered intogenome bins, one may do this individually for each set of assembledcontigs, or by pooling together contigs from multiple samples andthen mapping each individual sample to this catalogue of contigs(‘cobinning’) [8]. The latter approach allows binning algorithms toaccount for differential coverage of contigs across samples, enrich-ing the information available for clustering. The chosen strategyfor assembly and binning may have important consequences for thefinal results, i.e., the quality of the assembly and of the recoveredbins [8]. It is hypothesised that pooled assembly and binning maylead to improved results when analysing communities with highgenetic diversity, and to poorer results when there is a high level ofintraspecies/strain-level diversity [9],
Here we present Metaphor, an automated and flexible work-flow for the assembly and binning of metagenomes, which recoversprokaryotic genomes from metagenomes efficiently and with highsensitivity, and provides taxonomic and functional abundance datafor quantitative metagenome analyses. Our software advances ex-isting metagenomic pipelines by combining two core features: theusage of multiple binning software along with a binning refine-ment step, and the possibility of defining groups for assembly andbinning of samples. This effectively allows scaling Metaphor toprocess multiple datasets in a single execution, performing assem-bly and binning in separate batches for each dataset, and avoidingthe need for repeated executions with different input datasets. Theworkflow includes native functionality for downstream integrationwith ‘omics statistical toolkits [10, 11], so that abundance data canbe easily imported into these tools, and with the Anvi’o [12] plat-form, which allows importing the collections of bins generated byMetaphor along with contig coverage data. . Metaphor generatesdetailed performance metrics at the end of each module of the work-flow to provide users with a high-level summary of their analysis,and has been designed to be user-friendly, portable, and flexible,as users can choose between different strategies for assembly andbinning. We demonstrate its functionality using different syntheticdatasets and discuss how these different strategies can impact dataanalyses in terms of quality of the resulting assembly and genomebins.

Design and Implementation

Metaphor stands out from existing GRM pipelines by offeringflexible options for assembly and binning combined with mul-

tiple binning software and a binning refinement step. See Ta-ble 1 for a comparison of Metaphor’s features with other state-of-the-art GRM workflows. The workflow is implemented withSnakemake [13], a widely-used scientific workflow managementsystem. In each module, computing steps (called “rules” bySnakemake) consist of both third-party bioinformatics software[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and customscripts that connect different parts of the workflow, listed on Ta-ble 2.
The workflow consists of six modules: quality control (QC), as-sembly, annotation, mapping, binning, and postprocessing. In theQC module, raw sequencing reads are filtered and trimmed. Metage-nomic assembly is then performed. Coding sequences are predictedfrom the assembled contigs and used for functional and taxonomicannotation. The quality-filtered reads are mapped against the con-tigs, generating coverage statistics employed by the binning algo-rithms. After binning is complete, bins are refined and dereplicated.Lastly, the postprocessing module renders runtime and memoryusage metrics and generates an HTML report. A simplified versionof the flow of data between the different modules of the workflowis show on Fig 1.

Figure 1. Simplified workflow diagram. Workflow modules are represented by
rectangular blue shapes and data files are represented by oval yellow shapes, except
for entrypoint files shown in a dashed yellow rectangle. Arrows indicate input and
output of data between modules.

The choice of bioinformatics tools was informed by the results ofthe 2nd Critical Assessment for Metagenome Interpretation (CAMIII) [8, 36], striving for the maximum trade-off between perfor-mance, efficiency, and software sustainability. Although the latteris a subjective factor, selecting and streamlining dependencies withregard to code quality, maintenance, and community support is acritical factor when maintaining complex bioinformatics pipelines[6, 37]. Each third-party software (along with its version) is de-fined in an individual requirements file that is used by Snakemaketo create a virtual environment and run that particular step. Tofacilitate citing these tools, Metaphor packages a bibs/ directorycontaining all citations in the Bibtext format.
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Table 1. Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [29]. Data adapted to include Metaphor.
Features Metaphor v1.7.7 ATLAS [30] MetaWRAP [31] nf-core/mag [32] MAGNETO [29]

PreprocessingReads trimming ✓ ✓ ✓ ✓ ✓Contamination ✓ ✓ ✓ ✓ ✓

AssemblyCoassembly possible ✓ ✓ ✓ ✓Coassembly by groups ✓Compute sets to coassemble ✓Assembly evaluation ✓

BinningCobinning possible ✓ ✓ ✓ ✓Multiple binning software ✓ ✓ ✓Bin refinement ✓ ✓ ✓Bin reassembly ✓ ✓

PostprocessingMAGs quality check ✓ ✓ ✓ ✓ ✓Dereplication step ✓ ✓ ✓ ✓ ✓Genome annotation ✓ ✓ ✓ ✓ ✓Gene catalogue ✓ ✓ ✓HTML Report ✓ ✓ ✓ ✓

ReproducibilityWorkflow management ✓ ✓ ✓ ✓Packages Management ✓ ✓ ✓ ✓

Table 2. Modules, steps and software used in Metaphor.
Module Step Software

Quality Control (QC) Trim adapters and filter low quality reads fastp [14]Generate QC reports FastQC [15]Combine QC reports MultiQC [16]Assembly Assemble filtered and merged reads into contigs MegaHit [17]Perform assembly evaluation MetaQUAST [18]Assembly report and plots Metaphor script*Mapping Map reads MiniMap2 [19]Sort and index mapped reads Samtools [20]Annotation Prediction of coding sequences from contigs Prodigal[21]Annotation of coding sequences Diamond, NCBI COG [22, 23]Annotation of MAGs Prokka [24]Annotation report and plots Metaphor script*Binning Cluster contigs into bins VAMB [25]Cluster contigs into bins MetaBAT2 [26]Cluster contigs into bins CONCOCT [27]Dereplicate and score bins DAS Tool [28]Binning report and plots Metaphor script*Postprocessing Concatenate benchmarks Metaphor script*Plot benchmarks Metaphor script*
* External libraries used in Metaphor scripts: [33, 34, 35].
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Table 3. Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset, along withthe amount of reference genomes used to generate the dataset
Dataset Identifier No. of samples Size (GB) No. reference genomes

Marine marmg 10 50 622Strain Madness strmg 100 200 408Human Airways h_airways 10 44 1394Human Genital h_urogenital 9 39 1394Human Gut h_gastrointestinal 10 44 1057Human Oral h_oral 10 43 1057Human Skin h_skin 10 44 1394
Table 4. Output files for each strategy. If only one dataset/group is being analysed, assembly and binning results are named as “Coassembly” and“Cobinning” respectively. If multiple datasets/groups are used, the results are named according to the group/dataset’s name.

Strategy Description Reads files Assemblies Bins

SASB Single assembly, Single binning Sample_0.fastq Sample_0_contigs.fasta Sample_0_bins/Sample_1.fastq Sample_1_contigs.fasta Sample_1_bins/Sample_2.fastq Sample_2_contigs.fasta Sample_2_bins/
SACB Single assembly, Cobinning Sample_0.fastq Sample_0_contigs.fasta Cobinning_bins/Sample_1.fastq Sample_1_contigs.fastaSample_2.fastq Sample_2_contigs.fasta
CACB Coassembly, Cobinning Sample_0.fastq Coassembly_contigs.fasta Cobinning_bins/Sample_1.fastqSample_2.fastq

The workflow takes two files as input: a tab-delimited file con-taining sample names and file paths to the raw reads, and a con-figuration file in the YAML format, which will set the workflowparameters (see Fig 1). These files can be automatically generatedby Metaphor and edited by the user, or created from scratch. Theoutput of Metaphor consists of a directory for each module, furthersubdivided into the rules within each module. This is described indetail in the documentation [38].

Assessment on CAMI II synthetic datasets

To demonstrate the functionality of Metaphor, we analysed datasetsfrom CAMI II [8]. All datasets consist of short and long reads gener-ated by simulation of collections of reference genomes [39]). Onlyshort reads were used for each dataset, as Metaphor does not yetsupport long reads. Specifically, we used the Marine metagenomedataset (identified as ‘marmg’), the Strain Madness dataset (iden-tified as ‘strmg’), and the Human Microbiome dataset, which con-sists of five sets of samples, each corresponding to a differentsampling location in the human body, which were treated as dis-tinct datasets (3). The following strategies were employed for eachdatasets: single assembly, single binning (‘SASB’), where each sam-ple is individually assembled and binned; single assembly, cobin-ning (‘SACB’), where each sample is assembled individually andthen binned with other samples from the same dataset; coassem-bly, cobinning (‘CACB’), where all samples from the dataset wereassembled and binned together. Table 4 illustrates how this worksin practice, in terms of generated output files. Metaphor allowsdefining multiple groups for coassembly or cobinning to analysemultiple independent datasets with a single execution.
In order to assess the effect of different assembly strategies, weused MetaQUAST [18] to compare the assemblies generated by theworkflow with the collections of reference genomes. For the differ-ent binning strategies, we compared metrics obtained from DAS

Tool, the software used for dereplicating and evaluating genomebins, after a second round of dereplication with dRep [40]. This isbecause data generated with the SASB strategy will likely resultsin redundant bins, as for that strategy there is no dereplicationbetween samples and since samples within a dataset have similarcomposition, it is likely that a genome bin can be generated repeat-edly by different samples. dRep performs dereplication based onthe Average Nucleotide Identity between genomes, a metric whichhas been consistently used as a proxy to differentiate taxonomy atthe species and strain levels [41]. dRep was run with default clus-tering parameters, and without any length, completeness, or con-tamination cutoffs. We used Spartan [42], the High PerformanceComputing (HPC) system at The University of Melbourne to run thepipeline. Jobs were dispatched to nodes with the SLURM scheduler,using up to 64 processors and 300 GB RAM per node.

Results and Discussion

After running Metaphor on the CAMI II Marine, Strain Madness andHuman Microbiome datasets, we illustrate the different outputsgenerated by the workflow, and compare the effects of differentassembly and binning strategies on workflow performance.

Reconstruction of metagenome-assembled genomes

Metaphor produces genome bins generated with three tools:Vamb, MetaBAT2 and CONCOCT [25, 26, 27] that are refinedwith DAS Tool [28].
:::
DAS

::::
Tool

:::::::
performs

:::
bin

:::::::::
refinement

::::::
through

:
a
:::::::::::
"dereplication,

::::::::::
aggregation

:::
and

::::::::
scoring"

::::::
process,

:::
in

:::::
which

:::::::
candidate

:::
bins

:::
are

::::::
initially

:::::
scored

:::::
based

::
on

:::
the

:::::::::::::
presence/absence

:
of
::::::::::

single-copy
::::::
marker

::::
genes

::::::
(SCGs,

:::::
which

:::
are

:
a
:::::

proxy
:::

for
:::
bin

:::::::::::
completeness).

::::::::
Redundant

:::::::
candidate

:::
bin

:::
sets

:::
are

::::
then

::::::::
aggregated

:::
and

::
an

::::::::
iterative

::::::
scoring

::::::
process

:::
is

:::::::::
performed,

::
so
:::::

only
:::
the
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Figure 2. Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the ‘CACB’ (coassembly, cobinning) setting. Panel A shows a
stacked histogram of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line. Panels B and C show, respectively, the size (in base pairs)
and N50 of bins. The Y-axis is in log-scale. Panel D shows a scatterplot of completeness and redundancy for each bin. Colours indicate the tool used to generate the bin, and
the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of Panel A). Panel E shows how
many bins passed or failed the quality threshold for each binning tool.

:::::::::
best-quality,

::::::::::::
non-redundant

::::
bins

:::::::
remain;

:::
the

::::
bin

::::
score

::::
(Sb)

:::::::
increases

::::
with

::
the

:::::::
number

:
of
:::::

SCGs
:::
and

:::::::
decreases

::::
with

:::::::
duplicate

::::
SCGs

:::
per

:::
bin.

:::::
Please

::::
refer

::
to

:::
[28]

:
,
:::::
Figure

:
1
:::
and

:::::::
Equation

:
1
:::
for

::
an

::::::
overview

::
of
:::

the
::::
DAS

:::::::
algorithm

:::
and

:::
the

::::::
formula

::
to
::::::::

determine
:::
the

::
bin

:::::
score,

::::::::::
respectively.

:
The input for each binning tool differsslightly, but they all rely on the catalogue of contigs obtained fromthe assembly and the coverage files obtained from the read mappingmodule (see Fig 1). A report is generated for each of the binninggroups (only one is generated if cobinning is performed), whichhighlights three key metrics: completeness, redundancy, and binscore. The first two metrics are calculated by the presence/absenceof single-copy genes, and the latter is a function of the formertwo. Plots generated by an example report are shown in Fig 2. It ispossible to compare the performance of the different binning soft-ware and obtain the proportion of bins above a specified particularquality threshold based on the bin score. The source table for thereport is provided, so that users can generate custom reports andinspect specific individual bins. Bins that pass the quality thresh-old are stored in individual FASTA files, so they can easily be usedfor downstream analyses with tools such as CheckM or GTDB-Tk[43, 44]. We chose not to include these software in the workflow asthey rely on fairly large reference databases and/or contain severaldifferent steps that are dependent on third-party software, whichwould affect Metaphor’s portability. Bin collections generated withMetaphor can be imported into the Anvi’o along with coverage data(BAM files), so users can use the interactive interface of Anvi’o toexamine the bins.

Contig-level taxonomic and functional profiling

To facilitate quantitative metagenomics applications, Metaphor’sannotation module generates contig-level functional and taxo-nomic profiles based on the NCBI COG database [23]. These areobtained by predicting coding sequences with Prodigal and thenaligning the resulting amino acid files with Diamond [21, 22] inthe “iterative” mode. This setting performs repeated rounds of

alignment, with an increasing degree of sensitivity when no hitsare detected in the previous round. Abundances for each feature arecalculated based on the coverage of all coding sequences which alignto that feature. Fig 3 illustrates the profile visualisations offered byMetaphor: a heatmap of COG categories for the functional profileand a stacked barplot for the most abundant taxa (for the latter, oneplot is generated for each taxonomic rank). The annotation moduleoutputs count tables with both absolute and relative abundance val-ues of taxa and functional categories, and may be directly importedby downstream statistical toolkits such as MixOmics or PhyloSeq[10, 11].

Quality control and performance metrics

Additional outputs produced by Metaphor include the quality con-trol reports from the fastp and FastQC tools, with a summary ofFastQC outputs being produced by MultiQC [14, 15, 16]. A simplereport is produced by the assembly module with sequence statis-tics of the assembled contigs (e.g. N50, number of contigs, totaland mean length of contigs), and performance metrics. At the endof the workflow execution, the postprocessing module generatesfigures obtained from the “benchmark” files provided by Snake-make. These files contain process information such as runtime andmemory consumption. Metaphor plots these metrics in two ways:total per rule and per-sample mean (Fig 4) as some rules run onlyonce across all samples, while other rules run per sample. Theseplots help identify computational bottlenecks and assess whethercomputing resources are adequate.

Assembly and binning strategies

The effects of distinct assembly and binning strategies on the finaloutput of metagenomic workflows are highly dependent on the datasource and research context [8]. As such, the choice of individualor group assembly and binning can only be assessed a posteriori.We compared three different strategies: single assembly and single
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Figure 3. Annotation plots generated by Metaphor on the Strain Madness (‘strmg’)
and the Marine (‘marmg’) datasets. Panel A displays the functional profile as a
heatmap of the relative abundance of functional COG categories (Y-axis) across
samples (X-axis) for five samples from Strain Madness and Marine datasets. Panel
B displays the taxonomic profile of the Marine dataset as a stacked barplot of relative
abundance of taxa. In this case, the phylum rank was used, but Metaphor generates
this for the most common taxonomic ranks (phylum, class, order, family, genus,
species). The number of abundant taxa can be easily adjusted in the workflow
settings. For both taxonomic and functional profiles, abundance of each feature is
calculated from coverage values for each gene.

binning (‘SASB’), single assembly and cobinning (‘SACB’), andcoassembly and cobinning (‘CACB’), see Table 4 and Section ‘As-sessment on CAMI II synthetic datasets’ for details. For assembly,we used the five different groups in the Human Microbiome datasetalong with the Strain Madness and Marine datasets. We only usedthe latter two datasets for the binning assessment.
We used six metrics to evaluate assembly performance: per-centage of recovered genome fraction, size of the largest contig,duplication ratio, length of misassembled contigs, number of misas-semblies, and number of mismatches per 100 thousand base pairs.High values for the first two metrics and low values for the lastfour indicate better performance. We observed a general trade-offbetween assembly completeness (represented by the first two met-rics), and the number of errors in the assembly (represented bythe last four metrics) (Figure S1). In most datasets, assemblieswere more complete and contiguous, albeit with more errors whenthe Coassembly strategy was used. The exception was the StrainMadness (‘strmg’) dataset, for which the Individual assembly wasmore complete and contiguous, albeit with more errors. This maybe attributed to the high degree of strain/intraspecies diversity inthat dataset [8]. A high degree of similarity between the relatedgenomes likely confounds assembly algorithms, and pooling sam-ples together may aggravate this effect [5].
To evaluate differences between binning strategies, we com-

pared the number and quality of bins after refinement with DASTool. Bins generated with each approach were further dereplicatedwith dRep [40]. This is because the SASB strategy generates a setof bins for each sample, and datasets with similar compositionwill likely generate redundant bins, as there is no dereplication ofbins between samples. Results varied significantly between theMarine and Strain Madness datasets. In both datasets, the meanbin score was the highest for the CACB strategy (Figure S3). How-ever, in the Strain Madness dataset, CACB produced a significantlylower number of bins (33 compared with 259 and 215 generatedwith SASB and SACB), which did not occur in the Marine dataset.
:::
The

::::::::::
performance

::
of

::::
each

::::::
binning

::::
tool

:
is
::::

also
::::::
variable

:::::::
between

:::::::
strategies

:::
and

::
is

::::::::
conditional

:::
on

::
the

:::::::::::
characteristics

::
of

:::
the

::::::
original

::::::
dataset,

:::
with

::
no

::::
clear

::::::::
"winner",

:::
and

:::
each

:::
tool

::::::::
favouring

:::::::
particular

:::::::::
performance

:::::::
metrics,

::
in

:::::::::
agreement

::::
with

:::::
results

:::::
from

:::
the

:::
2nd

::::
CAMI

::::::::
Challenge

::
[8]

:
.
::::
Tools

:::
like

:::
DAS

::::
Tool

::::::
attempt

::
to

:::::::
conciliate

:::
the

:::::
output

::
of

:::::::
multiple

::::::
binning

::::::::
algorithms

:::
to

::::::
generate

::
a
::::::::
consensus

:::::
output

:::::
which

:::::::::
theoretically

:::::::::
outperforms

::::
each

:::::::
individual

::::::::
algorithm.

Since the binning performance is assessed as a proxy of the com-bination of quantity and quality of generated bins, rather than onlyone metric or the other, we calculated the cumulative bin score (thesum of scores of all bins) and the number of bins above an increas-ing score threshold, shown on Fig 6. The higher the threshold, themore significant the differences between the cumulative scores,as only bins with the highest quality compose the score. For theMarine dataset, we observed a higher score and a larger numberof bins in the CACB strategy and the exact opposite in the StrainMadness dataset. In both datasets, there was a clear differencebetween SASB before dereplication and the other strategies, con-firming that several highly similar samples produce redundant bins.That difference was also present in the SACB strategy, albeit not sopronounced (see Figure S4 for the comparison of dereplicated andnon-dereplicated data). This suggests that for both of these strate-gies, further dereplication is recommended [5]. Although the StrainMadness dataset shows fewer bins generated with CACB , the
::

—a
:::::::
summary

::
of

::
the

::::
bins

:::::::
recovered

::::
with

:::
that

:::::
dataset

::
is

:::::::
displayed

::
on

::
??.

:::
The cumulative bin score for that strategy remained similar to SACBand SASB above the 0.8 score threshold, since there are fewer binswith a score lower than that. In that same dataset, SASB showedthe best performance, although differences were small above the0.8 threshold. In the Marine dataset, there were more pronounceddifferences between strategies. CACB produced the larger quantityand higher cumulative score of bins, followed by SASB and SACB.

In summary, our assessment of different assembly and binningstrategies
::::

results
:

indicate that, for most metagenomic analysisscenarios, coassembly followed by cobinning is
:::::::::::
recommended,

:::::::
assuming

:::
that

:
samples are sourced from a similar environmentor population, except when

:
.
:::
The

:::::::
exception

::
to
::::

this
:
is
:::::
when

::::
whenthere is a high level of intraspecies/strain-level diversity acrosssamples, like in the Strain Madness dataset. In that scenario, sin-gle assembly followed by single binning is preferred, followedby dereplication of bins between samples. There is, however, atrade-off

::::::
between

:::
the

:::::::
different

::::::::
approaches, as computational re-quirements are higher for the pooled strategies. Coassembly re-sulted in higher genome recovery fractions and larger contigs, al-though usually at the expense of a higher number of misassem-blies and higher duplication ratio. When combining coassem-bly with cobinning, there is a remarkable improvement in thequantity and quality of bins generated for a diverse dataset (rep-resented by the Marine dataset), where the difference was neg-ligible in the Strain Madness dataset.

::::::::
Therefore,

::::
when

:::::::
deciding

::
the

:::::::
assembly

:::
and

:::::::
binning

::::::
strategy,

::
it

:
is
::::::::
important

::
to

::::::
consider

:::
the

::::::
expected

:::::::::
strain-level

:::::::
diversity

:::
and

:::::::::
abundances

::
of

:::
each

::::::::
individual

::::::
genome,

::
as

:::
the

::::::::
interaction

:::::::
between

::::
these

:::::
factors

::
is

::::
likely

::
to

::::
limit

::
the

::::::::
resolution

::
of
::::::::

recovered
::::
bins.

::::
This

::
is
::::::

shown
::
in

:::
the

::::
CAMI

::
II

:::::::
challenge

:::
[8]

:::
(see

:::::
Figure

:::
1g);

:::::::
genomes

::::
with

:::
low

:::::
strain

:::::::
diversity

:
(
::
i.e.

::
are

::::
less

::::
than

::::
95%

:::::
similar

::::
with

::::
any

::::
other

::::::::
genomes)

::::
have
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Figure 4. Performance metrics report generated by Metaphor on the Marine dataset processed with the SASB strategy. Total runtime per rule (A), mean runtime per
sample (B), total memory usage per rule (C), and mean memory usage per sample (D). X-axis is in log format. Cutoffs are applied to omit rules with short runtime or low
memory usage. Colours indicate the workflow module of each rule.

:::::
higher

::::::::
correlation

:::::::
between

:::::::::
sequencing

:::::::
coverage

:::
and

::::::::
recovered

::::::
fraction

:::
than

:::::::
common

:::::::
genomes

::
(≥

::::
95%

:::::
similar

::
to

::::
other

:::::::
genomes

:
in
:::

the
:::::::
sample),

::::::
although

:::::
many

::::
times

:::::::::
sequencing

::::::
coverage

:::
was

:::
not

::
all

:::::::
correlated

::::
with

::::::
genome

:::::::
recovery

::::::
fraction,

:::::::
specially

::
for

::::::
smaller

:::
bins

:::
that

::::::::
represent

::::::
plasmids

::
or

::::::
circular

::::::::
elements.

Availability and Future Directions

Metaphor is available through Bioconda [45], a popular repositoryof bioinformatics software. It can be installed with a single com-mand from the conda package manager [46] or from source usingpip, the Python package manager. The installation of all third-partysoftware used by Metaphor is handled automatically by Snakemakeand conda. It can be easily deployed in different computing en-vironments, such as high performance computing clusters andcloud instances, due to Snakemake’s support of execution profiles.Metaphor is developed with documented best practices in work-flow development [6, 47], striving for reproducibility and trans-parency of its results. Data used for the testing Metaphor’s instal-lation (see documentation for details) is available from GitHub athttps://github.com/vinisalazar/mg-example-data. This data is asubset of the CAMI I challenge data [36] that is reduced in size inorder to run test commands in a reasonable time.

The workflow may be extended to support downstreamtools such
::
for

::::::
genome

:::::::
analysis

::::
such as GTDB-Tkand ,

:
CheckM,and a new functionality

::::
dRep.

::::::
This

::::
may

::::
help

::::
with

::::::
further

::::::::::
improvement

::
of
::::::::::

strain-level
:::::::::

resolution
::

in
:::::

bins;
::::::

there
:::

are
:
a
:::::::

number
::

of
::::::::

strategies
::::

for
::::

that,
:::::

such
:::

as
::::::::::

identification
:::

of
::::::::::
misassembled

::::::
contigs

::
or
:::::

using
:::

the
:::::::

assembly
:::::

graph
:::

for
::::::

variant
:::::::
detection

::::::
[48, 49].

:::::
New

:::::::::
functionality

::::
may

:::
also

:::
be

::::
added

:
for theidentification of eukaryotic and viral contigsand bins . Theannotation module can also be improved to facilitate ;

::::::::
Metaphor

::::
would

::::::
benefit

:::::
from

:::
new

::::::::::
third-party

:::::::
software

::
to

:::::::
facilitate

:::
the

::::::::
generation

::
of

:::::::::::::
non-prokaryotic

::::
bins

::
in

:::
the

:::::
near

:::::
future.

:::::
The

:::::
output

::
of

:::::::::
Metaphor’s

:::::::::
‘annotation’

::::::
module

::
is

::::::
suitable

:::
for

::
ad

:::
hoc

::::::::::
identification

::
of

:::::::::
eukaryotic

:::
and

::::
viral

:::::::
contigs;

:::::
after

:::::::
selecting

::
the

::::::::
annotated

:::::::::
prokaryotic

:::::::
contigs,

::
it

::
is

::::::
possible

::
to

::::
filter

:::::
them

:::
out,

::::::
leaving

:::::::::
unannotated

::::::::
(putative)

::::::::
eukaryotic

:::
and

::::
viral

::::::
contigs.

::::
These

:::
can

::::
then

::
be

::::
used

::
as

::::
input

::
for

:
a
::::::::
eukaryotic

::
or

::::
viral

:::::::
discovery

::::::
pipeline

::::::::
[50, 51, 52]

:
,
:::
but

:::
this

::::::
process

:::::
could

::
be

::::::
further

:::::::
improved

::
by

::::::::
facilitating the use of custom reference databases . In addition,Metaphor would benefit from new third-party software tofacilitate the generation of

:
in
:::

the
::::::::
annotation

::::::
module.

::::
This

:::
can

:::
also

::
be

::::
done

::::::
directly

::::
with

::
the

::::::
output

::
of

::
the

::::::::
assembly

::::::
module,

:::
but

::
in

:::
that

:::
case

::::
there

:::::
won’t

::
be

:::
any

:::::::
screening

::
for

:::::::::
prokaryotic

::::::
contigs.

:::
One

:::::::
drawback

::
of

:::
this

:::::::
approach

::
is

:::
that

::::
each

::::::::::::
eukaryotic/viral

:::::::
discovery

::::::
pipeline

:::
has

::::::
specific

:::::
input

:::
data

:::::::::
formatting

:::::::::::
requirements.

::::
This

https://github.com/vinisalazar/mg-example-data
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Figure 5. Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the MetaQUAST tool. Data points
above the 98th percentile were classified as outliers and removed from the figure to improve visualisation. See Figure S1 for the full data. The title at the top of each panel
indicates the plotted metric. Panels A and C show percentages along the X-axis, while the remainder show absolute values.

::::::::
integration

::::
with non-prokaryotic bins in the near future

:::::::
pipelines,

::::
along

::::
with

::::::
support

::
for

:::
long

:::::
reads,

:::
are

::::::
priority

::::::
features

:
to
::

be
:::::

added
:
to
:::::

future
:::::
major

::::::
versions

::
of

:::::::
Metaphor.

Availability checklist

Project name: MetaphorProject home page: https://github.com/vinisalazar/metaphorDocumentation: https://metaphor-workflow.readthedocs.io/Operating system(s): Linux, Mac OS (Intel)Programming language: Snakemake (Python 3)Other requirements: Conda, Snakemake v7 or higher, Python 3.7 orhigher.License: MIT

https://github.com/vinisalazar/metaphor
https://metaphor-workflow.readthedocs.io/
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Figure 6. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Lines show the cumulative bin score (A and B)
and number of bins (C and D) along the Y-axis, for bins above a certain score threshold (X-axis). Left column shows Marine dataset, and right column shows Strain Madness
dataset.
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Figure S1. Differences between assembly strategies across datasets. Same data as Fig 5, but including outliers.

Figure S2. Boxplot of bin scores across different strategies. Eachdata point is a genome bin, and Y-axis depicts bin scores from 0to 1. Columns separate datasets, and colours represent differentstrategies. Numbers underneath each bar show the number of datapoints for that bar. Bins sets were dereplicated with dRep.

FigureS3. Boxplot of bin scores across different strategies for non-
dereplicated data. Same as Figure S2, but with non-dereplicateddata. Each data point is a genome bin, and Y-axis depicts bin scoresfrom 0 to 1. Columns separate datasets, and colours represent dif-ferent strategies. Numbers underneath each bar show the numberof data points for that bar.
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Figure S4. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Solid linesshow the same data as Fig 6, and dashed lines show data based on bins prior to dereplication with dRep.
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