Supporting Information for:

Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection

Conner C. Harper^{\dagger}, Zachary M. Miller^{\dagger}, Matthew S. McPartlan^{\dagger}, Jacob S. Jordan^{\dagger}, Randall E. Pedder^{\ddagger}, and Evan R. Williams^{\dagger^*}

†Department of Chemistry, University of California, Berkeley, California, 94720-1460, United States ‡Ardara Technologies LP, Ardara, Pennsylvania, 15615, United States

For submission to ACS Nano

*Address correspondence to this author.

Email: erw@berkeley.edu

Telephone: (510) 643-7161

Table of Contents

Rayleigh Limit for Charged Aqueous Droplets	S3
Figure S1	S4

Rayleigh Limit for Charged Aqueous Droplets

The extent of charging necessary for fission of a spherical droplet to occur is described by the Rayleigh equation:¹

$$Z_R = 8\pi e (\varepsilon_0 \gamma R^3)^{1/2} \tag{1}$$

where γ is the surface tension, Z_R is the charge on a spherical droplet with radius R, ε_0 is the permittivity of free space, and *e* is the elementary charge. This can be rewritten to provide a relationship between mass and charge if the density of droplet, ρ , is known, as shown in eq. 2.

$$Z_R = 4e \sqrt{\frac{3\pi\varepsilon_0 \gamma m}{\rho}} \tag{2}$$

The values for γ and ρ used are those for bulk pure water at 20°C and are 72.8 mN/m and 0.9982 g/mL respectively.² Eq. 2 was used to calculate the Rayleigh limit for the mass vs. charge plots (blue dashed line) in Figure 1b as well as Figure S1.

Reference

- (1) Rayleigh, Lord. XX. On the Equilibrium of Liquid Conducting Masses Charged with Electricity. *London, Edinburgh, Dublin Philos. Mag. J. Sci.* **1882**, *14* (87), 184–186.
- (2) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC press, 2004; Vol. 85.

Figure S1. Two-dimensional mass vs. histogram for the \sim 50 nm nanoparticles. The blue dashed line is the Rayleigh charging limit of spherical droplets as a function of mass. The \sim 50 nm nanoparticles exhibit only a single smooth mass and charge distribution, suggesting that no dimers were present in this sample.