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Recent advances in bioinformatics and high-throughput sequencing have enabled the
large-scale recovery of genomes from metagenomes. This has the potential to bring
important insights as researchers can bypass cultivation and analyse genomes
sourced directly from environmental samples. There are, however, technical
challenges associated with this process, most notably the complexity of computational
workflows required to process metagenomic data, which include dozens of
bioinformatics software tools, each with their own set of customisable parameters that
affect the final output of the workflow. At the core of these workflows are the processes
of assembly - combining the short input reads into longer, contiguous fragments
(contigs), and binning - clustering these contigs into individual genome bins. The
limitations of assembly and binning algorithms also pose different challenges
depending on the selected strategy to execute them. Both of these processes can be
done for each sample separately or by pooling together multiple samples to leverage
information from a combination of samples. Here we present Metaphor, a fully-
automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from
existing GRM workflows by offering flexible approaches for the assembly and binning
of the input data, and by combining multiple binning algorithms with a bin refinement
step to achieve high quality genome bins. Moreover, Metaphor generates reports to
evaluate the performance of the workflow. We showcase the functionality of Metaphor
on different synthetic datasets, and the impact of available assembly and binning
strategies on the final results.
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Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes from
metagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyse genomes
sourced directly from environmental samples. There are, however, technical challenges associated with this process, most notably
the complexity of computational workflows required to process metagenomic data, which include dozens of bioinformatics
software tools, each with their own set of customisable parameters that affect the final output of the workflow. At the core of these
workflows are the processes of assembly - combining the short input reads into longer, contiguous fragments (contigs), and
binning - clustering these contigs into individual genome bins. The limitations of assembly and binning algorithms also pose
different challenges depending on the selected strategy to execute them. Both of these processes can be done for each sample
separately or by pooling together multiple samples to leverage information from a combination of samples. Here we present
Metaphor, a fully-automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRM
workflows by offering flexible approaches for the assembly and binning of the input data, and by combining multiple binning
algorithms with a bin refinement step to achieve high quality genome bins. Moreover, Metaphor generates reports to evaluate the
performance of the workflow. We showcase the functionality of Metaphor on different synthetic datasets, and the impact of
available assembly and binning strategies on the final results.
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Applications of GRM have led to unprecedented insight into mi-

crobial diversity, ecology, and evolution, due to the recovery of
Genome-resolved metagenomics (GRM) is a set of techniques for (mostly uncultivated) metagenome-assembled genomes (MAGs)
the recovery of genomes from high-throughput sequencing data.
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[1, 2, 3, 4]. MAGs are essentially “bins” of contigs that are clus-
tered together based on differential coverage and sequence com-
position; a bin is considered a MAG when it displays a high degree
of completeness and a low degree of redundancy/contamination,
which is usually calculated through the presence of marker genes
in the bin. Advances in GRM have consistently improved the qual-
ity of recovered MAGs, and large-scale studies reconstructing and
analysing thousands of MAGs have become prominent in micro-
biology research. Even with the inherent biases that accompany
the generation of MAGs, it is evident that the benefits outweigh the
risks, and researchers are increasingly in need of automated data
processing methods for assembling and binning metagenomes [5].
Data pipelines that perform such experiments are inherently com-
plex, have high computing cost, use heterogeneous data sources,
have dozens of customisable parameters, and depend on several
specialised bioinformatics software [6, 7).

An additional domain-specific challenge for GRM studies is the
strategy used for assembling and binning each sequenced sam-
ple. Data (raw reads generated by the sequencer) originating from
multiple samples may be assembled separately or pooled together,
depending whether they come from the same population, speci-
men, or environment. This results in either a set of contigs for
each sample or a ‘coassembly’ of the pooled samples. Similarly,
in the metagenome binning step, where contigs are clustered into
genome bins, one may do this individually for each set of assembled
contigs, or by pooling together contigs from multiple samples and
then mapping each individual sample to this catalogue of contigs
(‘cobinning’) [8]. The latter approach allows binning algorithms to
account for differential coverage of contigs across samples, enrich-
ing the information available for clustering. The chosen strategy
for assembly and binning may have important consequences for the
final results, i.e., the quality of the assembly and of the recovered
bins [8]. It is hypothesised that pooled assembly and binning may
lead to improved results when analysing communities with high
genetic diversity, and to poorer results when there is a high level of
intraspecies/strain-level diversity [9],

Here we present Metaphor, an automated and flexible work-
flow for the assembly and binning of metagenomes, which recovers
prokaryotic genomes from metagenomes efficiently and with high
sensitivity, and provides taxonomic and functional abundance data
for quantitative metagenome analyses. Our software advances ex-
isting metagenomic pipelines by combining two core features: the
usage of multiple binning software along with a binning refine-
ment step, and the possibility of defining groups for assembly and
binning of samples. This effectively allows scaling Metaphor to
process multiple datasets in a single execution, performing assem-
bly and binning in separate batches for each dataset, and avoiding
the need for repeated executions with different input datasets. The
workflow includes native functionality for downstream integra-
tion with ‘omics statistical toolkits [10, 11], so that abundance data
can be easily imported into these tools, and with the Anvi’o [12]
platform, which allows importing the collections of bins generated
by Metaphor along with contig coverage data. Metaphor generates
detailed performance metrics at the end of each module of the work-
flow to provide users with a high-level summary of their analysis,
and has been designed to be user-friendly, portable, and flexible,
as users can choose between different strategies for assembly and
binning. We demonstrate its functionality using different synthetic
datasets and discuss how these different strategies can impact data
analyses in terms of quality of the resulting assembly and genome
bins.

Metaphor stands out from existing GRM pipelines by offering
flexible options for assembly and binning combined with mul-
tiple binning software and a binning refinement step. See Ta-

ble 1 for a comparison of Metaphor’s features with other state-
of-the-art GRM workflows. The workflow is implemented with
Snakemake [13], a widely-used scientific workflow management
system. In each module, computing steps (called “rules” by
Snakemake) consist of both third-party bioinformatics software
[14, 15,16, 17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and custom
scripts that connect different parts of the workflow, listed on Ta-
ble 2.

The workflow consists of six modules: quality control (QC), as-
sembly, annotation, mapping, binning, and postprocessing. In the
QC module, raw sequencing reads are filtered and trimmed. Metage-
nomic assembly is then performed. Coding sequences are predicted
from the assembled contigs and used for functional and taxonomic
annotation. The quality-filtered reads are mapped against the con-
tigs, generating coverage statistics employed by the binning algo-
rithms. After binning is complete, bins are refined and dereplicated.
Lastly, the postprocessing module renders runtime and memory
usage metrics and generates an HTML report. A simplified version
of the flow of data between the different modules of the workflow
is show on Fig 1.
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Figure 1. Simplified workflow diagram. Workflow modules are represented by
rectangular blue shapes and data files are represented by oval yellow shapes, except
for entrypoint files shown in a dashed yellow rectangle. Arrows indicate input and
output of data between modules.

The choice of bioinformatics tools was informed by the results of
the 2nd Critical Assessment for Metagenome Interpretation (CAMI
II) [8, 36], striving for the maximum trade-off between perfor-
mance, efficiency, and software sustainability. Although the latter
is a subjective factor, selecting and streamlining dependencies with
regard to code quality, maintenance, and community support is a
critical factor when maintaining complex bioinformatics pipelines
[6, 37]. Each third-party software (along with its version) is de-
fined in an individual requirements file that is used by Snakemake
to create a virtual environment and run that particular step. To
facilitate citing these tools, Metaphor packages a bibs/ directory
containing all citations in the Bibtext format.

The workflow takes two files as input: a tab-delimited file con-



Table 1. Comparison of features between Metaphor and state-of-the-art GRM workflows as listed by [29]. Data adapted to include Metaphor.

Features

Preprocessing
Reads trimming
Contamination

Assembly
Coassembly possible

Coassembly by groups

Metaphorvi.7.7 ATLAS[30] MetaWRAP [31]

v v v
v v v

Compute sets to coassemble

Assembly evaluation

Binning
Cobinning possible

Multiple binning software

Bin refinement
Bin reassembly

Postprocessing
MAGs quality check
Dereplication step
Genome annotation
Gene catalogue
HTML Report

Reproducibility

Workflow management
Packages Management

SNENEN
SNENEN
SURNENEN

SNENEN
SNENEN

ANENENENEN

ANEN

Table 2. Modules, steps and software used in Metaphor.

Module

Quality Control (QC)

Assembly

Mapping

Annotation

Binning

Postprocessing

Step

Trim adapters and filter low quality reads
Generate QC reports

Combine QC reports

Assemble filtered and merged reads into contigs
Perform assembly evaluation

Assembly report and plots

Map reads

Sort and index mapped reads

Prediction of coding sequences from contigs
Annotation of coding sequences

Annotation of MAGs

Annotation report and plots

Cluster contigs into bins

Cluster contigs into bins

Cluster contigs into bins

Dereplicate and score bins

Binning report and plots

Concatenate benchmarks

Plot benchmarks

* External libraries used in Metaphor scripts: [33, 34, 35].

nf-core/mag [32] MAGNETO [29]
v v
v v
v v
v
v v
v v
v v
v v
v v
v v
v v
v v

Software

fastp [14]

FastQC [15]
MultiQC [16]
MegaHit [17]
MetaQUAST [18]
Metaphor script*

MiniMap2 [19]
Samtools [20]
Prodigal[21]
Diamond, NCBI COG [22, 23]
Prokka [24]
Metaphor script*
VAMB [25]
MetaBAT2 [26]
CONCOCT [27]
DAS Tool [28]
Metaphor script*
Metaphor script*
Metaphor script*



Table 3. Datasets from CAMI II used to assess the workflow. Columns show the number of samples and size in gigabytes of each dataset, along with

the amount of reference genomes used to generate the dataset

Dataset Identifier No. of samples  Size (GB) No. reference genomes
Marine marmg 10 50 622
Strain Madness  strmg 100 200 408
Human Airways  h_airways 10 L4 1394
Human Genital =~ h_urogenital 9 39 1394
Human Gut h_gastrointestinal 10 YA 1057
Human Oral h_oral 10 43 1057
Human Skin h_skin 10 YAA 1394

Table 4. Output files for each strategy. If only one dataset/group is being analysed, assembly and binning results are named as “Coassembly” and
“Cobinning” respectively. If multiple datasets/groups are used, the results are named according to the group/dataset’s name.

Strategy = Description Reads files Assemblies Bins
Sample_o.fastq  Sample_o_contigs.fasta Sample_0_bins/

SASB Single assembly, Single binning  Sample_1.fastq  Sample_1_contigs.fasta Sample_1_bins/
Sample_2.fastq  Sample_2_contigs.fasta Sample_2_bins/
Sample_o.fastq  Sample_o_contigs.fasta

SACB Single assembly, Cobinning Sample_1.fastq  Sample_1_contigs.fasta Cobinning bins/
Sample_2.fastq  Sample_2_contigs.fasta
Sample_o.fastq

CACB Coassembly, Cobinning Sample_1.fastq  Coassembly_contigs.fasta  Cobinning bins/

Sample_2.fastq

taining sample names and file paths to the raw reads, and a con-
figuration file in the YAML format, which will set the workflow
parameters (see Fig 1). These files can be automatically generated
by Metaphor and edited by the user, or created from scratch. The
output of Metaphor consists of a directory for each module, further
subdivided into the rules within each module. This is described in
detail in the documentation [38].

To demonstrate the functionality of Metaphor, we analysed datasets
from CAMI II [8]. All datasets consist of short and long reads gener-
ated by simulation of collections of reference genomes [39]). Only
short reads were used for each dataset, as Metaphor does not yet
support long reads. Specifically, we used the Marine metagenome
dataset (identified as ‘marmg’), the Strain Madness dataset (iden-
tified as ‘strmg’), and the Human Microbiome dataset, which con-
sists of five sets of samples, each corresponding to a different
sampling location in the human body, which were treated as dis-
tinct datasets (3). The following strategies were employed for each
datasets: single assembly, single binning (‘SASB’), where each sam-
ple is individually assembled and binned; single assembly, cobin-
ning (‘SACB’), where each sample is assembled individually and
then binned with other samples from the same dataset; coassem-
bly, cobinning (‘CACB’), where all samples from the dataset were
assembled and binned together. Table 4 illustrates how this works
in practice, in terms of generated output files. Metaphor allows
defining multiple groups for coassembly or cobinning to analyse
multiple independent datasets with a single execution.

In order to assess the effect of different assembly strategies, we
used MetaQUAST [18] to compare the assemblies generated by the
workflow with the collections of reference genomes. For the differ-
ent binning strategies, we compared metrics obtained from DAS
Tool, the software used for dereplicating and evaluating genome

bins, after a second round of dereplication with dRep [40]. This is
because data generated with the SASB strategy will likely results
in redundant bins, as for that strategy there is no dereplication
between samples and since samples within a dataset have similar
composition, it is likely that a genome bin can be generated repeat-
edly by different samples. dRep performs dereplication based on
the Average Nucleotide Identity between genomes, a metric which
has been consistently used as a proxy to differentiate taxonomy at
the species and strain levels [41]. dRep was run with default clus-
tering parameters, and without any length, completeness, or con-
tamination cutoffs. We used Spartan [42], the High Performance
Computing (HPC) system at The University of Melbourne to run the
pipeline. Jobs were dispatched to nodes with the SLURM scheduler,
using up to 64 processors and 300 GB RAM per node.

After running Metaphor on the CAMI IT Marine, Strain Madness and
Human Microbiome datasets, we illustrate the different outputs
generated by the workflow, and compare the effects of different
assembly and binning strategies on workflow performance.

Metaphor produces genome bins generated with three tools: Vamb,
MetaBAT2 and CONCOCT [25, 26, 27] that are refined with DAS Tool
[28]. DAS Tool performs bin refinement through a "dereplication,
aggregation and scoring" process, in which candidate bins are ini-
tially scored based on the presence/absence of single-copy marker
genes (SCGs, which are a proxy for bin completeness). Redundant
candidate bin sets are then aggregated and an iterative scoring pro-
cess is performed, so only the best-quality, non-redundant bins
remain; the bin score (S})) increases with the number of SCGs and
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Figure 2. Binning report generated by Metaphor for the CAMI II Marine metagenome dataset processed with the ‘CACB’ (coassembly, cobinning) setting. Panel A shows a
stacked histogram of the distribution of bin scores, with the defined quality threshold highlighted as a dashed line. Panels B and C show, respectively, the size (in base pairs)
and N50 of bins. The Y-axis is in log-scale. Panel D shows a scatterplot of completeness and redundancy for each bin. Colours indicate the tool used to generate the bin, and
the symbols indicate whether that bin passed or failed the bin score quality threshold (corresponding to the same value in the dashed line of Panel A). Panel E shows how

many bins passed or failed the quality threshold for each binning tool.

decreases with duplicate SCGs per bin. Please refer to [28], Figure 1
and Equation 1 for an overview of the DAS algorithm and the for-
mula to determine the bin score, respectively. The input for each
binning tool differs slightly, but they all rely on the catalogue of
contigs obtained from the assembly and the coverage files obtained
from the read mapping module (see Fig 1). A report is generated for
each of the binning groups (only one is generated if cobinning is
performed), which highlights three key metrics: completeness, re-
dundancy, and bin score. The first two metrics are calculated by the
presence/absence of single-copy genes, and the latter is a function
of the former two. Plots generated by an example report are shown
in Fig 2. It is possible to compare the performance of the different
binning software and obtain the proportion of bins above a speci-
fied particular quality threshold based on the bin score. The source
table for the report is provided, so that users can generate custom
reports and inspect specific individual bins. Bins that pass the qual-
ity threshold are stored in individual FASTA files, so they can easily
be used for downstream analyses with tools such as CheckM or
GTDB-Tk [43, 44]. We chose not to include these software in the
workflow as they rely on fairly large reference databases and/or
contain several different steps that are dependent on third-party
software, which would affect Metaphor’s portability. Bin collections
generated with Metaphor can be imported into the Anvi’o along
with coverage data (BAM files), so users can use the interactive
interface of Anvi’o to examine the bins.

To facilitate quantitative metagenomics applications, Metaphor’s
annotation module generates contig-level functional and taxo-
nomic profiles based on the NCBI COG database [23]. These are
obtained by predicting coding sequences with Prodigal and then
aligning the resulting amino acid files with Diamond [21, 22] in
the “iterative” mode. This setting performs repeated rounds of
alignment, with an increasing degree of sensitivity when no hits
are detected in the previous round. Abundances for each feature are

calculated based on the coverage of all coding sequences which align
to that feature. Fig 3 illustrates the profile visualisations offered by
Metaphor: a heatmap of COG categories for the functional profile
and a stacked barplot for the most abundant taxa (for the latter, one
plot is generated for each taxonomic rank). The annotation module
outputs count tables with both absolute and relative abundance val-
ues of taxa and functional categories, and may be directly imported
by downstream statistical toolkits such as MixOmics or PhyloSeq
[10,11].

Additional outputs produced by Metaphor include the quality con-
trol reports from the fastp and FastQC tools, with a summary of
FastQC outputs being produced by MultiQC (14, 15, 16]. A simple
report is produced by the assembly module with sequence statis-
tics of the assembled contigs (e.g. N50, number of contigs, total
and mean length of contigs), and performance metrics. At the end
of the workflow execution, the postprocessing module generates
figures obtained from the “benchmark” files provided by Snake-
make. These files contain process information such as runtime and
memory consumption. Metaphor plots these metrics in two ways:
total per rule and per-sample mean (Fig 4) as some rules run only
once across all samples, while other rules run per sample. These
plots help identify computational bottlenecks and assess whether
computing resources are adequate.

The effects of distinct assembly and binning strategies on the final
output of metagenomic workflows are highly dependent on the data
source and research context [8]. As such, the choice of individual
or group assembly and binning can only be assessed a posteriori.
We compared three different strategies: single assembly and single
binning (‘SASB’), single assembly and cobinning (‘SACB’), and
coassembly and cobinning (‘CACB’), see Table 4 and Section ‘As-
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Figure 3. Annotation plots generated by Metaphor on the Strain Madness (‘strmg’)
and the Marine (‘marmg’) datasets. Panel A displays the functional profile as a
heatmap of the relative abundance of functional COG categories (Y-axis) across
samples (X-axis) for five samples from Strain Madness and Marine datasets. Panel
B displays the taxonomic profile of the Marine dataset as a stacked barplot of relative
abundance of taxa. In this case, the phylum rank was used, but Metaphor generates
this for the most common taxonomic ranks (phylum, class, order, family, genus,
species). The number of abundant taxa can be easily adjusted in the workflow
settings. For both taxonomic and functional profiles, abundance of each feature is
calculated from coverage values for each gene.

sessment on CAMI II synthetic datasets’ for details. For assembly,
we used the five different groups in the Human Microbiome dataset
along with the Strain Madness and Marine datasets. We only used
the latter two datasets for the binning assessment.

We used six metrics to evaluate assembly performance: per-
centage of recovered genome fraction, size of the largest contig,
duplication ratio, length of misassembled contigs, number of misas-
semblies, and number of mismatches per 100 thousand base pairs.
High values for the first two metrics and low values for the last
four indicate better performance. We observed a general trade-off
between assembly completeness (represented by the first two met-
rics), and the number of errors in the assembly (represented by
the last four metrics) (Figure S1). In most datasets, assemblies
were more complete and contiguous, albeit with more errors when
the Coassembly strategy was used. The exception was the Strain
Madness (‘strmg’) dataset, for which the Individual assembly was
more complete and contiguous, albeit with more errors. This may
be attributed to the high degree of strain/intraspecies diversity in
that dataset [8]. A high degree of similarity between the related
genomes likely confounds assembly algorithms, and pooling sam-
ples together may aggravate this effect [5].

To evaluate differences between binning strategies, we com-
pared the number and quality of bins after refinement with DAS
Tool. Bins generated with each approach were further dereplicated

with dRep [40]. This is because the SASB strategy generates a set
of bins for each sample, and datasets with similar composition will
likely generate redundant bins, as there is no dereplication of bins
between samples. Results varied significantly between the Marine
and Strain Madness datasets. In both datasets, the mean bin score
was the highest for the CACB strategy (Figure S3). However, in the
Strain Madness dataset, CACB produced a significantly lower num-
ber of bins (33 compared with 259 and 215 generated with SASB and
SACB), which did not occur in the Marine dataset. The performance
of each binning tool is also variable between strategies and is con-
ditional on the characteristics of the original dataset, with no clear
"winner", and each tool favouring particular performance met-
rics, in agreement with results from the 2nd CAMI Challenge [8].
Tools like DAS Tool attempt to conciliate the output of multiple bin-
ning algorithms to generate a consensus output which theoretically
outperforms each individual algorithm.

Since the binning performance is assessed as a proxy of the com-
bination of quantity and quality of generated bins, rather than only
one metric or the other, we calculated the cumulative bin score (the
sum of scores of all bins) and the number of bins above an increas-
ing score threshold, shown on Fig 6. The higher the threshold, the
more significant the differences between the cumulative scores,
as only bins with the highest quality compose the score. For the
Marine dataset, we observed a higher score and a larger number
of bins in the CACB strategy and the exact opposite in the Strain
Madness dataset. In both datasets, there was a clear difference
between SASB before dereplication and the other strategies, con-
firming that several highly similar samples produce redundant bins.
That difference was also present in the SACB strategy, albeit not
so pronounced (see Figure S4 for the comparison of dereplicated
and non-dereplicated data). This suggests that for both of these
strategies, further dereplication is recommended [5]. Although the
Strain Madness dataset shows fewer bins generated with CACB —a
summary of the bins recovered with that dataset is displayed on ??.
The cumulative bin score for that strategy remained similar to SACB
and SASB above the 0.8 score threshold, since there are fewer bins
with a score lower than that. In that same dataset, SASB showed
the best performance, although differences were small above the
0.8 threshold. In the Marine dataset, there were more pronounced
differences between strategies. CACB produced the larger quantity
and higher cumulative score of bins, followed by SASB and SACB.

In summary, our results indicate that, for most metagenomic
analysis scenarios, coassembly followed by cobinning is recom-
mended, assuming that samples are sourced from a similar envi-
ronment or population. The exception to this is when when there
is a high level of intraspecies/strain-level diversity across samples,
like in the Strain Madness dataset. In that scenario, single assembly
followed by single binning is preferred, followed by dereplication of
bins between samples. There is, however, a trade-off between the
different approaches, as computational requirements are higher
for the pooled strategies. Coassembly resulted in higher genome re-
covery fractions and larger contigs, although usually at the expense
of a higher number of misassemblies and higher duplication ratio.
When combining coassembly with cobinning, there is a remark-
able improvement in the quantity and quality of bins generated for
a diverse dataset (represented by the Marine dataset), where the
difference was negligible in the Strain Madness dataset. Therefore,
when deciding the assembly and binning strategy, it is important to
consider the expected strain-level diversity and abundances of each
individual genome, as the interaction between these factors is likely
to limit the resolution of recovered bins. This is shown in the CAMI
II challenge [8] (see Figure 1g); genomes with low strain diversity
(i.e. are less than 95% similar with any other genomes) have higher
correlation between sequencing coverage and recovered fraction
than common genomes (> 95% similar to other genomes in the
sample), although many times sequencing coverage was not all
correlated with genome recovery fraction, specially for smaller bins
that represent plasmids or circular elements.
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Figure 4. Performance metrics report generated by Metaphor on the Marine dataset processed with the SASB strategy. Total runtime per rule (A), mean runtime per
sample (B), total memory usage per rule (C), and mean memory usage per sample (D). X-axis is in log format. Cutoffs are applied to omit rules with short runtime or low

memory usage. Colours indicate the workflow module of each rule.

Availability and Future Directions

Metaphor is available through Bioconda [45], a popular repository
of bioinformatics software. It can be installed with a single com-
mand from the conda package manager [46] or from source using
pip, the Python package manager. The installation of all third-party
software used by Metaphor is handled automatically by Snakemake
and conda. It can be easily deployed in different computing en-
vironments, such as high performance computing clusters and
cloud instances, due to Snakemake’s support of execution profiles.
Metaphor is developed with documented best practices in work-
flow development [6, 47], striving for reproducibility and trans-
parency of its results. Data used for the testing Metaphor’s instal-
lation (see documentation for details) is available from GitHub at
https://github.com/vinisalazar/mg-example-data. This data is a
subset of the CAMI I challenge data [36] that is reduced in size in
order to run test commands in a reasonable time.

The workflow may be extended to support downstream
tools such for genome analysis such as GTDB-Tk, CheckM, and
dRep. This may help with further improvement of strain-level
resolution in bins; there are a number of strategies for that, such
as identification of misassembled contigs or using the assembly
graph for variant detection [48, 49]. New functionality may also
be added for the identification of eukaryotic and viral contigs;

Metaphor would benefit from new third-party software to facilitate
the generation of non-prokaryotic bins in the near future. The
output of Metaphor’s ‘annotation’ module is suitable for ad hoc
identification of eukaryotic and viral contigs; after selecting the
annotated prokaryotic contigs, it is possible to filter them out,
leaving unannotated (putative) eukaryotic and viral contigs. These
can then be used as input for a eukaryotic or viral discovery
pipeline [50, 51, 52], but this process could be further improved by
facilitating the use of custom reference databases in the annotation
module. This can also be done directly with the output of the
assembly module, but in that case there won’t be any screening
for prokaryotic contigs. One drawback of this approach is that
each eukaryotic/viral discovery pipeline has specific input data
formatting requirements. This integration with non-prokaryotic
pipelines, along with support for long reads, are priority features
to be added to future major versions of Metaphor.

Availability of Source Code and Requirements

Project name: Metaphor
Project home page: https://github.com/vinisalazar/metaphor
Documentation: https://metaphor-workflow.readthedocs.io/
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Figure 5. Differences between assembly strategies for each dataset. Each data point corresponds to a reference genome evaluated with the MetaQUAST tool. Data points
above the 98th percentile were classified as outliers and removed from the figure to improve visualisation. See Figure S1 for the full data. The title at the top of each panel

indicates the plotted metric. Panels A and C show percentages along the X-axis, while

Operating system(s): Linux, Mac OS (Intel)

Programming language: Snakemake (Python 3)

Other requirements: Conda, Snakemake v7 or higher, Python 3.7
or higher.

License: MIT

RRID number: SCR_023701
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Figure S1. Differences between assembly strategies across datasets. Same data as Fig 5, but including outliers.
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Figure S2. Boxplot of bin scores across different strategies. Each
data point is a genome bin, and Y-axis depicts bin scores from 0
to 1. Columns separate datasets, and colours represent different
strategies. Numbers underneath each bar show the number of data
points for that bar. Bins sets were dereplicated with dRep.
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Figure S3. Boxplot of bin scores across different strategies for non-
dereplicated data. Same as Figure S2, but with non-dereplicated
data. Each data point is a genome bin, and Y-axis depicts bin scores
from 0 to 1. Columns separate datasets, and colours represent dif-
ferent strategies. Numbers underneath each bar show the number
of data points for that bar.
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Figure S4. Cumulative bin score and number of bins between binning strategies for the Marine and Strain Madness datasets. Solid lines
show the same data as Fig 6, and dashed lines show data based on bins prior to dereplication with dRep.




Table S1. Summary of genome bins recovered from the Strain Madness dataset, CACB strategy. “Bin ID” indicates the binning algorithm
that generated the bin, “Bin score S,” is the relative bin score, ‘SCG’ refers to ‘single copy gene’ in “SCG completeness” and “SCG
redundancy”, “FastANI reference” and “GTDB classification” refer to the reference genome and corresponding taxonomy assignment.
Taxonomy determined with GTDB-Tk v2.3.0, reference data r214 [44].

BinID BinscoreS, SCGcompleteness SCGredundancy FastANIreference GTDB Classification
metabat2.1221 1 100 0 GCF_004793475.1 Bacteroides sp002491635
concoct.122 1 100 0 GCF_024397795.1 Lactobacillus intestinalis
vamb.S1C5590 1 100 0 GCF_000614185.1 Phocaeicola sartorii
metabat2.4898 1 100 0 GCF_000969835.1  Parabacteroides goldsteinii
concoct.156 0.98039216 98 0] GCF_003030305.1 Cutibacterium acnes
concoct.148 0.97843137 100 2 GCF_001436695.1 Lactobacillus taiwanensis
concoct.92 0.95686275 100 4 GCF_014863545.1 Paenibacillus lautus_A
concoct.121 0.95686275 100 4 GCF_000012845.1 Parabacteroides distasonis
metabat2.328 0.95686275 100 4 GCF_000016825.1 Limosilactobacillus reuteri
vamb.S1C971 0.94117647 94 0 GCF_000392875.1 Enterococcus faecalis
metabat2.3846 0.93678431 08 A GCA_009911065.1 Ventrimonas sp009911065
concoct.136 0.91668667 96 4 GCF_001027105.1 Staphylococcus aureus
metabat2.1266 0.87258904 96 8 GCF_001544255.1 Enterococcus_B faecium
concoct.115 0.67941176 71 2 GCF_016758115.1 Lactococcus sp002492185
concoct.58 0.55843137 59 2 GCF_013394695.1 Streptococcus sp013394695
metabat2.4512 0.2745098 27 0 GCF_001729805.1 Enterobacter roggenkampii
metabat2.2064 0.26315789 26 0 GCF_000742135.1 Klebsiella pneumoniae
metabat2.1951 0.21568627 22 0 GCF_001457635.1 Streptococcus pneumoniae
metabat2.3969 0.19607843 20 0 GCF_011064845.1 Citrobacter freundii
metabat2.1470 0.18421053 18 0 GCF_000215745.1 Klebsiella aerogenes
concoct.22 0.10526316 11 0] GCF_001729745.1 Enterobacter hormaechei_A
concoct.103_sub 0.07894737 8 0 Unclassified Bacteria
concoct.97_sub 0.05882353 6 0 Citrobacter
concoct.124_sub 0.05882353 6 0 Unclassified Bacteria
concoct.27_sub 0.04473684 16 3 Enterobacter
concoct.91_sub 0.03921569 4 0 GCF_001729745.1 Enterobacter hormaechei_A
concoct.159 0.02631579 3 0 Unclassified Bacteria
concoct.6/4_sub 0.02631579 3 0 Unclassified Bacteria
vamb.S1C21648 0.02631579 3 0 Unclassified
metabat2.3037_sub  0.01960784 2 0 Unclassified Bacteria
concoct.13 0.0196078/4, 2 0] Unclassified Bacteria
vamb.S1C7072 0.0196078¢4, 2 0] Unclassified Bacteria
concoct.35_sub 0.01417112 86 53 Klebsiella
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