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SUMMARY
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting
cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347
BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster
1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters
5–8 through intermediate clusters 2–4. Additional ASC clusters include the following: immunoglobulin (Ig) M
predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late
ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct
metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily mem-
bers, and two distinct maturation pathways involving TNF signaling through nuclear factor kB (NF-kB). This
study provides a single-cell atlas andmolecular roadmap of LLPCmaturation trajectories essential in the BM
microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of
new strategies to enhance protective ASCs and to deplete pathogenic ones.
INTRODUCTION

The existence of long-lived plasma cells (LLPCs) that provide a

lifetime of humoral protection after vaccination and infection is

well established in mice and humans. Activated lymph node B

cells differentiate into early antibody-secreting cells (ASCs),

which home to bone marrow (BM) niches where a fraction may

survive as LLPCs, which we previously identified within the

CD19�CD38hiCD138+ cell population.1–6 Whether mere migra-

tion to protective niches is sufficient for the establishment of

an LLPC compartment or, instead, additional maturation in the

BM is required was unclear. Thus, we recently showed that early
This is an open access article und
maturation of nascent ASCs takes place in the BM through

morphologic, transcriptomic, and epigenomic changes that pre-

sumably enable their ultimate differentiation into LLPCs.6

Accordingly, we postulated that peripheral ASCs arriving in the

marrow undergo further maturation locally to generate bona

fide LLPC.

We have also developed an in vitro human BM mimetic sys-

tem, containing soluble factors from mesenchymal stromal cells

(MSCs), a proliferation-inducing ligand (APRIL), and hypoxia,

which sustains ASC survival for up to 56 days in culture, thereby

overcoming previous experimental limitations in the field

imposed by the rarity and ex vivo frailty of ASCs. This approach
Cell Reports 42, 112682, July 25, 2023 ª 2023 The Authors. 1
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Figure 1. Single-cell transcriptomic profiling of bone marrow PCs

(A) Schematic of single-cell RNA profiling for human BMPCs.

(B) Criterion for removing bad-quality cells. Dashed lines show the cutoffs that are labeled in red.

(C) scRNA-seq cell clusters of combined data from five healthy BMs and visualized in UMAP colored by cell types. Red and blue boxes highlight the early and late

stage of BMPCmaturation, respectively. The purple box highlights the path toward IFN-response PC subgroups and the green box highlights IgM-dominant cell

populations.

(D) The fraction of cells from fluorescence-activated cell sorting (FACS)-sorted cell population in each cell subgroup identified in (C).

(E) Key PC-associated master gene expression. The redder the dot, the higher the log-normalized gene expression.

(legend continued on next page)
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enabled a molecular roadmap charting the progression of

nascent ASCs into mature ASCs demarcated by upregulation

of CD138 expression and downregulation of CD19 as early as

day 14.7 This early work showed that engagement of sequential

transcriptomic and epigenetic programs promoting resistance to

apoptosis is essential for survival.6 Although candidate LLPCBM

maturation programs were revealed, bulk analyses could not

directly interrogate the heterogeneity of the BM LLPC

compartment.

Here, we have performed extensive single-cell analysis of BM

ASCs. Our studies identify a large degree of cell heterogeneity

and maturation trajectories. Starting from nascent KI67+ ASCs

with the highest major histocompatibility complex (MHC) class

II expression, we could assign early and late ASCs distinguished

by differences in G2M check points, E2F targets, mammalian

target of rapamycin (mTOR) signaling, and metabolic pathways

for fatty acid and oxidative phosphorylation as well as differential

expression of members of the tumor necrosis factor (TNF) recep-

tor superfamily and CD38 expression. Finally, terminal differenti-

ation of late immunoglobulin (Ig) G ASCs followed two distinct

paths with differential utilization of the TNFa signaling pathway

via nuclear factor kB (NF-kB). In all, this study provides a sin-

gle-cell atlas and molecular roadmap trajectories of LLPC matu-

ration in the human BM.

RESULTS

Single-cell transcriptomic profiling of human plasma
cells in the BM
To characterize the heterogeneity of human bone marrow

plasma cells (BMPCs), the three major populations previously

identified were sorted from five healthy adults without recent im-

munization or infection3: pop A (CD19+CD38hiCD138�), pop B

(CD19+CD38hiCD138+), and pop D (CD19�CD38hiCD138+) (Fig-
ure 1A). Although pop D constitutes the main reservoir of LLPC,

to test the distinct molecular programs reflecting their genera-

tion, regulation, and survival, we evaluated the BM ASCs at the

single-cell level using 50-directed cDNA library construction to

characterize both the single-cell transcriptomic profiles (single-

cell RNA sequencing [scRNA-seq]) and matching single-cell

V(D)J repertoire sequencing (scVDJ-seq). After exclusion of

non-ASC contaminating cells (including B cells), low-quality

cells, dying cells, and doublets, the remaining cells were identi-

fied as bona fide ASCs with the characteristic expression of

XBP1, IRF4, PRDM1, CD27, CD138, and CD19 (Figures 1B,

1C, 1E, S1C, and S2A). In total, we retained 17,347 ASCs.

Identification of 15 clusters of BM ASCs

Clustering was performed with the removal of known Ig genes

and without knowledge of subsets A, B, and D a priori. However,

our initial clustering required the elimination of two subsets

falsely identified solely on the basis of very high expression of

two misannotated Ig VH genes. Ultimately, we identified 15
(F) Dot plot for expression of humanMHC class I, II, and inhibitors of class II genes

genes in each cell group, and sizes indicate the proportion of cells expressing m

(G) The fraction of isotypes identified by scVDJ-seq data in each cell subgroup i

(H) Boxplots showing the expression levels of the indicated genes. The solid tria
robust clusters representing different cell states or types based

on gene expression profiles (Figures 1C, 1E, and S2A–S2C). Af-

ter establishing the 15 clusters, we re-incorporated the Ig genes

and found no specific VH gene driving a particular cluster. These

15 distinct clusters (Figure 1C) could be grouped as early (clus-

ters c1–3), transitional or intermediate (c4), and late (c5–8) ASC

based on human leukocyte antigen (HLA) class I and II expres-

sion (Figure 1F). In addition, we identified two interferon (IFN)-

response-dominated clusters (c9 and 10); and three IgM-pre-

dominant clusters (c13–15, Figure 1G) that contained the

majority of BM IgM ASCs. Finally, we identified a mitochon-

drial-high cluster (c11) with characteristics of early ASCs and a

minor cluster (c12), likely representing dying ASCs. The differen-

tially expressed marker genes used to adjudicate each cluster

are shown in Figure S2F and Table 1.

Separation of early and late clusters by HLA class II gene

expression

c1 distinctly expressed MKI67, CD43 (SPN), and CD27 and had

low expression of CD20 (MS4A1) (Figures S2F and S2H). This

pattern is consistent with the definition of proliferative plasma-

blasts (PB) or early-minted ASCs, representing new BM arrivals

from active immune responses (CD20lowCD27highCD43high).8 As

they mature into resting LLPCs, proliferative ASCs typically shed

B cell markers such as surface Ig and MHC class II genes (HLA

gene complex).3,4 c2 and c3 lacked Ki67 expression but retained

the highest levels of HLA class II genes, which subsequently

decreased in the transitional c4 (Figure 1F). Thus, the initial

ASCs seeding the BM could be further divided into early stages,

including proliferative and non-proliferative cells (c1, and c2 and

3, respectively), and transitional stages (c4). Interestingly, c1–3

were devoid of pop D, which could be first detected at low fre-

quencies within c4 (Figure 1D).

As expected, PRDM1, encoding BLIMP1, which drives plasma

cell (PC) commitment and extinguishes class II transactivator

CIITA and MHC class II gene expression, was expressed from

the early ASC stages9 (Figure 1F). In turn, CIITA was universally

extinguished on nearly all BM ASC subsets except for a small

fraction of early c1. HLA-DOB, which suppresses peptide

loading of class II molecules, was upregulated in the late ASC

clusters, which is consistent with reports that HLA-DOB is less

affected by CIITA than other family members.10 HLA class I

expression followed similar trends except for HLA-C. In all,

HLA class II expression provides clear separation of early and

late BM ASC subsets.

Marker genes of human BM ASC clusters

We next identified cell-type-specific markers across the 15 BM

ASC subgroups (Figure S2F; Table S1). In addition to the defining

features, Ki-67 and HLA class II, other markers of early ASCs

included LYN and ZBTB32. LYN is a tyrosine protein kinase

downstream of BCR signaling that can diminish proliferation

while driving terminal PC differentiation11 (Figure 1F). Interest-

ingly, LYN deficiency leads to a 20-fold increase of BM PCs
. Colors represent minimum-maximum normalized mean expression of marker

arker genes.

dentified in (C).

ngle represents the average value.
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Table 1. Differentially expressed marker genes define the 15 clusters

Cluster ID Cell label Markers Cluster ID Cell label Markers

1 PB MKI67, UBE2C, BIRC5, SPN, TUBB 9 pc9 ATF5, PSAT1, CEBPB, ERN1

2 early 1 CD52, PEBP1, MHC class II

(except HLA-DOB)

10 IFN+ MX1, XAF1, IRF7, STAT1

3 early 2 CD79A, CD74 11 Mito-high MALAT1, IRF4, PRDM1, ZBTB20,

MTRNR2L12, FCRL5

4 trans IGLV3-25 12 pc12 JUND, CXCR4, SIK1B

5 late 1 SMOC1, MOXD1 13 IgM1 CCDC88A, FOXP1, IGHM, KLHL14, MS4A1

6 late 2 CD9, CST3, CD63, TIMP1 14 IgM2 JCHAIN, RGS2, TNFRSF4

7 late 3 RHOB, CDKN1A, RGCC 15 IgM3 CCL3, CCL4

8 late 4 JUNB, FOS, EGR1, NR4A1 – – –
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and induces autoimmune disease inmousemodels.12 Thus, pro-

gressive extinction of LYN expression in late clusters may

contribute to enhanced survival of the more mature PCs.13

Also informative for early maturation were B cell markers CD19

and PTPRC (B220), which were strongly expressed in early

IgG-dominant c1–c3 as well as in c11 and IgM-dominated c13

(Figures 1G and 1H). The progressive loss of CD19 and PTPRC

during B cell differentiation into PC and the ability of CD19+

B220+ cells to secrete low-affinity IgM antibodies14,15 suggests

early populations.

The transitional nature of c4 was documented by the progres-

sive loss of early features including MHC class II and initial

expression of late markers. In turn, c5 shared with c4 higher

levels of transcripts characteristic of late subsets, including

MDK, ITM2B, LMNA, AREG, and TIMP1 (Tables 1 and S1).

Late c6–c7, and to a lesser extent c8, expressed higher levels

ofCD9 andCST3. The CD9 tetraspanin modifiesmultiple cellular

events of relevance for BM ASCs, including adhesion, migration,

proliferation, and survival. Although CD9 expression has been

considered to mark GC-derived human PCs,16 CD9 is also

considered a marker of mouse PCs derived from marginal

zone and B1 B cells in primary T-dependent responses.17

Finally, genes involved in regulation of cell-cycle arrest,

apoptosis, and survival were preferentially expressed in c7

(CDKN1A/p21 and RGCC) and c8 (JUNB, FOS, EGR1,

NR4A1; Table 1). P21 is a potent cyclin-dependent kinase in-

hibitor whose expression regulates cell-cycle progression and

is tightly controlled by the tumor suppressor p53, which medi-

ates cell-cycle arrest and can promote apoptosis in a context-

dependent fashion.18 Early Growth Response (EGR1) is a nu-

clear transcriptional regulator of multiple tumor suppressors,

including p53. Notably, EGR1 is rapidly induced by growth fac-

tors, apoptotic signals, and hypoxia, a feature of the BM micro-

environment that determines ASC survival.19,20 Of note, it has

been shown to play a non-redundant role in PC differentia-

tion.21 While the induction of the orphan nuclear receptor

NR4A1 (Nur77) is best recognized as a consequence of antigen

receptor engagement in B and T cells,22 NR4A1 is also induced

by other stimuli, including endoplasmic reticulum (ER) stress,

which is present at high levels in PCs secondary to high

Ig synthesis.23 Interestingly, NR4A1 can modify the pro/anti-

apoptotic balance of the Bcl2 family and has enhanced binding
4 Cell Reports 42, 112682, July 25, 2023
to anti-apoptotic Bcl-B, which is prominently expressed in

PCs.24,25

Notably, c7 and c8 are separated from other late ASC popula-

tions (c5 and c6) by the highest levels of the TNFa-signaling NF-

kB pathway. These marker genes, especially of the late clusters,

provide essential clues to unique mechanisms that support

survival.

IFN-responsive genes (IFN+) were themajor markers in c9 and

c10. C9 highly expressed ATF5, CEBPB, and ERN1, whereas

c10 expressed the classical IFN-response signature (STAT1,

IRF7, ISG15, IFITM1, IFI6, MX1 and OAS1).

We identified all five isotypes (IgM, IgG, IgA, and a small frac-

tion of IgD and IgE), as well as the four IgG subclasses (IgG1–

IgG4), in BM ASCs (Figure 1G). The majority of ASC clusters

were dominated by IgG, predominantly IgG1. Compared with

early stages, late stages (c5–8, and c10–12) had expanded pro-

portions of the IgG isotype (p <2.2e�16).

Mature IgM ASC populations in the human BM

C13–15 contained the largest repository of IgM cells (40%–80%)

(Figure 1G), which represented a large majority of c13. Interest-

ingly, these IgM-predominant clusters displayed an overall

distinct transcriptome and could in turn be split into early (c13)

and late clusters (c14 and 15), according to the HLA expression

and scarcity of pop D cells in c13 (Figure 1D). However, it is likely

the maturation programs of IgM versus IgG trajectories would

follow different paths. Thus, the IgM clusters are candidates

for the human counterpart to mouse IgM LLPCs, which accumu-

late in the spleen in a GC-independent fashion and contribute to

protective IgM responses.26–28

IgM ASCs (c13–15) are further defined by higher expression of

CCR10, JCHAIN, FHL1, PHACTR1, and RAMP2 relative to IgG-

dominant cell populations (Figures S3A and 1H). Since C-Cmotif

receptor 10 (CCR10) and JCHAIN are widely expressed in

mucosal ASCs,29,30 the IgM-dominant cell populations may

have mucosal origins. Additional differentially expressed genes

(DEGs) distinguishing IgM- from IgG-dominant clusters included

77 CCR10 co-expressed genes summarized in Figure S3B.

These CCR10-related genes included EBI2 (GPR183), JCHAIN,

FOXP1, and several genes involved in regulation of lymphocyte

activation, such as FCRL3, TNFSF9, CLECL1, and FGL2.

FOXP1 is known to impair the formation of germinal centers

(GCs) and to repress human PC differentiation but are highly
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expressed in mature primary human B cells (e.g., naive B, mem-

ory B cells) as well as inmouse follicular B and B-1 cells.31,32 This

profile is consistent with a GC-independent extra-follicular origin

of the late IgM ASCs.32,33

Relationship of BM ASC single-cell clusters to
previously described ASC populations
Consistent with previous models of BM ASC maturation,3 CD19

expression was notable in early (c1–4) and extinguished in late

clusters, while SDC1 (CD138) expression was highest in the

late clusters (Figure 1E). XBP1, an essential transcription factor

(TF) associated with the ASC unfolded protein response (UPR),

was increased in all clusters. Contrary to mouse studies,

PRDM1 expression was higher in early subsets and did not

continuously increase in all late subsets (Figures 1E and S4A),

a finding noted by bulk transcriptomes and intracellular

BLIMP1 staining.3 Thus, PRDM1 upregulation was limited to a

small fraction of late clusters c7, c8, and c15, indicating that

the high expression of this essential PC TF may be required for

early ASC differentiation yet less important for terminal differen-

tiation or maturation and long-term survival.3,34,35

The majority of pop D was found in the late stages of ASC

maturation and, Interestingly, it was distributed across c5–c8,

which also included aminority of pop A cells but transcriptionally

resembled pop B (Figures 1D and S4D). A smaller fraction of pop

D was spread across late c5–c12 and c14–c15. In contrast, pop

B contributed nearly half of the cells in each of the early and late

clusters, again suggesting that it corresponds to an intermediary

BM population.

Both these early (c1–4) and a ‘‘mito-high’’ subgroup (c11) had

higher CD19 and PRDM1 expression, higher number of total de-

tected genes, and lower percentage of Ig transcripts relative to

late mature ASCs (Figures 1E and S4A–S4C). Combined with

their higher expression of IRF4, ZBTB20, and FCRL5 (Table 1),

this cluster appears to belong with the early ASC populations.36

Identification of four maturation paths for IgG BM ASCs
through trajectory analysis
IgG ASCs comprise the major isotype in the late clusters; thus,

we used Slingshot to construct maturation trajectories to focus

on IgG BM ASCs and visualize the dynamic alteration of gene

sets by pseudotime for each path onto the uniform manifold

approximation and projection (UMAP) (Figures 2A and 2B).

This approach predicted five maturation trajectories. Path 1

and 2 project to late c6 and c7 and 8 respectively. Path 3a and

3b, which directed to the same terminal c9, were merged into

a single path 3. Finally, path 4 led toward c11. There was distinct

separation between c1 and c2, but the remaining non-prolifera-

tive clusters in each path tend to be shared between adjacent

stages/clusters. This result suggests the maturation of BM

ASCs is more of a continuum of functional processes rather

than an ordered sequence of discrete cell states.

Next, using hallmark pathway enrichment scores,37 we

discovered four patterns describing the dynamic alteration of

gene sets during BM ASC maturation (Figures 2C and S5A).

From each pattern, a pathway example for visualization is

shown in Figure 2D. Projecting scaled enrichment score (ES)

from each pattern in Figure 2C onto pseudo-space paths in-
ferred in Figure 2B, patterns 1, 2, and 3 exhibit a linear-like

decrease in the pre-late stages but slightly different enrichment

patterns in the late phase (Figure 2E). More specifically, pattern

1, which includes pathways of the UPR, reactive oxygen spe-

cies (ROS), oxidative phosphorylation (Oxphos), and fatty

acid metabolism (FA_METAB), decreases but then plateaus in

late phase of maturation for paths 1, 2, and 3. Only path 4 de-

creases continuously into the late phase (Figure 2E). Pattern 2

includes the hallmark pathways hypoxia, UV response up,

and p53 pathway, showing the same maturation trends but

an increase in late states of path 2 corresponding to c7 and

c8. Pattern 3 contains IL6-JAK-STAT3 signaling, inflammatory

response, and apoptosis, revealing similar maturation trends

in all four paths. Pattern 4, notably including TNFa signaling

via NF-kB and KRAS signaling down, is most intriguing since

the enrichment diverges between the late ASC in path 1 and

2. In addition to the IgG trajectories, we found high ES in IgM-

pre-dominant lineage (c13–15) for TNFa signaling via NF-kB

(Figure S5B) in c15 (Figure S5C).

TFs of ASC maturation and survival

To understand distinct enrichment patterns of gene sets regu-

lated by specific TFs, we imputed the potential functions of

TFs in regulating BMASCmaturation.We observed 205 differen-

tially expressed TFs that are expressed in at least 10% of as-

signed cell clusters (Table S2). The most abundant 144 TFs

were assigned to the cell cluster or defined stage of maturation

(Figures 3A and S2C) with the highest gene expression. These

‘‘cluster-associated’’ TFs were observed in nine of 15 cell

groups. Notably absent were any TFs defining the transitional

and late-stage clusters c4–c7 or c14 and c15.

Adding protein-protein interaction information from the

STRING database,38 we observed that some TFs are cluster

specific (early or late) (Table S2). Thus, 48 out of 144 (33%) of

the TFs were c1 associated and typically known to be involved

in regulating basic functions such as RNA/DNA binding, tran-

scription, metabolic processes, RNA stabilization (YBX1,

SUB1), high-mobility group protein B (HMGB) damage-associ-

ated molecular patterns (DAMPs),39 (HMGB1, HMGB2, and

HMGB3), and cell-cycle progression (MYBL2)40. Similarly, TFs

important for immune activation, signaling, differentiation, and

survival (EGR1, JUN, JUNB, FOS, NR4A1, and ZFP36L1) were

in c8.

Two other large groups of 25 (�17%) and 43 (�30%) TFs were

identified in c11 and 12, respectively. High mitochondrial gene

expression in c11 suggests high stress and potentially eventual

death. c12 was characterized by accumulation of ATF4, the first

stable product that can trigger the activation of the PERK

pathway, which promotes ASC apoptosis when ER stress is un-

abated.41,42 Thus, this small cluster may indeed be a death-

prone ASC.

Bifurcation of LLPC differentiation

To characterize the bifurcation of late IgG ASCmaturation in path

1 (c5 vs. c6) and path 2 (c5 vs. c7), we used gene set enrichment

analysis (GSEA) prerank analysis and identified six and 19 gene

sets that were significantly activated or repressed (Table S3).

Although IFN-g response and allograft rejection were downregu-

lated in c6, inflammation and MYC targets v1 were upregulated

in c7, and only TNFa signaling via NF-kB was downregulated in
Cell Reports 42, 112682, July 25, 2023 5



A B

EDC

Figure 2. Trajectory and hallmark pathway enrichment analysis to distinguish predicted BMPC maturation paths

(A) UMAP plot shows predicted paths of IgG1-dominant BMPC maturation. Arrows indicate the maturation direction.

(B) UMAP plots show cell cluster located in each maturation path and colored by predicted pseudotime. (Top) Each solid black dot represents a cell population

used to predict path in (A). The darker the blue and the lighter the green, the earlier and later stages of maturation, respectively. (Bottom) The density plots show

the distribution of scRNA-seq-identified cluster on pseudotime space of each path.

(C) Heatmap shows the row-scaled enrichment scores (ESs) for hallmark pathway enrichment analysis in the IgG1-dominant cell populations; from left to right is

c1–c11.

(D) Projected ES of indicated pathway example from each pattern onto UMAP. The darker the red, the higher the enrichment.

(E) Dot plot next to the example UMAP visualization in (D) shows the scaled ES from each pattern by cluster from each path. The x axis is ordered cell populations

corresponding to the cell order in each path in (B). Loess method fitted lines of ES alteration trends were colored by predicted paths in (B).
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c6 and upregulated in c7 (false discovery rate %0.001) (Fig-

ure 3B). After evaluating the pathway ES for each individual

separately, we found that this difference was not driven by any

one subject (Figure 3C).

By comparing DEGs between c5 vs. c6 and c5 vs. c7, the Venn

diagram shows top DEGs that are up or down in c6 or c7
6 Cell Reports 42, 112682, July 25, 2023
(Figure 3D; Table S4). The expression of corresponding genes

is visualized in Figure 3E. Subsequently, we compared the

TNFa signaling via NF-kB directly between c6 and c7 and

discovered 78 genes contributing to the significant enrichment

(Figures S6A and S6B; Table S5). Out of those 78 leading edge

genes, 34 (�44%) are among the top DEGs, including TNFAIP3,
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Figure 3. Genes and hallmark pathways distinguish late-phase maturation fate

(A) Cell-cluster-associated TFs; each node represents a TF, colored by associated cell cluster and scaled by the expressed percentage of cells in the cluster. The

lines between nodes are inferred protein-protein interactions from the STRING database. The redder the line, the more confident the inferred interactions.

Numbers in the circles show the assigned cell cluster ID.

(B) GSEA of the most indicated pathways. TNFa signaling via NF-kB that are differentially enriched between 5 vs. 6 and 5 vs. 7.

(C) TNFa signaling via NF-kB hallmark pathway ES separated for each of the five individual subjects (in dashed box and y axis is on the left) and the distribution of

scaled corresponding pathway enriched maturation-associated DEG expression in c5, c6, and c7 (in solid boxes and y axis is on the right).

(D) Comparison of top DEGs between c5 vs. c6 and c5 vs. c7 (see star methods), based on the sign of average log fold-change (avglogFC), the DEGswere divided

into up-/downregulated in c6 or c7 groups. Venn diagram shows the results of the DEG comparison.

(E) Gene expression examples from the results of the comparisons in (D).

(F) Gene expression of genes from TNF family. The x axis is cell cluster ID and y axis is the log-normalized gene expression. Circular bar plot shows the proportion

of cells in each cell subgroup showing expression of corresponding genes. Black dashed line indicates the proportion of 0.5 and numbers indicate the cell cluster

IDs. NotExp, not expressed; Exp, expressed. ***Bonferroni-adjusted p value <0.001; n.a., not available.
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FOS, NFKBIA, CDKN1A, and ZFP36 (Figure S6C; Tables S4

and S5).

Differentially expressed TNFRSF family members

between early and late ASC

TNF and TNF superfamily cytokine signaling play important roles

in B cells and PC survival and function or cell death. The best

known factors BAFF or APRIL (TNFSF13) and their recognized

receptors BAFF receptor (BAFFR:TNFRSF13C), Transmem-

brane Activator and CAML-interactor (TACI:TNFRSF13B) and

B cell maturation antigen (BCMA:TNFRSF13A/17) are essential

for ASC survival.43,44 APRIL binds strongly to BCMA andmoder-

ately to TACI, whereas BAFF bindsweakly to BCMA and strongly

to TACI.45 Although BAFF has been suggested to be important in

mouse BMASCs,46 APRIL is the critical cytokine for ASC survival

andmaturation.7,47 Finally, APRIL and not BAFF can bind to hep-

arin sulfate proteoglycans (HSPGs) such as CD138, which con-

centrates APRIL at the cell surface, thereby increasing its

effectiveness.48

We found little difference in expression of the members of the

TNFRSF family between the two late IgG paths1 and 2; however,

there were major differences between the early and late clusters

(Figures 3F, S7A, and S7B). BCMA showed high expression in

early ASCs and was significantly downregulated in late ASC clus-

ters, while TACI expression was significantly increased in late

clusters, albeit to modest levels (Figures 3F and S7A; Table S6).

Although TACI has been described in tonsil and BM ASCs,49 we

found high expression of TACI in c14, a late IgM-predominant

ASC cluster (Table S6). In mice, TACI expression is highest on

mature innate-like B cells such as marginal zone and B-1 B cells,

which is critical for T-independent responses50,51; however TACI

may also have a role in late BM ASCs. Finally, healthy BM ASCs

do not express APRIL or BAFF, showing the need for exogenous

sources of these survival cytokines.

Other receptors in the TNFRSF considered to play roles in

T cell activation were differentially regulated in early vs. late

BM ASC clusters (Figure 3F). For example, OX40 (TNFRSF4)

and GITR (TNFRSF18) were both significantly upregulated in

the late ASC clusters. In contrast, HVEM (TNFRSF14) expression

was substantially increased in the early c2, 3, 4, 9, and 13 (Fig-

ure S7A; Table S6). In all, the sequential TNFRSF programs in

early and late ASCs provide important insights into BM

maturation.

Although protein expression may be concordant with gene

expression,52 BCMA and TACI surface expression may be

more variable and less concordant with gene expression (Fig-

ure 4A). Based on our previous BM pop A, B, and D, both

BCMA and TACI decrease surface protein expression withmatu-

ration in pop D. In contrast, as BM ASCs mature, flow phenotyp-
Figure 4. Experimental validation of early- and late-phase representat

(A and B) Histograms (upper) and tSNE heat-maps (bottom) of expression of AS

CD138, OX40, and GITR (panel 2).

(C) CD38 log-normalized gene expression visualized by UMAP (top) and violin pl

(D) CD38 MFI measured from n = 9 healthy BM aspirates (top) and log-normaliz

(bottom).

(E) Study regimen and timeline of the donor-specific antibodies (DSAs) (ClinicalTri

mL BM) pre and post treatment with daratumumab and belatacept (bottom).

(F) Flow cytometry pre and post treatment.
ing revealed higher surface expression of OX40 and GITR in pop

D, validating these expression profiles (Figures 3F and 4B).

Although CD38 expression increases during B cell differentia-

tion to ASC precursors,53 its downregulation during ASC matura-

tion was unanticipated; however, this feature may actually be

consistent with enhanced survival in tumor cells.54 Pop D had

lower mean fluorescence intensity (MFI) of CD38 by flow cytome-

try, which was concordant with gene expression (Figures 4C and

4D). Concordantly, we observed a selective loss of early BM sub-

sets with anti-CD38 therapy (daratumumab). In a sensitized pa-

tient with a broad array ofHLAantibodies awaiting the second kid-

ney transplant, only the late mature ASC subsets remained after

daratumumab and belatacept for 14 weeks (under an immune

tolerance network [ITN] protocol ITN090ST; Figure 4E). We found

depletion of pop A and Bwith 100%and 92.2% reduction respec-

tively, while pop D remained (Figures 4E and 4F). Of the 59 HLA-

specific serum antibodies pre-treatment, only 16 remained after

treatment. Thus, early BM ASCs are the most susceptible to

anti-CD38 therapies as predicted from the single-cell analysis.

Combined, these data may help understand the therapeutic tar-

geting achieved by anti-CD38 agents currently used for the treat-

ment of PC malignancies and for highly sensitized patients and

autoimmune conditions55–58 and finally provides an atlas and

deep insights into themechanistic implications of selective deple-

tion of BM ASC subsets.

MatureBMASCsdownregulate pro-apoptotic genes and
upregulate pro-survival genes
Previous bulk RNA sequencing (RNA-seq) and assay for trans-

posase-accessible chromatin with sequencing (ATAC-seq) indi-

cated that pop D significantly upregulates pro-survival genes

BCL2 and MCL1, despite enhanced chromatin accessibility be-

ing present only for BCL26 (Figure S7C). Here, we examined the

single-cell expression of pro-survival, intrinsic and extrinsic pro-

apoptotic genes, cell cycle, and cell-cycle arrest across the 15

clusters (Figure 5A). TSC22D3, MCL1, and BCL2 are the essen-

tial pro-survival genes for BM ASCmaturation. TSC22D3 (gluco-

corticoid-induced leucine zipper [GILZ]) can inhibit the transcrip-

tional activity of FOXO3, which leads to the further suppression

of BIM-induced apoptosis, albeit in T cells.59 Of the late clusters,

TSC22D3 expression is high in c5 and c7 and the highest in c12,

which has the corresponding highest expression of BIM

(BCL2L11). BCL2 is elevated to a similar degree in all late-stage

LLPCs (c5–8), whereasMCL1 shows even higher expression late

in path 2 (c7 and 8; Figures 5A and 5B). Conversely, both intrinsic

and extrinsic pro-apoptosis genes are reduced in the LLPC (path

1 and 2). These trends are consistent with a molecular basis for

refractoriness to apoptosis in the late ASC.60
ive markers

C surface markers (A) CD19, CD138, BCMA, and TACI (panel 1), or (B) CD19,

ot grouped by cluster ID (bottom).

ed gene expression visualized violin plot grouped by FACS-sorted cell labels

als.gov identifier: NCT04827979, top). Quantitation of BMASC subsets (# ASC/
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Figure 5. Exploration of apoptotic gene expressions in BMPC clusters

(A) Dot plot showing the expression of genes related to pro-survival, intrinsic pro-apoptotic, extrinsic pro-apoptotic, cell-cycle progression, and cell-cycle arrest

functions in BMPC subgroups.

(B) Dynamic gene expression alterations in four maturation paths defined in Figure 2B with the same color coding and ordering. The labeled thick solid lines show

the genes with high expressions and variations during the BMPC maturation.
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Inability to mature from early to late ASC likely leads to cell

death (Figures 5A and 5B). c1 (PB) and c2 stages of BM ASC

maturation appeared to be primed for apoptosis with higher

expression of pro-apoptotic genes, including the mitochondrial

outer membrane permeabilization (MOMP) activators BAX and

BAK1 and mediator VDAC1, and released apoptogenic proteins

from the intermembrane of mitochondria cytochrome c (CYCS)

and a serine protease OMI (encoded by HTRA2) that neutralizes

the caspase-inhibitory proteins to directly and indirectly involve

caspase activation. The DNA fragmentation factor (DFFA) and

apoptotic membrane blebbing gene ROCK1 were also upregu-

lated.61–64 The PB stage also had a high abundance of tran-

scripts important for proliferation, such as MKI67, CDK1,

CDK2, as well as cell-cycle arrest-associated genes p16

(CDKN2A) and p18 (CDKN2C). Two other cell-cycle-inhibiting

genes, p21 (CDKN1A) and p27 (CDKN1B), showed higher

expression in c7 and c8, respectively.65 Cell-cycle arrest is

largely regulated by activation of either one or both of the p16/

PrB and p21/p53 pathways, which may be differentially regu-

lated in early and late ASCs respectively.

c6 showed high expression of CD138 (SDC1), a member of

the heparan sulfate proteoglycan family which has been re-

ported to promote ASC survival by regulating BCL2 and
10 Cell Reports 42, 112682, July 25, 2023
MCL1.66 We also observed that CD63, CD9, and IL5RA

were upregulated in the late-stage BM ASCs (Figure S7D).

CD9 and CD63 have been reported to associate with the met-

astatic ability of tumor cells, such that higher expression pro-

motes decreased cell motility.67 Interleukin (IL) 6 is known to

be important for BM ASC survival,7,68 but, interestingly, IL6R

expression was highest in the PB stage and c2, whereas

IL6ST (binding of IL6 and IL6R) showed higher gene expres-

sion in c11 and 12 but not in the other late ASC clusters (Fig-

ure S7D). Hence, these results suggest that most BM ASCs

likely utilize bound IL6 through the soluble IL6R.

Isotype characteristics of BM ASCs
Our single-cell analysis provided a thorough representation of

the whole V(D)J repertoire of human BM ASCs. Indeed, of the

17,347 cells with single-cell transcriptomic information, 83%

also had matched VDJ:VH (by scVDJ-seq) sequences including

isotype identification. The VH repertoire included 11,853 clonal

lineages, with a majority representing singletons (10,344 cells),

while 1,509 lineages contained at least two cells (Figure S8A).

Of these, 421 were observed in only one of the 15 clusters,

whereas 1,088 lineages were present in at least two cell clusters,

mostly in adjacent UMAP spatial clusters (Figure S8B). Each



A

B

C

D E

Figure 6. Mutation rate, similarity, and connectivity of clones measured by scVDJ-seq

(A) Summary of Ig heavy-chain family gene usage. The y axis shows the proportion of cells from each cluster (top) and Ig isotype and IgG subclass (bottom). Black

bar shows the comparison objects and asterisks indicate the significance of statistical test (***p < 0.001, **p < 0.01).

(B) The averagemutation frequency in thewhole region V (global), CDR, and FR of IgA, IgG, and IgM isotypes from each cell population. The solid black bar in each

cell cluster indicates the overall average mutation frequency. NB, naive B cell as control.

(legend continued on next page)
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cluster contained a similar percentage of singletons except c12,

which contained few cells and the highest proportion of non-

matched VDJ cells (Figures S8C and S8D). Nearly every

cell (98.6% ± 0.8%) had a consensus Ig gene with greater than

100 transcripts (Figure S9), and single ASCs in the transitional

and late stage had a higher proportion of cells with large

numbers of Ig transcripts. The polyclonal repertoire was not un-

expected since BM ASCs are the combined result of a lifetime of

antigen exposures reflecting the historical serum antibody

record.

V(D)J repertoire characteristics of BM ASC clusters
VH gene usage was not biased among ASC clusters, Ig isotypes,

and individuals. Higher IGHV1, IGHV3, and IGHV4 family genes

reflect the predicted distribution of these larger families (Fig-

ure 6A). Similarly, there was no consistent bias of individual VH

genes within the VH families.

The frequency and distribution of somatic hypermutation

(SHM) provides important information regarding the maturation

and antigenic selection of ASCs and, by extension, may offer

important insight into their differentiation from separate B cell

sources. As expected, BM ASCs had higher global mutation

frequencies relative to peripheral blood naive B (NB) cells (Fig-

ure 6B; NB = 0.33%, BM ASC = 6.89% ± 1.11%, p =

8.512e�13). The BMASCs also displayed SHM frequencies com-

parable with peripheral memory B cells (7.1%).69

Overall, SHM frequencies ranged from 4.8% to 8.6%, with the

lowest frequency observed in c13 and the highest in c6 (Fig-

ure 6B). IgG and IgA generally had significantly higher mutation

frequencies than IgM isotypes, but therewas not a difference be-

tween IgA and IgG isotypes or IgG subclasses within each iden-

tified cell cluster (Figure 6B; Table S7). Interestingly, the highest

SHM mutation number was found in the small IgG4 fraction

across clusters at 27.8 on average (Figure 6C). Early stage

ASCs of the IgG lineage, especially those with MHC class II

gene expression (c1–c3) as well as all IgM lineage clusters,

had a lower mutation frequency than late-stage IgG ASCs. This

result was evident across the global V region or within the frame-

work region (FR) and complementarity-determining region

(CDR), whether considered in isolation or combined (Figure 6B).

There was a trend toward higher average mutation rates as BM

ASCs mature, suggesting either a potential survival advantage

of cells with higher mutation frequencies or, alternatively, prefer-

ential origination from late GC reactions. c6, which had the high-

est average number of mutations, also had the highest global VH,

CDR, and FR region mutation frequencies (permutation test,

p < 0.05; Figures S10A–S10D).

A replacement-silent (R/S) mutation ratio greater than 2.9 is

suggestive of antigen selection70,71 and most of the clusters

(14 out of 15) had a CDR2 R/S > 2.9. Only c6 showed an

R/S > 2.9 in both CDR1 and CDR2, while c1 had no regions
(C) Summary of the average mutation numbers by scRNA-seq-identified cell po

shows the cluster or isotype. Numbers in each section show the average number

third circle further breaks CDR and FR into CDR1, CDR2, FR1, FR2, and FR3. Th

greater than 2.9.

(D) Compiled Circos plot connecting individual subjects’ clones from cell c1 to c

(E) Heatmap showing the average Morisita overlap index of five subjects, with 0
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with R/S > 2.9 (Figure 6C). Overall, VDJ analysis showed that

most BM ASCs are highly mutated and antigen selected.

Repertoire connectivity between early- and late-stage

BM ASCs

Among the five individuals, we identified 11,853 VH lineages, and

all shared lineages were within a single individual, demonstrating

no public clonotypes. Clonal lineages were defined as the same

V, J, CDR3 length, and 85% CDR3 homology. Of the 11,853 VH

lineages identified, 1,088 (9.2%), were present in at least two

ASC clusters, thereby indicating a significant level of cluster

interrelationship (Figure S11B). However, to track the identical

clone, we used 98% homology to follow the same clone in the

pseudotrajectories. Since IgG1 ASCs are the dominant isotype

in the BM, we show the connectivity of identical clones of IgG1

ASCs in c1–c15 in aggregate and by individual subject

(Figures 6D and S11A).

We applied the Morisita overlap index to map lineage connec-

tivity across populations. Cell populations were highly con-

nected within the early (c1–c4) or the late stage (c5–c8)

(Figures 6D and 6E). The degree of connectivity was substantially

greater after removal of singletons, a strategy that enriches for

larger clones and increases the sensitivity of detection

(Figures S11B and S11C). Nearly identical clonal connectivity

of IgG1 ASC in c1–c8 are shown (Figure S12).

Although some identical clones were detected in multiple cell

clusters, one of the biggest, lineage #334, contained 11 cells

distributed across early and late phases of IgG ASCs as well

as c9, c10, c11, and c15 (Figure S13A). The VDJ sequences in

this clone were identical, as shown in the alignment (Fig-

ure S13B). There were several clones with eight cells with iden-

tical sequences (385 and 280) that progressed through the early

to late phases, validating potential paths for ASC maturation

(Figures S13A and S13B). While these observations show repre-

sentative clones, many other inter-cluster clones contained

identical sequences as well. These observations are consistent

with a dynamic BM ASC compartment composed of clones

that likely undergo further maturation in the BM microniche.

DISCUSSION

ASCs represent a highly specialized effector compartment

whose main physiological function is the production of protec-

tive antibodies, which, in some cases, may persist for the life-

span of the host, owing to the existence of LLPCs. While active

infections trigger antibody production through newly made

ASCs, either from naive or pre-existing memory B cells, long-

standing antibodies represent a person’s immune history and

contribute serological memory capable of preventing infection

by previous agents. In contrast to other immune effector cells

that perform their function during acute activation and are short

lived, LLPCs are unique in that they constitutively perform their
pulations (left) and scVDJ-seq-identified isotypes (right). The innermost circle

of mutations in region V. The second circle shows CDR and FR of region V. The

e outer-most circle black bar indicates the replacement-to-silence (R/S) ratio

15. Lineages were colored by the latest cell cluster.

indicating no similarity and 1 indicating identical repertoires.
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effector function while in a resting state and endowed with pro-

longed survival. In contrast, short-term ASCs, referred to as

plasmablasts, perform the same effector function and may

follow two different fates: post-proliferative apoptosis or subse-

quent maturation into LLPCs. It is well established that LLPCs

persist in specialized survival microniches in the BM. However,

it has remained uncertain whether they arrive in the BM as fully

differentiated cells that only require admission to the protective

niche or, instead, begin their BM journey from immature to

mature PCs. In the latter scenario, it remains to be determined

whether all new ASC arrivals to the BM represent potential

LLPC precursors, or LLPCs derive only from specific ASC sub-

sets. In either situation, critical outstanding questions include

the specific phenotype of LLPCs among mature BM ASCs and

the regulatory and survival trajectories of BM ASCs into LLPCs.

Our single-cell studies provide an in-depth analysis of human

BM ASCs, thereby contributing substantial original insight into

these questions. We provide a high-resolution atlas of the BM

ASC, including the heterogeneity of the LLPC compartment.

For example, this study offered mechanisms of known BM PC

therapies (anti-CD38) together with discovery of novel therapeu-

tic targets for mature BM plasma, such as GITR, OX40, CD9,

CD63, ZBTB20, and IL5RA.

A finding of central significance is the identification of IgM BM

ASC clusters with heterogeneous properties. While long-term

IgMmemory B cells are well established,72 the ability to generate

mature IgM LLPCs has not been explored despite descriptions in

the mouse spleen demonstrating persistent immunity.28 Com-

bined, trajectory studies of clonal connectivity across these clus-

ters show the presence of mature IgM BM PCs that might

contribute long-lasting serum IgM antibodies. Future studies

will be required to determine the precise contribution of extra-

follicular (EF) and GC-driven pathways.28,73–75

Once they arrive in the BM, ASCs follow two major differenti-

ation trajectories leading to mature PCs. These two paths offer

differences of TNF signaling through NF-kB. AP-1 factors are

also of particular importance among upregulated DEGs in path

2 (JUN, JUNB, JUND, FOS, FOSB, MCL1, ZFP36L2, ELL2,

CDKN1A, PRDM1, NFKBIA, and others). Interestingly, JUNB is

involved in proliferation and survival76 in diseased PCs (multiple

myeloma [MM]) but is abundantly expressed in healthy ASCs,

where it likely plays an anti-apoptotic role. Similarly, in MM, c-

JUN is important for caspase-mediated c-ABL cleavage

inducing apoptosis but may function quite differently in healthy

BM ASCs. Whether the NF-kB/AP-1/STAT3 inflammatory regu-

latory network described in the transformation of human can-

cers77 also plays a role in LLPCs will require further study.

Trajectory analysis also points to an important role for cell-cy-

cle regulation in late progression to terminally differentiated PCs

through path 2. For example, p21, a marker capable of inhibiting

a range of CDKs, is activated in a p53-dependent manner and

was upregulated in c7 to mediate cell-cycle arrest.78 In turn,

the tumor repressor p16 has also been described as a hallmark

of cellular senescence.79–81 Exit from cell cycle irreversibly82 is a

feature of cellular senescence and potential mechanism of LLPC

survival. Path 2 was also characterized by higher expression of

ZFP36L1, an RNA-binding protein (RBP), facilitates newly

formed ASCs homing to the BM microniche.83 Although a role
of RBP in ASCdifferentiation is unclear, these proteinsmay actu-

ally modulate ASC migration and survival in late ASCs.

Our study also provides insight into the metabolic and survival

underpinnings of late-stage BM ASCs. Of particular interest for

the latter property is the differential expression of receptors

belonging to the TNFRSF family, specifically BCMA, which binds

APRIL to enhance survival throughMCL-1 inmice and to prolong

survival in human LLPCs in vitro BMmimetic systems.44,47 Inter-

estingly, while BCMA was expressed across all BM ASCs, it

decreased 2-fold in more mature ASCs, thereby pointing to an

important role in securing survival in early maturation. In

contrast, TACI transcription experienced a modest increase

from early to late BM ASCs, a finding consistent with its hetero-

geneous expression in MM84 and indicative of an unrecognized

role in physiological LLPCmaintenance. Although TACI is impor-

tant for mouse ASC survival,85 its actual role and degree of

redundancy with BCMA remain to be understood in humans.

Finally, cell-cell contact through OX40 and GITR, which are

only expressed in late ASCs, intimates a model where LLPCs

may have limited motility due to cell-cell contact, as suggested

in recent mouse studies.86

In our highly sensitized patients treated with daratumumab and

belatacept, daratumumab likely resulted in the specific loss of

early BM ASC subsets; however, we cannot totally rule out the

role of belatacept in inhibiting newly generated ASC immigrants

into the BM site. Despite these caveats, belatacept likely inhibited

only a small proportion of BM ASCs within a 16-week period.

Clearly, additional studies with single agents will be needed.

Our study offers major advances to the field of LLPC biology.

First, we optimized isolation and viability of rare human PCs.7

Second, our experimental and analytical design achieved

mRNA sequencing of sufficient depth for quantitative measure-

ment of non-Ig genes, a goal readily compromised by the abun-

dance of Ig transcripts representing up to 90% of some BM ASC

total transcripts. Combined, our findings demonstrate substan-

tial heterogeneity of mature BM ASCs and suggest that the

LLPC potential may be present in several BM compartments.

This possibility needs to be formally tested by localization of an-

tigen-specific ASCs to the different clusters as previously done

by our groups with the broader ASC populations. This goal could

also be accomplished through the transcriptomes of identifying

single ASCs of predetermined specificity.

Limitations of the study
Limitations of this study include the small number of healthy adult

subjects and the total number of bona fide PCs used in the anal-

ysis. However, it is good to have a representation of all the known

human BM ASC subsets since we captured the rare CD19-

CD138+ cells. Another limitation is the nature of the single BM

aspirate that offers a one-time snapshot, while repeat sampling

would afford longitudinal temporal trajectories. While providing

valuable transcriptional information, this study does not provide

epigenetic and functional activity of metabolic pathways.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

IgD–FITC BD Biosciences Cat. No. 555778

CD3-BV711 BioLegend Cat. No. 317328

CD14-BV711 BioLegend Cat. No. 301838

CD19-PE-Cy7 BD Biosciences Cat. No. 560911

CD38-V450 BD Biosciences Cat. No. 561378

CD138-APC Miltenyi Biotech Cat. No. 130-117-395

CD27-APC-e780 eBiosciences Cat. No. 5016160

LiveDead Invitrogen Cat. No. L34966

IgD-Brilliant Violet 480 BD Biosciences Cat. No. 566138

CD3-BUV737 BD Biosciences Cat. No. 612750

CD14-BUV737 BD Biosciences Cat. No. 612763

CD19-Spark NIR 685 BioLegend Cat. No. 302270

CD38-Brilliant Violet 785 BioLegend Cat. No. 303530

CD138-APC-R700 BD Biosciences Cat. No. 566050

CD27-Brilliant Violet 711 BioLegend Cat. No. 356430

BCMA-Brilliant Violet 421 BioLegend Cat. No. 357520

TACI-PE-Cy7 BioLegend Cat. No. 311908

OX40-Brilliant Violet 510 BioLegend Cat. No. 350026

GITR-Brilliant Violet 605 BD Biosciences Cat. No. 747664

Zombie NIR Fixable Viability Kit BioLegend Cat. No. 423106

IgD-BB700 BD Biosciences Cat. No. 566538

CD3-PE-Cy5 ThermoFisher Cat. No. 2363822

CD14-PE-Cy5 ThermoFisher Cat. No. 2319032

CD19-BUV395 BD Biosciences Cat. No. 740287

CD38-FITC Cytognos Cat. No. CYT-38F2-A

CD138-PE-Cy7 BioLegend Cat. No. 356514

CD27-BV605 BD Biosciences Cat. No. 562655

Live/Dead ThermoFisher Cat. No. L34962

Biological Samples

Bone marrow aspirate samples from a total of 11

healthy donors and 1 patient with high

donor-specific antibodies awaiting kidney transplant.

Emory University and the

ITN protocol (ClinicalTrials.gov

Identifier: NCT04827979).

This paper.

Critical Commercial Assays

EasySep cell isolation kit StemCell Custom-designed

Zombie NIR Fixable Viability Kit BioLegend Cat. No. 423106

Chromium Single Cell Human BCR Amplification kit 10X Genomics Cat. No. PN-1000253

Chromium Next GEM Single Cell 50 Reagent Kit, v1 10X Genomics Cat. No. PN-1000165

Deposited Data

scRNA-seq, scVDJ-seq raw and processed data This paper GSE230705

Original code This paper https://doi.org/10.5281/zenodo.7903579

Software and Algorithms

Cellranger 3.0.1 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/downloads/3.0/

Seurat 3.2.2 Butler et al.87 http://satijalab.org/seurat

(Continued on next page)
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SCTransform Stuart et al.88 https://github.com/satijalab/sctransform

Slingshot Street et al89 https://bioconductor.org/packages/

release/bioc/html/slingshot.html

MAST Finak et al.90 https://github.com/RGLab/MAST

GSEA v4.0.3 Subramanian et al.91 https://www.gsea-msigdb.org/gsea/index.jsp

UMAP Becht et al.92 https://github.com/lmcinnes/umap

Molecular Signatures Database Liberzon et al.37 http://software.broadinstitute.org/

gsea/msigdb/index.jsp

STRING protein-protein interaction Szklarczyk et al.38 https://string-db.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, F. Eun-

Hyung Lee (f.e.lee@emory.edu).

Materials availability
This study did not generate new reagents. Commercially available reagents are listed in the key resources table.

Data and code availability
The raw and processed scRNA-seq and scVDJ-seq data generated during this study are publicly available at theGene Expression

Omnibus (GEO) GSE230705. The GEO accession number for these datasets is listed in the key resources table.

The custom code used to process and visualize the data is deposited at Zenodo, and the accession DOI for the code is listed in the

key resources table.

Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For the single cell BM data, 5 healthy adults were enrolled at Emory University Healthy in 2018 between the ages of 25 ± 4 years. All

were female. An additional six healthy adults were enrolled at Emory University between 2019 and 2022 for flow cytometry validation.

The mean age was 28.5 ± 6.4 years old and five were female. One male adult age 60 years old was enrolled at University of California

San Francisco (UCSF) in the ITN ATTAIN trial who was highly sensitized. All studies were approved by the Institutional Review Board

at Emory University and informed consent was provided.

METHOD DETAILS

Cell sorting and library construction
Bone marrow aspirate was obtained under sterile conditions from the iliac crest from each of the 5 healthy adults. Mononuclear cells

were isolated by Ficoll density gradient centrifugation and enriched by a custom-designed negative selection EasySep cell isolation

kit fromStemCell that removes CD66b+/GPA+/CD3+/CD14+ cells to limit sorting time of fragile BMASC. Enrichedmononuclear cells

were stained with the following anti-human antibodies: IgD–FITC (Cat. no. 555778; BD Biosciences), CD3-BV711 (Cat. no. 317328;

BioLegend), CD14-BV711 (Cat. no. 301838; BioLegend), CD19-PE-Cy7 (Cat. no. 560911; BD Biosciences), CD38-V450 (Cat. no.

561378; BD Biosciences), CD138-APC (Cat. no. 130-117-395; Miltenyi Biotech), CD27-APC-e780 (Cat. no. 5016160; eBiosciences),

and LiveDead (L34966; Invitrogen). ASC subsets were FACS-sorted on a BD FACSAria II using a standardized sorting procedure with

rainbow calibration particles to ensure consistency of sorts between individuals. ASC subsets were sorted as: popA

(CD19+CD38hiCD138-), popB (CD19+CD38hiCD138+) and popD (CD19�CD38hiCD138-). Up to 17,000 cells were FACS-sorted

from each population into RPMI with 5% FBS to maintain viability.

FACS-sorted cells were kept on ice until proceeding with 10x Genomics processing. Cells were centrifuged at 500xg for 10 min at

4C to removemedia. Cells were thenwashed twice in 0.04%BSA in PBS. During last wash,media was aspirated and cell volumewas

measured using a pipette. The whole sample was then taken for processing using the 10x Genomics 50 v1 Single Cell platform. V(D)J

and 50 Gene Expression (GEX) libraries were constructed for each sample, following 10x Genomics protocol. QC for each library was

performed at each step by Bioanalyzer. Final libraries were quantified by kappa qPCR and sequenced on a NovaSeq.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing of 10x genomics scRNA-seq data and quality control
The 10x Genomics single-cell transcriptomic sequenced raw reads were aligned to GRCh38 reference and quantified per cell bar-

code using Cellranger v3.0.1 (https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest). Genes

expressed in at least 0.1%–0.3% (depending on the sample size) of the total cell population were regarded as expressed genes

and retained for downstream analysis. To filter low-quality cells, we excluded cells withR 30% of their UMIs coming frommitochon-

drial genes, or% 800 total number of detected genes, or total number of UMIs% 1000. We first retained cells with a detected gene

number between 200 and 800 (labeled as LowGN in Figure S1A), but none of these genes were significantly expressed in the cell

group. Moreover, we removed cells with total number of genes or UMIsR 6,000 or 60,000, respectively, to control for potential dou-

blets. Additionally, we filtered out cells with immunoglobulin genes corresponding UMI count percentage % 5% to avoid contami-

nated non-antibody secreting cells. Then, we excluded contaminated cells expressing diagnostic cell markers, eg. CD3E (T cell),

CD16 (encoded by FCGR3A) and CD14 (Monocytes), NKG7, GNLY (Natural killer cells), HBB (Erythrocytes), CD20 (encoded by

MS4A1), PAX5, IRF8 (B cells) (Figure S1B).

Normalization and cell cluster detection
The scRNA-seq data was next analyzed using version 3.2.2 of the Seurat package.87,88 The gene expression counts of each cell were

normalized using regularized negative binomial regression (SCTransform) to account for sequencing depth.93 Next, we selected the

top 3,000 highly variable features (HVFs) based on their standardized expected variance after variance-stabilizing transformation,

removed all the immunoglobulin genes from the HVF list, and then used HVF data from SCTransform residuals to perform principal

component analysis (PCA). In the first run of our scRNA-seq analysis pipeline, we falsely included 2 misannotated Ig genes

AC233755.1 and AC233755.2 in the HVF list, which resulted in 15 clusters plus 2 additional AC gene-driven cell clusters (Figure S2B).

Subsequently, we further excluded these two genes before cell clusters detection. Next, we utilized Canonical Correlation Analysis

(CCA) from r package Seurat to anchor each dataset, removing individual effect and generating an integrated dataset.87 Using this

CCA-integrated dataset, a graph-based clustering method was applied to build a shared nearest neighbor (SNN) graph in PCA

space, after which the Louvain community identification algorithmwas applied to group cells at the set resolutions, with higher values

leading to a greater number of clusters.94To assess the stability of the clustering based on different combinations of running param-

eters (dimension numbers = 50, 60 and 70, PC numbers = 30, 50, and 70 and resolution parameter = 0.2, 0.5, 1.0 and 1.5), we

computed the Rand Index (RI) between pairs of classifications derived with different parameters. Accordingly, Rand Index (RI),95

which calculates the concordance of pairwise relationships between all pairs of cells, typically results in 86.5% similarity on average

in cluster designation for each individual cell (Figure S2D).RI is a similarity measurement taking values from 0 (low) to 1 (high), which

computes the proportion of cell pairs that are in agreement between cell clusters from two different parameters. Finally, we used 70

dimensions to anchor individual datasets and account for subject differences, and 50 PC were used to construct an SNN graph to

detect cell clusters.88,96 A resolution of 1.0 gave the most stable cell clusters (Figure S2D). 15 cell clusters from the first run were

retained with the cells from the two AC gene-driven clusters dispersed throughout the remaining 15 clusters. Finally, these clusters

were visualized in two dimensions using uniform manifold approximation and projection (UMAP).92 Notably, the 15 subgroups were

detected in all 5 individuals, with no identifiable subject-specific variability or Ig driven clusters (Figures S2C, S2E and S2G).

Differentially expressed and marker gene detection
Differentially expressed genes (DEG) between two cell clusters were identified based on LogNormalize SCTransform-adjusted count

matrix, which is from data slot of SCTransform function in the Seurat r package. It’s worth noting that the HVF list with excluded Ig

genes was used to detect cell clusters, the whole gene expression list which included Ig genes was used to detect cell markers and

DEGs. It was performed by using zero-inflated generalized linear models including individual as a random covariate, with the MAST

package,90 which was proven effectiveness on both real measured and simulated single-cell data.97 Cell cluster marker gene detec-

tion used the same settings but compared gene expression between cells from each selected cell cluster versus all remaining cells

from the other clusters. Marker genes were defined as significantly up-regulated genes in associated cell clusters with average nat-

ural-log fold change (avgLogFC) greater than 0.25 and Bonferroni adjusted p value less than 0.05, while top DEGswere also included

down-regulated genes with avgLogFC less than �0.25.

GSEA hallmark enrichment analysis
For gene set enrichment analysis, all expressed genes were ranked in descending order bymultiplying the negative log-p value (NLP)

derived from DEG analysis by the sign of the avgLogFC between the two clusters. The resultant pre-ranked gene list was used as

input into GSEA v4.0.3 Preranked analysis.91 The enrichment score is derived from a multivariate U score.98,99 Briefly, scores

were calculated by averaging normalized expression levels for all the transcripts that were identified as maturation-associated

DEGs, which were differentially expressed in any two adjacent stages of plasma cell maturation in Figure 1C or differentially ex-

pressed between early and late cell clusters and annotated in the selected HALLMARK pathways.37
20 Cell Reports 42, 112682, July 25, 2023
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Trajectory analysis
For the IgG dominant cell trajectory analysis, we used the slingshot method as it can detect the bifurcation, multifurcation, linear and

tree-like differentiation topology.89 We ran slingshot r package v1.4.0 (99) with UMAP embeddings as input data, cell cluster ids as

cell labels and cluster 1 (PB) as the starting point, and all other values using default settings. Although numerous methods have been

developed for single cell trajectory imputation, strikingly, out of the 45 methods reviewed by this study,100 only three (PAGA and

RaceID/StemID) can be used to detect disconnected graphs, but none of these releases are currently stable. We assumed that

each lineage had its own progenitor population, so for the accuracy and stability of inference, we focused on dissecting the matu-

ration paths only for IgG lineage cell populations which are likely to originate with the PB (cluster 1), whereas the progenitor for IgM

remains unclear.

Transcription factor analysis
Transcription factors were combined from AnimalTFDB101 and known human transcription factors.102 For downstream analysis, we

only focused on the TFs that were either identified as HVFs or markers of any one of cell clusters or differentially expressed in the

comparison of any adjacent two clusters of PC maturation or between the early and late phases of PC maturation. Only those

TFs expressed in at least 10% of any one of the BMPC subgroups were included in detection of cluster-specific TFs; and only those

expressed in at least 20% of associated cell clusters and having avgLogFC greater than or equal to 0.25 between the two cell groups

with the highest and lowest gene expressionwere selected for visualization. Averaging the expression of TFs by cluster id and defined

maturation stage, each TFwas assigned to the cell cluster or stagewith the highest expression. For those TFs showing greater than or

equal to 0.25 avgLogFC between assigned cell cluster and cell cluster with the second highest expression were labeled as cluster

distinct. The same criterion was used to label stage-distinct TFs. Associations between pairs of TFs were evaluated using annota-

tions in the STRING protein-protein interaction database38; only interactions that have a combined score greater than 500 and exist

within the assigned cell cluster were retained for visualization.

Multicolor flow cytometry for experimental validation
MNC were isolated from 4 (Panel 1) and 2 (Panel 2) BM aspirate samples from heathy donors using a Ficoll density gradient and

stained with the following anti-human antibodies: IgD-Brilliant Violet 480 (Cat. No. 566138; BD Biosciences), CD3-BUV737 (Cat.

No. 612750; BD Biosciences), CD14-BUV737 (Cat. No. 612763; BD Biosciences), CD19-Spark NIR 685 (Cat. No. 302270;

BioLegend), CD38-Brilliant Violet 785 (Cat. No. 303530; BioLegend), CD138-APC-R700 (Cat. No. 566050; BD Biosciences),

CD27-Brilliant Violet 711 (Cat. No. 356430; BioLegend), BCMA-Brilliant Violet 421 (Cat. No. 357520; BioLegend), TACI-PE-Cy7

(Cat. No. 311908; BioLegend), OX40-Brilliant Violet 510 (Cat. No. 350026; BioLegend), GITR-Brilliant Violet 605 (Cat. No. 747664;

BD Biosciences), and Zombie NIR Fixable Viability Kit (Cat. No. 423106; BioLegend). The anti-human antibodies that were used

for staining BM MNC isolated from the patient with high donor-specific antibodies (DSA) awaiting kidney transplant in the ITN pro-

tocol (ClinicalTrials.gov Identifier: NCT04827979) include: IgD-BB700 (Cat. No. 566538; BD Biosciences), CD3-PE-Cy5 (Cat. No.

2363822; ThermoFisher), CD14-PE-Cy5 (Cat. No. 2319032; ThermoFisher), CD19-BUV395 (Cat. No. 740287; BD Biosciences),

CD38-FITC (Cat. No. CYT-38F2-A; Cytognos), CD138-PE-Cy7 (Cat. No. 356514; BioLegend), CD27-BV605 (Cat. No. 562655; BD

Biosciences), and Live/Dead (Cat. No. L34962; ThermoFisher). Cells were acquired on a Cytek Aurora spectral flow cytometer using

Cytek SpectroFlo software (Cytek; the HD BM samples) or an LSR Fortessa X20 (special order research product with 5 lasers; BD

Biosciences) and analyzed using FlowJo software (v10.8.1; with DownSample (v3.3.1) plugin; BD Biosciences).

Single cell VDJ sequencing (scVDJ-seq) and analysis
Cells were counted using a Bio-Rad TC10 cell counter and verified via hemocytometer. Cell numbers were adjusted to 1,000 cells per

ml to allow for 10,000 single cells per sample loaded in the 10xGenomics Chromium device. Themanufacturer’s standard protocol for

Chromium Next GEM Single Cell 50 Reagent Kit, v2 and Chromium Single Cell Human BCR Amplification kit was used to generate

libraries. Libraries were sequenced on an Illumina NovaSeq (paired-end; 2 3 150 bp; read 1:26 cycles; i7 index: 8 cycles, i5 index:

0 cycles; read 2: 98 cycles) such that more than 70% saturation could be achieved with a sequence depth of 5,000 reads per cell for

VDJ libraries.

Analysis of single cell VDJ data was conducted using Cellranger v3.1.0 via the 10x Genomics cloud interface and an in-house

developed informatics pipeline for clonal clustering and SHM analysis.69 Fasta files from the Cellranger output were annotated

with metadata and aligned to germline sequences using the IMGT/HighV-QUEST web portal.103 All data from IMGT/HighV-

QUEST were retained through the process and were used for mutation calculations and alignment analyses. The definition of line-

ages/clones is consistent with previous publication.69 The frequency and distribution of somatic hypermutation were ascertained

on the basis of non-gap mismatches of expressed sequences with the closest germline VH sequence. Mutation frequencies were

determined by calculation of the number of mutations in V regions relative to the number of bases in non-gap V regions. The ratio

of replacement mutations to silent mutations were calculated for CDR and framework regions separately from the corresponding

VH areas. In sequences with non-zero replacement but zero silent mutations, the number of silent mutations was set to 1.104 Merging

of gene expression and VDJ data sets and subsequent analysis was conducted using in-house developed pipelines in conjunction

with the immcantation pipeline105 and Seurat. Circular visualization plots were created with Circos software v0.69-6.
Cell Reports 42, 112682, July 25, 2023 21
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Permutation test for mutation detection
In order to assess whether mutation numbers differ among clusters, we first randomly shuffledmutation frequency data in all the cells

and grouped them using current cell clusters. We then performed ANOVA test and Tukey’s HSD (honest significant difference)

consecutively. After repeating the previous steps one hundred times, we applied multiple comparison adjusted p values from the

TukeyHSD test to calculate the p value for permutation test: P(permutation test) = (Number of permutation tests showing p value

from TukeyHSD < p value obtained from running real data)/100.
22 Cell Reports 42, 112682, July 25, 2023
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Figure S1. Integrated single-cell transcriptomic datasets. A) UMAP plots of single-cell 

transcriptomic profiles from 5 subjects before 2-step cell quality control and colored by sorted 

subject id, FACS-sorted labels, gene number group and cell subsets, which is mainly grouped by 

the location of cell population on UMAP, proliferating status and whether they are contaminating 

cells. HighGN: high gene number, indicating cells have greater than 800 detected genes, which is 

correspond to the gene cutoff in Fig. 1B; LowGN: low gene number, representing cells have 

greater than 200 detected genes but less or equal than 800 genes; contam: contaminating cell 

populations. B) and C) Contaminated cell population (B) and plasma cell (C) associated master 

gene expression. The redder the dot indicates the higher log-normalized gene expression.  

  



 
Figure S2. Stability and reliability of cell clusters. A) Expression of contaminated cell markers 

in current UMAP. B) Cell clusters (left) when not removing AC233755.1 and AC233755.2 genes 

before detecting cell clusters in the first run. Expression of AC genes in the previous UMAP (right). 

C) Current UMAP colored by sampled subjects, FACS-sorted cell populations and defined stages 



of BMPC maturation. D) Two-way hierarchical clustering of RI by comparing cell clustering 

results from running different combinations of key cell clustering parameters (left), the parameter 

information was shown in the middle labels and scatter plot showed the average RI of each row of 

heatmap (right). Dashed red line labeled the RI value 0.85. (dim: dimension; pc: PC; res: 

resolution.) E) Expression of AC genes in current UMAP. F) Dot plots for expression of marker 

genes in each subgroup of bone marrow plasma cell defined in Fig. 1C. Here and in later figures, 

colors represent Min-Max normalized mean expression of marker genes in each cluster, and dot 

sizes indicate the proportion of cells expressing each marker gene. G) Fraction of cells in current 

scRNA-seq data defined cell clusters by sampled subjects. H) Log-normalized gene expression of 

SPN in cell clusters.  

  



 
Figure S3. The features and pathways characterize the IgM dominant cell populations. A) 

Boxplots showing the expression of indicative IgM highly expressed genes as well as three Ig 

genes associated with somatic recombination of immune receptors in (C). B) Heatmap showed the 

row-scaled gene expression of CCR10 highly correlated genes (|Pearson correlation coefficient|  

0.6, ‘||’ implies absolute value).  
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Figure S4. Distribution of selected features in cell clusters. A) Log-normalized gene expression 

of PRDM1 in cell clusters. B) and C) Violin plots show the percentage of transcripts coming from 

ribosomal genes (ribo), mitochondrial-encoded mitochondrial genes (mito), and immunoglobulin 

genes (Ig) (B) and the distribution of total detected gene numbers (nGene), total UMIs (nUMI) (C). 

D) X-axis is regrouped cell populations when taking both scRNA-seq defined cell subgroups and 



FACS-sorted cell labels into account. Y-axis is the log-normalized gene expression. Arrow points 

out the FACS-sorted popA cells starting CD138 (encoded by SDC1) transcripts. 

  



Figure S5. Patterns of Hallmark pathway enrichment analysis. A) Heatmap showed the two-



way hierarchical clustering of enrichment scores in each pathway. X-axis is the cell cluster id. The 

redder the color, the higher of enrichment scores. Numbers in the left-side of the heatmap showed 

the defined patterns. B) Heatmap showed the row hierarchical clustering of enrichment scores in 

each pathway. C) Heatmap showed the two-way hierarchical clustering of enrichment scores in 

IgM dominant cell lineage using DEGs are specifically differentially expressed in IgM lineage 

compared with DEGs detected by comparisons made between IgG1 dominant clusters. 

  





Figure S6. Genes driven the difference of TNF signaling via NFKB pathway in late LLPC. 

A) Heatmap showed the scaled corresponding TNF singaling via NFB pathway enriched 

maturation-associated DEG expressions in cluster 5, 6 and 7 in each individual. B) GSEA prerank 

analysis results using preranked genes between cluster 6vs7 (left); enrichment score, FDR qvalue, 

and leading-edge genes were listed (right). Gene colored in red were DEGs from Table S4 and in 

orange were cluster 6vs7 specific DEGs included in Table S6. C) Expression of differentially 

expressed leading-edge genes (|avgLogFC| > 0.25, Bonferroni adjusted p value < 0.05) from (B) 

in cluster 5, 6 and 7, the order of genes was corresponding to the gene rank in preranked gene list 

in Table S6. 

  



 

Figure S7. Visualization of indicative genes. A) Light and dark blue bar plots showed the 

proportion of cells in each cluster not expressed (NotExp) and expressed (Exp) gene TNFRSF17, 

TNFRSF14 and TNFRSF13B. B) Violin plots showed the expression of remaining expressed TNF 

family genes. C) Dotplot visualized the gene expression of pro-apoptotic, anti-apoptotic and ER-

stress associated genes based on the FACS-sorted cell labels. The bluer the dots, the lower the 

gene expression. The size of dots represented the percentage of cells from associated cell 

population expressed the corresponding genes. D) Dotplot showed the gene expression from CCR, 

CD, CXCR ad interleukin (IL) families.  

  



 
Figure S8. Summary of scVDJ-seq data detected clones/lineages. A) The distribution of lineage 

size. X-axis is the number of cells contained in detected cell lineages. Y-axis is the number of cell 

lineages. Orange and purple boxes summarize the total number of lineages that have at least 2 or 

5 cells. B) The distribution of overlapped cell clusters of each non-singleton lineages. Orange 

boxes summarize the number of lineages having at least 2 cells and overlapped with at least 2 cell 

clusters. C) and D) Count the total number (C) and percentage (D) of cells in each cell cluster by 

if cells have matched scVDJ-seq information, if they are from singleton lineages (yellow) or not 

(dark grey). Cells with no matched scVDJ information were colored in ash.  



 
Figure S9. Summary of Ig heavy chain gene transcript numbers in each cell cluster. Circos 

plot summarizes the proportion of cells in each cell cluster that pass the criterion by using different 

cutoffs to gate Ig heavy chain genes. The most inner circle is colored as Fig. 1C and numbers 

indicate corresponding cell cluster id. From inner to outer circle, the cutoffs are 50, 100, 500, 1000, 

2000, 3000, 4000 and 5000. The table summarizes the percentage of cells in each cell cluster that 

passed cutoffs. The count column shows the total number of cells in each cell cluster.    



 
Figure S10. Permutation results for the mutation frequency test. A) Barplot showing the 

distribution of p values from ANOVA test for the global heavy chain variable region (Global), 

CDR and FR mutation frequency using real data and shuffled data from permutation test. Orange 

bars and grey bars indicated the p values from using real and randomly shuffled datasets. B) – D) 

The distribution of p values from Tukey's HSD (honestly significant difference) tests for the Global 

(B), CDR (C) and FR (D) mutation frequency between cluster 6 and other 14 clusters by using real 



and randomly shuffled datasets. Red arrows pointed out the adjusted p value from Tukey's HSD 

test using real data, left upper side showed the p value from permutation test and significant results 

were colored in red. Titles indicated the objects of comparison.  

 

  



 
 

Figure S11. Clonal connectivity visualization in all cell clusters. A) Circos plot from main IgG1 

dominant cell clusters 1 to 15 in a connecting detected lineages in each donor. Lineages were 



colored by the latest cell cluster. B) – C) Percentage of connected clones between any two cell 

clusters when only considering lineages across at least two cell clusters (B) or lineages include 

singletons (C). Numbers in each block showed the percentage of lineages from each row cluster 

that were connected with other. The numbers showing in the grey boxes recorded the total number 

of lineages and cells showing in bracket in associated cell cluster. Yellow boxes highlighted the 

highly connected cell blocks and dashed orange box highlighted those clones showing high 

connectivity in one direction but not in another.  

  



 
 Figure S12. Clonal connectivity of nearly identical clones in IgG1-dominant clusters 1 to 8. 

A homology of 98% was used within the CDR3 region to cluster clones within each of the 5 

subjects. Cell clusters are represented by the outer ring colors and sequences are grouped into 

clones in size descending order from counterclockwise to clockwise. Lines connecting cell clusters 

indicate a clone that was found in multiple clusters. 

  



 
Figure S13. Cellular representation and alignment of clonal VH sequences that span multiple 

clusters. A) Clones were clustered by identical V, J, CDR3 length and 98% CDR3 homology to 

identify near identical clones and plotted on UMAP. Cells highlighted in red are members of the 

same clone. B) V region genes from the same clones were aligned against germline sequences.  

Blue squares indicate mutations in the individual sequences when compared to germline sequences 

and pink squares indicate matching nucleotides to the germline sequence. The cluster of each cell 

where the transcript was identified to be from is shown on the left.  
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