iScience, Volume 26

Supplemental information

Overcoming MET-mediated

resistance in oncogene-driven NSCLC

Nadine Reischmann, Carolin Schmelas, Miguel Ángel Molina-Vila, Núria Jordana-Ariza, Daniel Kuntze, Silvia García-Roman, Manon A. Simard, Doreen Musch, Christina Esdar, Joachim Albers, and Niki Karachaliou

Supplementary Figure S1: Further investigation of KM12 tetON-MET and NCI-H2228 tetON-MET cells, related to Figure 2.

A, KM12 tetON-MET cells were treated with/ without doxycycline and with/ without 10% FCS for 48 hours, before lysis, and Western blot analysis was performed with the indicated antibodies.

B, Western blot analysis of NCI-H2228 tetON-MET cells transduced with multiplicity of infection (MOI) = 15 compared to MOI = 30 and cell viability analysis of NCI-H2228 tetON-MET cells transduced with MOI = 30.

NCI-H1781 tetON-MET

parental
no dox

- + dox

Supplementary Figure S2: Further investigation of the tetON MET cell lines, related to Figure 2.

A, The indicated cells were cultured with doxycycline for 24 hours before they were treated with the respective targeted therapies. Cellular viability was measured six days from treatment onset. Data are represented as mean \pm SD (n = 3).

B, Brightfield microscopy images of the tetON-MET cells used in this study after 14 days of doxycycline treatment.

Supplementary Figure S3: Cell viability analyses of tetON-MET cells upon combination treatments, related to Figure 4.

The antiproliferative effects of the targeted therapies combined with tepotinib/ capmatinib or M6748/ TNO155 were assessed in the respective tetON-MET cell lines using combination dose matrices in 6-day viability assays. Graphs visualizing the mean \pm SD (n = 3) are shown.

Supplementary Figure S4: Synergy analyses of targeted therapies and MET or SHP2 inhibitors in tetON-MET cells, related to Figure 4.

The antiproliferative effects of the targeted therapies combined with tepotinib/ capmatinib or M6748/ TNO155 were assessed in the respective tetON-MET cell lines by combination dose matrices in 6-day viability assays. The mean Synergy Scores and excess volumes of three independent experiments are shown. Synergism: Synergy Score > 2, Excess volume < 0.

Supplementary Figure S5, Western blot analyses of NCI-H358 tetON-MET xenograft tumors, related to Figure 5.

A, Overexpression of MET in NCI-H358 tetON-MET tumor lysates of mice fed with a doxycycline-containing diet. **B**, Tumor lysates of mice with NCI-H358 tetON-MET tumors fed with a doxycycline-containing diet and treated with tepotinib, sotorasib or the combination of both were analyzed by Western blot after treatment termination.

Supplementary Table S1: Table listing all liquid (blood, cerebrospinal fluid, pleural effusion) biopsies (LBx) and tumor or cytological biopsies (TBx) collected from 28 patients with NSCLC who had disease progression on ALK (n=15), ROS1 (n=8) or RET (n=5) TKIs, related to Figure 1.

Unless otherwise indicated, the TKI was the 1st line treatment.

Patients were considered *METamp* positive by FISH if they showed: (i) a *MET*/CEP7 ratio (r) \geq 2 and (ii) *MET* gene copy number (GCN) per cell \geq 6. Patients were considered MET/pMET immunohistochemistry (IHC) positive if intense membrane staining (3+) was observed in \geq 50% of the tumor cells.

	Patient No.	Sex Age ¹ Stage ¹	Type of rearrangement	Type of biopsy	Date of biopsy	Progression on	PFS (months)	NGS ²	nCounter fusions	nCounter MET mRNA ³	MET r & GCN by FISH ³	MET IHC ³	pMET IHC ³
	P1	unknown unknown unknown	KIF5B-RET (ex15-ex12)	blood	13/09/2019	alectinib	10	ND	KIF5B-RET (ex15-ex12)				
	P2	Female unknown unknown	CCDC6-RET (ex1-ex12)	blood	18/02/2020	alectinib	2	ND	ND				
	P3	unknown unknown unknown	KIF5B-RET (ex15-ex12)	blood	21/02/2020	alectinib	3	ND	KIF5B-RET (ex15-ex12)				
	P4	Female 67 IV	ALK, variant unknown	blood	04/03/2020	ceritinib/ brigatinib	unknown	ND	NA				
LBx only	P5	Female 65 IV	ALKv3	blood	08/05/2020	alectinib	5	ND	ND				
	P6	Female 58 II	ALKv3	blood	30/09/2020	alectinib	19	ND	ND				
				blood	28/01/2021	lorlatinib (2 nd line)	4	ND	NA				
				blood	05/10/2021	pemetrexed + lorlatinib (3 rd line)	9	<i>MET</i> amp	ND				
	P7	unknown unknown unknown	KIF5B-RET (ex15-ex12)	blood	02/12/2020	alectinib	17	ND	ND				
	P8	Female 59 unknown	<i>ALKv3a</i> (E6a/A20)	pleural effusion	13/08/2021	alectinib	11	ND	ALKv3				
				blood	26/10/2021	alectinib	11	<i>ALK</i> : p.l1171N	ND				
	P9	Female 59 unknown	RET	blood	06/10/2021	selpercatinib	17	ND	ND				
	P10	Female unknown unknown	ALKv1	blood	20/10/2020	lorlatinib	48	ND	ALKv1				

	P11	Male unknown unknown	PRKAR1A-ALK	blood	29/11/2021	alectinib	unknown	<i>ALK</i> : p.L1196M	ND				
	P12	Female unknown unknown	ROS1, variant unknown	blood	01/12/2021	crizotinib	36	ND	NA				
	P13	Female unknown IV	SLC34A2-ROS1	blood	03/12/2021	ceritinib	3	ND	SCL34A2-ROS1				
	P14	Male 47 unknown	ALK, variant unknown	blood	20/12/2021	alectinib	unknown	ND	ND				
	P15	Female unknown unknown	CD74-ROS1	blood	19/01/2022	crizotinib	unknown	ND	ND				
	P16	Male 62 unknown	ALK, variant unknown	blood	24/01/2022	crizotinib	unknown	ND	ND				
only	P17	Female 36 unknown	CD74-ROS1	blood	28/01/2022	lorlatinib	unknown	ND	CD74-ROS1				
LBX	P18	Male 71 IV	ROS1, variant unknown	blood	31/01/2022	lorlatinib	4	ND	ND				
	P19	Male 45 IV	ALK, variant unknown	blood	19/04/2022	alectinib	unknown	ND	ND				
	P20	Female unknown IV	ALK, variant unknown	blood	06/05/2022	lorlatinib	64	ND	ND				
TBx only	P21	Male 56 IV	CD74-ROS1	tissue	12/04/2022	crizotinib	35	*	*	*	*	NEG (0)	*
		Male		blood	16/03/2018	alectinib	10	ND	ND				
nd TBx	P22	unknown IV	ALKv1	tissue	07/05/2018	alectinib	12	ND	ALKv1	7	NEG (r=0.3; GCN=2.2)	NEG (80% 2+)	NEG (0)
LBx a	Male	Male		blood	18/07/2018	alectinib	9	<i>ALK:</i> p.G1269A	ALKv5				
_	P23	unknown ALKv5 unknown	tissue	06/08/2018	alectinib	10	ALK: p.G1269A	ALKv5	35	NEG (r=1.3, GCN=4.1)	NEG (60% 2+)	NEG (0)	

LBx and TBx	P24	Male 56 IV	ALKv1	blood	15/02/2019	lorlatinib	2	ND	NA				
				tissue	25/02/2019	lorlatinib	2	<i>MET</i> amp	ALKv1	105	POS (r>5, GCN>15)	POS (95% 3+)	POS (100% 3+)
	P25	Female 48 IV	ALKv5	tissue	10/03/2019	alectinib	23	<i>ALK:</i> p.G1202R	ALKv5	31	NEG (r=1.0; GCN=2.8)	NEG (60% 2+)	NEG (5% 3+)
				blood	16/08/2019	lorlatinib (2 nd line)	5	ND	NA				
				cerebrospinal fluid	16/08/2019	lorlatinib (2 nd line)	5	ND	NA				
	P26	Female 64 IV	CD74-ROS1	blood	15/06/2020	crizotinib	6	ND	ND				
				tissue	28/10/2020	crizotinib	10	ND	CD74-ROS1	99	NEG (r=1.2; GCN=2.8)	POS (80% 3+)	NEG (0) ⁴
	P27	Male 57 IV	ALKv1	blood	08/10/2020	brigatinib	2	ND	NA				
				cerebrospinal fluid	08/10/2020	brigatinib	2	ND	ALKv1				
				cerebrospinal fluid	26/02/2021	lorlatinib (2 nd line)	4	ND	ALKv1				
-				pleural effusion	29/04/2021	lorlatinib (2 nd line)	6	<i>MET</i> amp	NA				
				cytological	29/04/2021	lorlatinib (2 nd line)	6	<i>MET</i> amp	ALKv1				
	P28	Female	n CD74-ROS1	pleural effusion	08/10/2021	lorlatinib	9	<i>ROS1:</i> p.G2026R	ND				
		unknown		cytological	08/10/2021	lorlatinib	9	<i>ROS1:</i> p.G2026R	CD74-ROS1				

¹ Age and stage are reported at the time of diagnosis.

² NGS analysis covers mutations and copy number variations (CNVs) in 30 genes frequently altered in lung cancer (EGFR, BRAF, MET, ERBB2, ALK, ROS1, RET, PIK3CA, KRAS, NRAS, KIT, PDGFRA, TP53, STK11, KEAP1, ARID1A, FAT1, NFE2L2, SETD2, POLE, POLD1, IDH1, IDH2, ERBB4, FGFR1, FGFR2, FGFR3, MYC, CDK4, CDK6). ND means that no mutations or CNVs in the 30 genes were detected.

³ nCounter MET mRNA, MET r & GCN by FISH, MET IHC and pMET IHC were only analyzed in tissue samples.

⁴ The negative pMET result of the tissue biopsy of P26 might be an artifact due to inaccurate tissue fixation. A primary cell culture established from P26 at progression showed positive pMET IHC.

* Insufficient material

ND: Not detected

NA: Not analyzed

Assay Type Target Variant Accession Number **Target Sequence** ATATGGAGCAAAACTACTGTAGAGCCCACACCTGGGAAAGGACCTAAAGTGTAC Fusion EML4-ALK E13:A20 PFUS 001.1:1 CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG GACAACAAGTATATAATGTCTAACTCGGGAGACTATGAAATATTGTACTTGTACCG EML4-ALK E20:A20 PFUS 002.1:1 Fusion CCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG AAAGTTACCAAAACTGCAGACAAGCATAAAGATGTCATCATCAACCAAGTGTACC Fusion EML4-ALK E6:A20 PFUS 003.1:1 GCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG ATCTCTGAAGATCATGTGGCCTCAGTGAAAAAATCAGTCTCAAGTAAAGTGTACC Fusion EML4-ALK E2:A20 PFUS_006.1:1 GCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG ATCCACACAGACGGGAATGAACAGCTCTCTGTGATGCGCTACTCAATAGTGTACC Fusion EML4-ALK E18:A20 PFUS 008.1:1 GCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG CAGCAGCCACCATATACAGGAGCTCAGACTCAAGCAGGTCAGATTGAAGTGTAC PFUS_016.1:1 Fusion TFG-ALK___T5:A20 CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG TTGGAGGAATCTGTCGATGCCCTCAGTGAAGAACTAGTCCAGCTTCGAGCACAA Fusion KIF5B-ALK K17:A20 PFUS 031.1:0 GTGTACCGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGC AAGGAGGAGTTGATGCTGCGGCTGCAGGACTATGAGGAGAAGACAAAGAAGGC EZR-ROS1 E10:R34 PFUS 032.1:2 Fusion CCCTGGTGCTAGTTGCAAAGACACAAGTGGGGGAAATCAAAGTATTACAAGTCTG PFUS 023.1:0 Fusion GOPC-ROS1 G4:R36 GCATAGAAGATTAAAGAATCAAAAAAGTGCCAAGGAAGGGGTGACA AGTTTGCTGAGAGATCGGTAGCCAAGCTGGAAAAGACAATTGATGACCTGGAAG Fusion TPM3-ROS1_T8:R35 PFUS_035.1:21 AGTTTGTCACATCTTCAGGTGCTGGATTTTTCTTACCACAACATGACAGTAGTGTC Fusion LRIG3-ROS1 L16:R35 PFUS 027.1:32 TATGGGGCGAGACTAGCTGCCAAGTACTTGGATAAGGAACTGGCAGGAAGTACT PFUS_022.1:0 GOPC-ROS1_G7:R35 Fusion CTTCCAACCCAAGAGGAGATTGAAAATCTTCCTGCCTTCCCTCGGG AAGGCTCCTGAGACCTTTGATAACATAACCATTAGCAGAGAGGCTCAGGCTGGA SLC34A2-ROS1 S13del2046:R32 PFUS 034.1:23 Fusion GTCCCAAATAAACCAGGCATTCCCAAATTACTAGAAGGGAGTAAA

Supplementary Table S2: Table listing the probe set for nCounter hybridization, related to Figure 1 and Supplementary Table S1.

Fusion	CD74-ROS1_C6:R32	PFUS_030.1:23	AATGAGCAGGCACTCCTTGGAGCAAAAGCCCACTGACGCTCCACCGAAAGCTGG AGTCCCAAATAAACCAGGCATTCCCAAATTACTAGAAGGGAGTAAA					
Fusion	SDC4-ROS1_S2:R32	PFUS_024.1:35	GCCCGGGCAGGAATCTGATGACTTTGAGCTGTCTGGCTCTGGAGATCTGGCTGG					
Fusion	SDC4-ROS1_S4:R34	PFUS_033.1:7	GGTGTCAATGTCCAGCACTGTGCAGGGCAGCAACATCTTTGAGAGAACGGAGGT CCTGGCAGATGATTTTTGGATACCAGAAACAAGTTTCATACTTACT					
Fusion	SLC34A2_S4:ROS1-Common	PFUS_020.1:5	GTGTGCTCCCTGGATATTCTTAGTAGCGCCCTTCCAGCTGGTTGGAGCTGGAGTC CCAAATAAACCAGGCATTCCCAAATTACTAGAAGGGAGTAA					
Fusion	KIF5B-RET_K16:R12	PFUS_025.1:7	AAGAAAATGAAAAGGAGTTAGCAGCATGTCAGCTTCGTATCTCTCAAGAGGATCC AAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCT					
Fusion	KIF5B-RET_K22:R12	PFUS_026.1:12	ACCTGCGCAAACTCTTTGTTCAGGACCTGGCTACAAGAGTTAAAAAGGAGGATCC AAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCT					
Fusion	KIF5B-RET_K23:R12	PFUS_029.1:51	CCTTTCTTGAAAATAATCTTGAACAGCTCACTAAAGTGCACAAACAGGAGGATCC AAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCT					
Fusion	CCDC6-RET_C1:R12	PFUS_039.1:10	GGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTGACCATCGAGGATCCAAAGT GGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAAC					
Fusion	KIF5B_K24-Common	PFUS_013.1:1	GCAGTCAGGTCAAAGAATATGGCCAGAAGAGGGGCATTCTGCACAGATTGTGTAC CGCCGGAAGCACCAGGAGCTGCAAGCCATGCAGATGGAGCTGCAG					
Fusion	KIF5B_K15-Common	PFUS_028.1:40	AAGACCTTGCAGAAATAGGAATTGCTGTGGGAAATAATGATGTAAAGGAGGATCC AAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCT					
MET∆ex14	MET	RCC_AS01_065.1:27_T053	TCCTGTGGCTGAAAAAGAGAAAGCAAATTAAAGATCAGTTTCCTAATTCATCTCAG AACGGTTCATGCCGACAAGTGCAGTATCCTCTGACAG					
MET wt	MET	RCC_AS01_066.2:1_T052	CCTGTGGCTGAAAAAGAGAAAGCAAATTAAAGATCTGGGCAGTGAATTAGTTCGC TACGATGCAAGAGTACACACTCCTCATTTGGATAGGC					
Endogenous	GAPDH	NM_002046.3:35_T001	TCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTGCGTCGCCAGCCGAGCCACA TCGCTCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAACGGATTT					
Endogenous	MRPL19	NM_014763.3:364_T003	GGAAGTATTCTTCGTGTTACTACAGCTGACCCATATGCCAGTGGAAAAATCAGCC AGTTTCTGGGGATTTGCATTCAGAGATCAGGAAGAGGACTTGGAG					
Endogenous	PSMC4	NM_006503.2:250_T004	TTTCTCCATGCCCAGGAGGAGGTGAAGCGAATCCAAAGCATCCCGCTGGTCATC GGACAATTTCTGGAGGCTGTGGATCAGAATACAGCCATCGTGGGCT					