Supplemental Material for: Time Fused Coefficient SIR Model with Application to COVID-19 Epidemic in the United States by Hou-Cheng Yang Yishu Xue Yuqing Pan Qingyang Liu Guanyu Hu

ARTICLE HISTORY Compiled March 4, 2021

1. Check for MCMC Convergence

As suggested by a reviewer, we study the convergence for the chains. From design 1,d d we extracted three chains from the post-burn-in samples of $\hat{\beta}(20)$ and $\hat{\gamma}(68)$, and visualize the chains as in Figure 1 and Figure 2. It can be seen that with 50000 chain length, 10 thinning and 3000 burn-in, good convergence and mixing are achieved. As the numerical values of true $\beta(t)$ and $\gamma(t)$ are in general small in our simulation designs, we would like the samples drawn using the adaptive Metropolis–Hastings to be as independent as possible.

2. Computing Time Benchmarking

To examine the computing speed, we use the **microbenchmark** package [1] to record the running time for 20 replicates of simulation under each of the four designs for each of the three shrinkage priors. A boxplot of the computing time is in Figure 3. It can be seen that, despite the chain length of 50,000, computation is fairly fast as almost all replicates finish within 4 minutes. Out of the three shrinkage priors, the *t*-shrinkage prior on average takes the most computing time, while the horseshoe is faster than spike-and-slab by a small margin.

References

[1] O. Mersmann, microbenchmark: Accurate Timing Functions (2019). Available at https: //CRAN.R-project.org/package=microbenchmark, R package version 1.4-7.

Figure 1. Post-burn-in trace plot for $\hat{\beta}(20)$ obtained using the three priors.

Figure 2. Post-burn-in trace plot for $\widehat{\gamma}(68)$ obtained using the three priors.

Figure 3. Boxplot of computing time for 20 simulation replicates for the three shrinkage priors.