Supporting Information

Ga-Pt Supported Catalytically Active Liquid Metal Solutions (SCALMS) Prepared by Ultrasonication – Influence of Synthesis Conditions on n-Heptane Dehydrogenation Performance

Oshin Sebastian ¹, Asem Al-Shaibani ¹, Nicola Taccardi ¹, Umair Sultan ^{1,2}, Marco Haumann ^{1,3*}, Alexandra Inayat,¹ Nicolas Vogel ², Peter Wasserscheid ^{1,4*}

1 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstraße 3, 91058 Erlangen, Germany

2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG), Cauerstraße 4, 91058 Erlangen, Germany

3 Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

4 Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK 11), Egerlandstraße 3, 91058 Erlangen, Germany

*Corresponding author e-mail address: marco.haumann@fau.de; peter.wasserscheid@fau.de

Ultrasonication for Ga and Ga containing metals

The literature on ultrasonication conditions and the resulting particle sizes reported in the literature for Ga and Ga containing metals are summarized in Table S1.

Table S1. Summary table showing ultra-sonication conditions and particle size reported in the literature for Ga and Ga containing metals.

Metal	Solvent	LM conc. (mg mL ⁻¹)	Stabilizer / conc. (mM)	P (W) / A (%) / T (°C) / t (min.)	Particle size (nm) / technique	Ref.
Ga	Water	~19	none	80 / - / 55ª / 6-10	50-10000 / SEM	1
Ga	Isopropanol	~20	C ₁₂ H ₂₅ SH / 300	400 / 40 / 20 / 120	10-400 / SEM	2
Ga	Isopropanol	5	none	450 / 20 / 50 / 120	525 / DLS	§
Ga	Isopropanol	5	none	450 / 40 / 50 / 120	277 / DLS	ş
Ga	Isopropanol	5	none	450 / 60 / 50 / 120	206 / DLS	§
Ga	Isopropanol	5	none	450 / 80 / 50 / 120	249 / DLS	§
Ga	Hexane	~12-33	none	80 / - / 55ª / 2.5	300-1200 / SEM 400-1000 / DLS	1
Ga	Dodecane	~12-33	none	80 / - / 55ª / 2.5	200-1300 / SEM 300-900 / DLS	1
EGaIn	Ethanol (anhydrous)	0.05	none	500 / 25 / - / 10	1890 /	3
EGaIn	Ethanol	0.05	none	500 / 25 / - / 10	148 /	3
EGaIn	Ethanol	~91	C ₁₂ H ₂₅ NOS / 1	700 / 30 / - / 60	180 ± 32	4
EGaIn	Ethanol	~91	none	700 / 30 / - / 60	465 ± 65	4
EGaIn	Ethanol	~91	C ₁₂ H ₂₅ NOS / 1	700 / 30 / - / 30	~ 350	5
EGaIn	Ethanol	~91	C ₁₂ H ₂₅ NOS / 1	700 / 30 / - / 960	50	5
EGaIn	Ethanol	~91	none	700 / 30 / - / 30	~ 650	5
EGaIn	Ethanol	~91	none	700 / 30 / - / 960	50	5
EGaIn	Ethanol	~200	none	55 / 80 / - / 10	~ 105 ^b	6
EGaIn	Ethanol	360	C ₁₂ H ₂₅ SH / 1	Sonication bath - / - / - / 120	100 - 1000°	7
EGaIn	Ethanol	360	C ₁₂ H ₂₅ NOS / 1	Sonication bath - / - / - / 120	< 100°	7
EGaIn	Ethanol	~133	C ₁₂ H ₂₅ SH / 1	Sonication bath - / - / 25 / 60	150 / TEM 176 / DLS 170 / UV-vis	8
EGaIn	Ethanol	~133	$C_{18}H_{37}SH / 1$	Sonication bath - / - / 25 / 60	80 / UV-vis	8
EGaIn	Hexanes	250	DPA	500 / 17 / 10 / 120	158.8 / STEM	9
EGaIn	Hexanes	250	none	500 / 17 / 10 / 120	162.8 / STEM	9
GaIn ^d	Water	~60	POMA / 0.033e	700 / 40 / - / 5	~ 170	10
EGaInSn	Ethanol	~10	$C_5H_{10}O_2S \ / \ 0.05$	750 / 40 / 20 / 60	110 / SEM	11

Note: EGaIn = eutectic-GaIn; EGaInSn = eutectic-GaInSn; $LM \ conc. = liquid metal \ concentration$; $P = maximum \ power \ of \ horn \ type \ ultrasonication \ device \ or \ power \ input$; $A = amplitude \ of \ sonication$; $T = temperature \ of \ the \ emulsion$, $t = duration \ of \ ultrasonication$. $SEM = scanning \ electron \ microscopy$; $STEM = scanning \ transmission \ electron \ microscopy$, $DLS = dynamic \ light \ scattering$; UV-vis $= Ultraviolet \ spectroscopy$. $C_{12}H_{25}SH = 1$ -dodecanethiol; $C_{18}H_{37}SH = 1$ -octadecanethiol; $C_5H_{10}O_2S = ethyl \ 3$ -mercaptopropionate; $C_{12}H_{25}NOS = 3$ -mercapto-N-nonylpropionamide; $DPA = Decylphosphonic \ acid. \ POMA = poly(1$ -octadecenealt-maleic anhydride); a = Ga was melted at 55 °C for 30-40 min prior to \ sonication. Temperature \ increased to $64 \ ^C \ during \ sonication \ in \ water$; $b = mean \ diameter \ of \ in \ the \ supernatant \ liquid \ after \ settling \ of \ the \ larger$ $particles; <math>c = filtered \ using \ 0.1 \ \mu m \ Whatmann \ Luer \ Lock \ membrane \ filter, \ or \ separated \ by \ mild \ centrifugation;$ $<math>d = 80 \ wt.\% \ Ga \ and \ 20 \ wt.\% \ In; \ e = taking \ molar \ mass \ of \ POMA \ as \ 30000 \ g \ mol^{-1}; \ \S = this \ work.$

Stability of the Ga-dispersions

Figure S1. Stability of Ga-propan-2-ol dispersions prepared using 80% and 20% sonication amplitude. Dispersions were stored in sample vials.

Nernst equation and galvanic displacement reactions

$$E = \left(E_{Pt}^{0} - E_{Ga}^{0}\right) - \frac{RT}{nF} ln_{IIII}^{IIII} \left(\frac{\theta_{0}^{Pt}}{\theta_{0}^{Pt}}\right)$$
(S1)

Herein, θ_{0}^{Pt} is the equilibrium coverage of the deposited Pt atoms in the absence of net current, θ_{0}^{Pt} is the coverage of the Pt atoms while being deposited, $E_{pt} + \frac{1}{P_{t}} E_{Ga} + \frac{1}{P_{t}} E$

$$Ga^{3+} + 3e^{-} \leftrightarrow Ga^{0}$$
 $E^{0} = -0.549 V$ (S2)

$$[PtCl_6]^{2^-} + 2e^- \leftrightarrow [PtCl_4]^{2^-} + 2Cl^- \qquad E^0 = + 0.68V$$
(S3)

$$[PtCl_4]^{2^-} + 2 e^- \leftrightarrow Pt^0 + 4 Cl^- \qquad E^0 = + 0.755 V \tag{S4}$$

$$[PtCl_6]^{2^-} + 4 e^- \leftrightarrow Pt^0 + 6 Cl^- \qquad E^0 = + 0.718 V \tag{S5}$$

$$3 \left[PtCl_6 \right]^{2-} + 4 \, Ga^0 \leftrightarrow 3 \, Pt^0 + 4 \, Ga^{3+} + 18 \, Cl^- \qquad E^0 = + \, 1.267 \, V \tag{S6}$$

Particle size analysis

Figure S2. Comparison of particle size analysis of Ga-isopropanol emulsion synthesized using 80% amplitude of ultrasonication via a) SEM and b) DLS imaging.

Figure S3. The particle size distribution of Ga droplets after ultrasonication (60% amplitude, 120 min) and after in situ Ga-Pt galvanic displacement in emulsion. Note: Z-avg. = Z-average (intensity-based harmonic mean from DLS measurement).

Reference catalyst synthesis

The individual building blocks of the SCALMS catalyst system were synthesized individually.

 $Ga^{0}/Al_{2}O_{3}$: Ga-emulsion was prepared by ultrasonicating 0.5 g gallium nugget in isopropanol using 60% amplitude and 120 min irradiation time. To this Ga-emulsion, $Al_{2}O_{3}$ support material was added to achieve approx. 3 wt.-% loading of Ga on alumina. The solvent was then slowly evaporated under vacuum at 313 K using a rotary evaporator. The solid ($Ga^{0}/Al_{2}O_{3}$) obtained was then calcined for 2 hours at 773 K under ambient conditions.

 Ga_2O_3/Al_2O_3 : Required amount of Al_2O_3 support material suspended in isopropanol and to this required amount of Ga precursor (i.e., $Ga(NO_3)_3$) in water was added. The solvent was then slowly evaporated under vacuum at 313 K using a rotary evaporator. The solid (Ga_2O_3/Al_2O_3) obtained was then calcined for 2 hours at 773 K under ambient conditions.

Pt/Al₂O₃: Commercially available Pt/Al₂O₃ powder (1.0 wt.-% Pt) was purchased from Sigma-Aldrich.

Pt-Ga₂O₃/Al₂O₃: Ga₂O₃/Al₂O₃ was prepared as mentioned above and Pt was then added through classical wet-impregnation. Ga₂O₃/Al₂O₃ was suspended in isopropanol and to this required amount of Pt precursor (i.e. $(H_3O)_2(PtCl_6)_x$) in water was added. The solvent was then slowly evaporated under vacuum at 313 K using a rotary evaporator. The solid (Pt-Ga₂O₃/Al₂O₃) obtained was then calcined for 2 hours at 773 K under ambient conditions.

The exact loading of Ga was determined by ICP-AES

Gas-phase dehydrogenation set-up

Figure S4. Flow scheme of the continuous gas-phase reactor setup for n-heptane dehydrogenation. Heated lines are shown in red.

Figure S5. Image of gas-phase reactor setup used for n-heptane dehydrogenation.

Catalysts tested in n-heptane dehydrogenation

Catalyst name	Ga	Pt	Ga	Pt	Ga/Pt	Galvanic displacement reaction media
	wt%	wt%	at%	at%	-	
Ga ₅₂ Pt SCALMS-A	2.7	0.15	98.1	1.9	52	Isopropanol
Ga54Pt SCALMS-B	2.5	0.13	98.2	1.8	54	Water
Ga ₅₃ Pt SCALMS-C	1.7	0.09	98.1	1.9	53	Isopropanol - water
Ga ₂₇ Pt/Al ₂ O ₃	2.0	0.21	96.4	3.6	27	Isopropanol - water
Ga ₃₆ Pt/Al ₂ O ₃	1.9	0.15	97.3	2.7	36	Isopropanol - water
Ga ₅₃ Pt/Al ₂ O ₃	1.7	0.09	98.1	1.9	53	Isopropanol - water
Ga ₇₆ Pt/Al ₂ O ₃	2.1	0.08	98.7	1.3	76	Isopropanol - water
$Ga_{99}Pt/Al_2O_3$	2.2	0.06	99.0	1.0	99	Isopropanol - water
Ga/Al ₂ O ₃	2.3	0	100.0	0.0	0	-
Ga_2O_3/Al_2O_3	3.0	0	100.0	0.0	0	-
Pt-Ga ₂ O ₃ /Al ₂ O ₃	3.6	0.35	96.6	3.4	29	-
Pt/Al ₂ O ₃ (commercial)	0	1.0	0	100	0	-

Table S2. Overview of catalysts and their compositions tested in this study.

Reaction product analysis

A sample of gas chromatograph showing the separation and detection of various products formed in n-heptane dehydrogenation is shown in Figure S6.

Figure S6. Representative GC chromatogram showing products separation and detection in n-heptane dehydrogenation.

The summary and classification of the different species that were identified by means of GC analysis is shown Table S3.

Table S3. Reaction products detected in n-heptane dehydrogenation at 703 K under atmospheric pressure.

Products	Classification	Relevant reactions
Methane, ethane, ethane, propane, propene, cyclopentane, methylcyclopentane, 2- methylpetane, 3-methylpentane, hexane, benzene,	Cracked products $(\leq C6)$	Hydrocracking Hydrogenolysis
n-heptane	C7 <i>n</i> -alkane	
1-heptene, <i>trans</i> -2-heptene, <i>cis</i> -2-heptene, <i>trans</i> -3-heptene, <i>cis</i> -3-heptene	C7 <i>n</i> -alkenes	Dehydrogenation
2,2-dimethylpentane, 3,3-dimethylpentane, 2,3- dimethylpentane, 2-methylhexane, 3- methylhexane	C7 <i>iso</i> -alkanes	Isomerization
5-methyl-1-hexene, 3-ethyl-2-pentene, 3- methyl-2-hexene, 2-methyl-2,4-hexadiene, 2,3- dimethyl-1,3-pentadiene	C7 <i>iso</i> -alkenes	Dehydrogenation- isomerization
<i>Cis</i> -1,3-dimethylcyclopentane, <i>trans</i> -1,3- dimethylcyclopentane, 1,2-dimethylcyclo- pentane, methylcyclohexane, ethylcyclopentane	C7 subcyclo-alkanes	Cyclization
3,5-dimethylcyclopentene, 1-ethylcyclopentene	C7 subcyclo-alkenes	Dehydrocyclization
Toluene	C7 aromatics	Aromatization

Note: sub.-cyclo = *substituted cyclic*

Since the amount of dehydrogenated species within the fractions of isomerized and cyclized compounds was very small (< 1%), they were included in the lumped model. Hence, only six compound classes were discussed:

< C6 cracking, desired n-heptene, isomerized C7, C7 cyclics, C7 aromatics and unspecified

The conversion of *n*-heptane X_i , the selectivity to *n*-heptenes S_k , the productivity P_k , and the cumulative productivity $P_{k,cum}$ were calculated as follows:

$$X_{i} = \frac{x_{i,0} - x_{i}}{x_{i,0}} \quad i = n - heptane$$
(S7)

$$S_k = \frac{x_k}{x_{i,0} - x_i} \quad i = n - heptane, k = n - heptenes$$
(S8)

$$P_{k} = \frac{F_{m,1} \cdot X_{i} \cdot S_{k}}{m_{Pt}} \quad i = n - heptane, k = n - heptenes$$
(S9)

$$P_{k,cum} = P_k \cdot TOS \tag{S10}$$

Where $x_{i,k}$ is the mole fraction of component *i* and *k*, $x_{i,0}$ is the mole fraction of component *i* in the feed, $F_{m,i}$ the mass flow rate of *n*-heptane, m_{Pt} is the mass of platinum in the catalyst bed, and *TOS* is the time-on-stream.

Bare Al₂O₃ support activity in n-heptane dehydrogenation

Figure S7. Graph showing conversion over time-on-stream in *n*-heptane dehydrogenation using bare Al_2O_3 (neutral, Sigma Aldrich) support at 430 °C and 1 bar. Reaction conditions: 2.5 mL support material, H_2/n -heptane = 8/1, 0.062 g min⁻¹ *n*-heptane, 118.87 mL_N min⁻¹ H₂, 14.86 mL_N min⁻¹ He, 3320 mL_{gas} g_{cat-bed}⁻¹ h⁻¹ GHSV, ~ 1.1 s residence time (τ).

Comparison between in situ vs. ex situ prepared SCALMS-C in n-heptane dehydrogenation

To study the effect of in situ vs. ex situ Ga-Pt galvanic displacement in n-heptane dehydrogenation we prepared Ga-Pt SCALMS via two routes with identical Ga-to-Pt ratio of 58 and tested in n-heptane dehydrogenation. The catalytic results are shown in Figure S7.

Table S4. Composition of Ga-Pt SCALMS prepared via ex situ and in situ galvanic displacement

Ga-Pt galvanic displacement	Ga / wt.%	Pt / wt. %	Ga-to-Pt ratio
ex situ SCALMS-C	1.7	0.09	53
in situ SCALMS-C*	2.79	0.135	58

Figure S8. (a) SEM image and EDX mapping of Ga (b) and Pt (c) of Ga-Pt SCALMS-C prepared via ex situ GDR. The scale bar represents $10 \mu m$.

References

1. Kumar, V. B.; Gedanken, A.; Kimmel, G.; Porat, Z., Ultrasonic cavitation of molten gallium: formation of micro- and nano-spheres. *Ultrason. Sonochem.* **2014**, *21* (3), 1166-73.

2. Yamaguchi, A.; Mashima, Y.; Iyoda, T., Reversible Size Control of Liquid-Metal Nanoparticles under Ultrasonication. *Angew. Chem. Int. Ed.* **2015**, *54* (43), 12809-13.

3. Creighton, M. A.; Yuen, M. C.; Susner, M. A.; Farrell, Z.; Maruyama, B.; Tabor, C. E., Oxidation of Gallium-based Liquid Metal Alloys by Water. *Langmuir* **2020**, *36* (43), 12933-12941.

4. Boley, J. W.; White, E. L.; Kramer, R. K., Mechanically sintered gallium-indium nanoparticles. *Adv. Mater.* **2015**, *27* (14), 2355-60.

5. Lear, T. R.; Hyun, S.-H.; Boley, J. W.; White, E. L.; Thompson, D. H.; Kramer, R. K., Liquid metal particle popping: Macroscale to nanoscale. *Extreme Mech. Lett.* **2017**, *13*, 126-134.

6. Lin, Y.; Cooper, C.; Wang, M.; Adams, J. J.; Genzer, J.; Dickey, M. D., Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. *Small* **2015**, *11* (48), 6397-403.

7. Hohman, J. N.; Kim, M.; Wadsworth, G. A.; Bednar, H. R.; Jiang, J.; LeThai, M. A.; Weiss, P. S., Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale. *Nano. Lett.* **2011**, *11* (12), 5104-10.

8. Finkenauer, L. R.; Lu, Q.; Hakem, I. F.; Majidi, C.; Bockstaller, M. R., Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets. *Langmuir* **2017**, *33* (38), 9703-9710.

9. Farrell, Z. J.; Reger, N.; Anderson, I.; Gawalt, E.; Tabor, C., Route to Universally Tailorable Room-Temperature Liquid Metal Colloids via Phosphonic Acid Functionalization. *J. Phys. Chem. C* **2018**, *122* (46), 26393-26400.

10. Lin, Y.; Genzer, J.; Li, W.; Qiao, R.; Dickey, M. D.; Tang, S. Y., Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions. *Nanoscale* **2018**, *10* (42), 19871-19878.

11. Ren, L.; Zhuang, J.; Casillas, G.; Feng, H.; Liu, Y.; Xu, X.; Liu, Y.; Chen, J.; Du, Y.; Jiang, L.; Dou, S. X., Nanodroplets for Stretchable Superconducting Circuits. *Adv. Funct. Mater.* **2016**, *26* (44), 8111-8118.