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Supplementary Figure 5. 
IL-13 Elispot of tetramer+ CD4+ T cells that were FACS-sorted from polyclonal CD1a-(lysyl)PG tetramer+ T cell lines. 
(Figure 6c) Co-culture conditions (triplicates) are indicated on the left. 
 
  



Su
p

p
lm

e
n

tary T
ab

le
 1

T ce
ll p

o
lylclo

n
al cu

ltu
re

s / lin
es / clo

n
e

s rep
o

rte
d

 in
 m

an
u

scrip
t

D
o

n
o

rs
O

rigin
T cell lin

es (lo
w

 an
d

 h
igh

 p
u

rity)
T cell clo

n
es

TC
R

 id
en

tified
Exp

erim
en

ts w
ith

 D
o

n
o

r / T cell lin
es / clo

n
es

Figu
re(s) 

IL-1
3

 p
ro

d
u

ctio
n

D
erm

T (refe
ren

ce 1
7

, 1
8

)
Skin

 (d
erm

is)
D

erm
T

Te
tram

er stain
in

gs / so
rt

1
b

, 1
c, ED

Fig 1

Fu
n

ctio
n

al assays (K
5

6
2

 C
D

1
a)

1
a

8
3

4
P

B
M

C
8

3
4

Te
tram

er stain
in

gs / so
rt

2
a, ED

Fig 8
+

D
u

al te
tram

er stain
in

g
3

e

C
yto

kin
e q

P
C

R
 (w

ith
 T cell lin

e)
4

d

C
o

-cu
ltu

re assay (D
C

 +
 S. au

reu
s)

6
c, ED

Fig 7
, S5

3
5

0
P

B
M

C
3

5
0

3
0

5
.2

-
Te

tram
er stain

in
gs / so

rt
2

a, 2
c (clo

n
e)

+ (n
o

t sh
o

w
n

)

3
2

5
P

B
M

C
3

2
5

Te
tram

er stain
in

gs / so
rt

2
a, ED

Fig 8
+

Fu
n

ctio
n

al assay (K
5

6
2

 C
D

1
a +

 lip
id

)
2

e

C
yto

kin
e q

P
C

R
 (after ex vivo

 so
rt fro

m
 P

B
M

C
)

4
c

Sin
gle cell R

N
A

-seq
 afte

r ex vivo
 so

rt fro
m

 P
B

M
C

5
a - 5

e

C
o

-cu
ltu

re assay (D
C

 +
 S. au

reu
s)

6
c, ED

Fig 7
, S5

2
1

3
P

B
M

C
2

1
3

Te
tram

er stain
in

gs / so
rt

2
a, 2

b
+ (n

o
t sh

o
w

n
)

0
0

3
P

B
M

C
0

0
3

m
u

ltip
le

-
Te

tram
er stain

in
gs / so

rt
2

a
+

C
o

-cu
ltu

re assay (D
C

 +
 S. au

reu
s)

6
c, ED

Fig 7
, S5

9
6

6
P

B
M

C
9

6
6

9
6

6
.1

0
 (C

D
4

+) 
9

6
6

.1
0

Te
tram

er stain
in

gs / so
rt

2
a, 3

c
+

9
6

6
.1

.4
- (C

D
4

-)
Fu

n
ctio

n
al assay (K

5
6

2
 C

D
1

a +
 lip

id
)

2
e

 9
6

6
.1

.4
+ (C

D
4

+)
D

u
al te

tram
er stain

in
g

3
e

B
u

lk R
N

A
-seq

u
en

cin
g 

4
a

In
tracellu

lar cyto
kin

e stain
in

g (IC
S)

4
b

9
2

1
P

B
M

C
9

2
1

a (M
A

C
S/FA

C
S so

rt) 
9

2
1

.3
 (C

D
4

+) 9
2

1
.2

 (C
D

4
+)

9
2

1
.3

, 9
2

1
.2

Te
tram

er stain
in

gs / so
rt

2
a, 2

b
, 2

c, 3
b

, ED
Fig 8

+

9
2

1
b

 (FA
C

S so
rt)

Fu
n

ctio
n

al assay (P
late-b

o
u

n
d

 C
D

1
a +

 lip
id

)
2

d

Su
rface P

lasm
o

n
 R

e
so

n
an

ce (TC
R

 clo
n

e 9
2

1
.3

)
3

d

B
u

lk R
N

A
-seq

u
en

cin
g 

4
a

In
tracellu

lar cyto
kin

e stain
in

g (IC
S)

4
b

Sin
gle cell R

N
A

-seq
 afte

r ex vivo
 so

rt fro
m

 P
B

M
C

5
a-5

e

2
1

1
4

 (B
C

1
4

)
P

B
M

C
2

1
1

4
 (M

A
C

S/FA
C

S so
rt)

2
1

1
4

.1
,  2

1
1

4
.5

, 2
1

1
4

.8
2

1
1

4
.8

Te
tram

er stain
in

gs / so
rt

2
c, 3

c
+ (n

o
t sh

o
w

n
)

Fu
n

ctio
n

al assay (K
5

6
2

 C
D

1
a +

 lip
id

)
2

e

Skin
T4

Skin
Skin

T4
Skin

T4
.1

Skin
T4

.1
Te

tram
er stain

in
gs / so

rt
6

d
+

Fu
n

ctio
n

al assay (P
late-b

o
u

n
d

 C
D

1
a +

 lip
id

)
6

d

2
1

1
P

B
M

C
2

1
1

C
D

1
a-P

G
 so

rt an
d

 d
u

al te
tram

er stain
in

g
ED

Fig 4
n

o
t te

ste
d

7
7

3
P

B
M

C
C

yto
kin

e q
P

C
R

 (after ex vivo
 so

rt fro
m

 P
B

M
C

)
4

c
+

6
7

8
, 6

8
9

, 2
6

2
, 7

1
5

P
B

M
C

Ex vivo
 d

u
al te

tram
er stain

in
g

3
f

2
1

1
, 6

7
1

, 6
7

0
, 1

8
2

, 6
7

8
, 6

7
9

P
B

M
C

Ex vivo
 tetram

er stain
in

g 
1

g

A
D

E0
0

1
 - A

D
E0

1
9

P
B

M
C

Ex vivo
 tetram

er stain
in

g 
6

e

A
D

E0
0

1
 - A

D
E0

1
9

Skin
 b

io
p

sies
In

 vitro
 tetram

er stain
in

g
6

e

O
xfo

rd
 sam

p
les

P
B

M
C

Ex vivo
 tetram

er stain
in

g 
6

f



Supplementary Notes 

Fatty acid methyl ester (FAME) preparation and HPLC-MS analysis.  

Lipid standards were purchased from Nui-chek Prep (straight chain, n-C15 FAME, (N-15-A) and 

Avanti Polar Lipids (anteiso-C15:0 fatty acid, 857510; iso-C15:0 fatty acid, 857511). Fatty acid 

methyl esters were prepared using the published method.1 Anteiso-C15:0 fatty acid (200 µg), iso-

C15:0 fatty acid (200 µg), and purified S. aureus PGs (25 µg) were subject to FAME conversion. 

Briefly, lipids were dried in 15-ml glass tubes and 2 ml of 5% methanolic (m/v) HCl was added 

and heated at 80 °C in a water bath for 2 hours. The solution was cooled down to the 20-25°C 

and 1 ml water was added, followed by 2 ml of hexane with vortexing for 30 seconds for each 

solvent addition. The tubes were centrifuged at 2500 rpm for 10 min, and the FAME-containing 

upper phase was transferred to a clean tube and dried under nitrogen gas. For the reversed phase 

HPLC-QTOF-MS analysis, the S. aureus FAME corresponding to 1 µg of initial input PGs was 

used to compare the three FAME (n-, iso-, and anteiso-C15 FAME) standards (10 µM) using 

HPLC-MS system described for PG and lysylPG analysis.   

 

1D TLC purification for S. aureus PG and lysylPG. 

For PG and lysylPG isolation, 1 ml of frozen S. aureus pellet was thawed and extracted by the 

Bligh and Dyer method2. Silica-coated glass TLC plates (Sorbtech, 2115026; 20 x 20 cm, 250 

µM) were precleared by chloroform/methanol/water (60:30:6 (v/v/v)). The S. aureus lipids extract 

was loaded on the TLC plate (1 mg per plate for two plates) and developed with C/M/H2O 65/25/4 

(v/v/v) and dried for 1 hr 3. Plates were separated to two pieces in a ratio of 8:2, with the small 

piece was sprayed with the solution of 3% (m/v) of cupric acetate in 8% (v/v) phosphoric acid, 

and the lipid bands were visualized after charring for 20–30 min at 150°C. PGs have a retention 

factor (Rf) of ~0.26-0.30 and lysylPGs have an Rf ~0.05-0.09. Based on the reference bands on 

the small TLC piece, the PG and lysylPG containing bands on the large TLC piece were marked 



and scraped. The silica was extracted twice with C/M (2:1; v/v). The lysylPG fraction was dried 

for the final analysis without further purification to avoid lysine head group hydrolysis. The PG 

fraction contained trace cardiolipins due to their similar Rf as detected of ESI-MS. To remove 

cardiolipin, the fraction was further purified using the reversed phase HPLC system described 

above and monitored by a QTOF mass spectrometer. The HPLC column was diverted at the 

known PG elution time and the eluate was collected in a glass tube. Twenty HPLC column 

purifications were made from one 1D TLC plate purified PGs to yield pure PG as assessed by 

ESI-MS. Purified lipids were quantified based on the PG and lysylPG external standard curves as 

described in the lysylPG stability test section. 

 

 

Bulk RNA-sequencing of CD1a-lysylPG tetramer+ CD4+ T cells 

Purified tetramer+ cells were incubated with or without anti-CD3/CD28 stimulator beads 

(stimulated) (Dynabeads ® Human T-activator CD3/CD28) for 6 hours, after which RNA was 

extracted using RNeasy (Qiagen). RNA Library Preparation and HiSeq Sequencing RNA sample 

was quantified using Qubit 2.0 Fluorometer (Life Technologies). RNA integrity was checked with 

2100 Bioanalyzer (Agilent Technologies). RNA library preparation and sequencing reaction were 

conducted at GENEWIZ, LLC. RNA sequencing library preparation used the NEBNext Ultra RNA 

Library Prep Kit for Illumina by following manufacturer’s recommendations (NEB). Briefly, mRNA 

was first enriched with Oligod(T) beads. Enriched mRNAs were fragmented for 15 minutes at 94 

°C. First strand and second strand cDNA were subsequently synthesized. cDNA fragments were 

end repaired and adenylated at 3’ends, and universal adapter was ligated to cDNA fragments, 

followed by index addition and library enrichment with limited cycle PCR. The sequencing library 

was validated on the Agilent 2100 Bioanalyzer (Agilent Technologies), and quantified by using 

Qubit 2.0 Fluorometer (Invitrogen) as well as by quantitative PCR (Applied Biosystems). The 



sequencing library was clustered on one lane of a flowcell. After clustering, the flowcell was loaded 

on the Illumina HiSeq instrument according to manufacturer’s instructions. The samples were 

sequenced using a 2x150 Paired End (PE) configuration. Image analysis and base calling were 

conducted by the HiSeq Control Software (HCS). Raw sequence data (.bcl files) generated from 

Illumina HiSeq was converted into fastq files and de-multiplexed using Illumina's bcl2fastq 2.17 

software. One mis-match was allowed for index sequence identification. Unique gene hit counts 

were calculated by using feature Counts from the Subread package v.1.5.2. Only unique reads 

that fell within exon regions were counted. After extraction of gene hit counts, the gene hit counts 

table was used for downstream differential expression analysis. Variance-stabilizing 

transformation (VST) was performed, and the VST data of cytokine and chemokine expression 

was displayed in a heatmap using Morpheus (https://software.broadinstitute.org/morpheus/).  

 

Cytokine ELISA and Elispot 

Nunc Maxisorp 96-well plates (ThermoFisher, 439454) were coated at 4°C overnight with 50μl of 

5μg/ml of antibody in PBS. Next, plates were washed and blocked with 300μl of 1% BSA in PBS 

at 20-25°C for 1 hour. Samples and standard curve dilutions were added to the plate in triplicate 

and incubated at 20-25°C for 2 hours. After washing, 50μl of biotin-tagged antibody at 0.5 μg/ml 

in PBS was added and incubated for 1 hour at 20-25°C. Plates were washed again before the 

addition of streptavidin-HRP diluted 1:1000 in PBS, for 30 minutes at 20-25°C. Plates were 

washed again before the addition of 50μl of hydrogen peroxide and tetramethylbenzidine (R&D 

Systems, DY999). The reaction was stopped with 25μl H2SO4. 

ELISA sandwich antibody pairs: GM-CSF antibody pairs (Thermo Fisher Scientific, M501B & 

M500A); IFNγ (Mabtech, 3420-3-250 & 3420-6-250); IL-13 (Mabtech, 3471-3-250, 3471-6-250).  

Cytokine ELISAs were performed according to manufacturer’s instruction (Mabtech). 
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