iScience, Volume 26

Supplemental information

Isogenic human trophectoderm cells demonstrate

the role of NDUFA4 and associated

variants in ZIKV infection

Liuliu Yang, Yuling Han, Ting Zhou, Lauretta A. Lacko, Mohsan Saeed, Christina Tan, Ron Danziger, Jiajun Zhu, Zeping Zhao, Clare Cahir, Alice Maria Giani, Yang Li, Xue Dong, Dorota Moroziewicz, The NYSCF Global Stem Cell Array® Team, Daniel Paull, Zhengming Chen, Aaron Zhong, Scott A. Noggle, Charles M. Rice, Qibin Qi, Todd Evans, and Shuibing Chen

Figure S1

SUPPLEMENTAL FIGURES

Figure S1, related to Figure 1. Different background hiPSCs are equally efficient at generating trophectoderm cells.

(A) Representative confocal images of SOX2 and KRT7 staining in hiPSCs. Scale bar=50 µm.

(**B** and **C**) Flow cytometry analysis (B) and quantification (C) of KRT7 staining in trophectoderm cells derived from permissive cell lines: iPSC #1, iPSC #41 and iPSC #57 or low permissive cell lines: iPSC #15, iPSC #17 and iPSC #19.

Data are representative of at least three independent experiments. For *P* values, we averaged the 3 technical replicates within each cell line, then used the averages for an unpaired two-tailed *Student's t*-test. n.s. no significance.

Figure S2, related to Figure 2. Knockdown of *NUDFA4* decreases ZIKV permissiveness to infection.

(A and B) Representative confocal images (A) and the quantification (B) of ZIKV-E <u>and SOX2</u> staining in NDUFA4 knockdown lines of iPSC #1 (shctrl, shNDUFA4 #a, shNDUFA4 #b) and iPSC #41 (shctrl, shNDUFA4 #a, shNDUFA4 #b) at 72 hpi (ZIKV^U, MOI=0.15). Scale bar=50 μm.

(C) qRT-PCR analysis of (+) or (-) ZIKV vRNA strands in NDUFA4 knockdown lines of iPSC #1 (shctrl, shNDUFA4 #a, shNDUFA4 #b) and iPSC #41 (shctrl, shNDUFA4 #a, shNDUFA4 #b) at 72 hpi (ZIKV^U, MOI=0.15).

(D) Viral titers of ZIKV virus in the supernatant of NDUFA4 knockdown cell lines of iPSC #1 (shctrl, shNDUFA4 #a, shNDUFA4 #b) or iPSC #41 (shctrl, shNDUFA4 #a, shNDUFA4 #b) at 72 hpi (ZIKV^U, MOI=0.15) quantified by plaque assay.

Data are representative of at least three independent experiments. *P* values were calculated by one-way ANOVA followed by a *Dunnet*t's post hoc test with a common control for multiple testing correction. **P < 0.01, ***P < 0.001.

Figure S3

Figure S3, related to Figure 3. The expression of NDUFA4 is associated with ZIKV infection in trophectoderm cells.

(A and B) Flow cytometry analysis (A) and the quantification (B) of KRT7⁺ cells in trophectoderm cells derived from WT or *NDUFA4*^{-/-} hiPSCs.

(**C** and **D**) Representative images (C) and the quantification (D) of ZIKV-E staining in KRT7⁺ trophectoderm cells derived from WT or *NDUFA4^{-/-}* hiPSCs at 72 hpi (ZIKV^U, MOI=0.15). Scale bar=50 μ m.

(E) qRT-PCR analysis of (+) and (-) ZIKV vRNA strands in trophectoderm cells derived from WT or *NDUFA4*^{-/-} hiPSCs at 72 hpi (ZIKV^U, MOI=0.15).

(F) Viral titers of ZIKV virus in the supernatant of trophectoderm cells derived from WT or *NDUFA4*^{-/-} hiPSCs at 72 hpi (ZIKV^U, MOI=0.15) quantified by plaque assay.

Data are representative of at least three independent experiments. *P* values were calculated by two-way ANOVA analysis; n.s. no significance, ***P < 0.001.

Figure S4

Figure S4, related to Figure 4. SNPs for risk alleles of *NDUFA4* promote the infection of ZIKV virus in trophectoderm cells.

(A and B) Flow cytometry analysis (A) and the quantification (B) of KRT7⁺ cells in trophectoderm cells differentiated from hiPSC lines carrying risk (G/G; C/C) or non-risk (T/T; T/T) alleles.

(**C** and **D**) Representative images (C) and the quantification (D) of ZIKV-E staining in KRT7⁺ trophectoderm cells derived from hiPSC lines carrying risk (*G/G*; *C/C*) or non-risk (*T/T*; *T/T*) alleles at 72 hpi (ZIKV^U, MOI=0.15). Scale bar=50 μ m.

(E) qRT-PCR analysis of (+) and (-) ZIKV vRNA strands in trophectoderm cells derived from hiPSC lines carrying risk (G/G; C/C) or non-risk (T/T; T/T) alleles at 72 hpi (ZIKV^U, MOI=0.15).

(F) Viral titers of ZIKV virus in the supernatant of trophectoderm cells derived from hiPSCs carrying risk (*G/G*; *C/C*) or non-risk (*T/T*; *T/T*) alleles at 72 hpi (ZIKV^U, MOI=0.15) quantified by plaque assay.

Data are representative of at least three independent experiments. *P* values were calculated by two-way ANOVA analysis; n.s. no significance, ***P < 0.001.

Figure S5, related to Figure 5. Deletion of the *cis*-regulatory region decreases the sensitivity of ZIKV infection in trophectoderm cells.

(A and B) Flow cytometry analysis (A) and the quantification (B) of KRT7⁺ cells in trophectoderm cells derived from WT_ Δ or *NDUFA4*^{Δ} hiPSCs.

(**C** and **D**) Representative images (C) and the quantification (D) of ZIKV-E staining in KRT7⁺ trophectoderm cells derived from WT_ Δ or *NDUFA4*^{Δ} hiPSCs at 72 hpi (ZIKV^U, MOI=0.15). Scale bar=50 µm.

(E) qRT-PCR analysis of (+) or (-) ZIKV vRNA strands of trophectoderm cells derived from WT_ Δ or *NDUFA4*^{Δ} hiPSCs at 72 hpi (ZIKV^U, MOI=0.15).

(F) Viral titers of ZIKV virus in the supernatant of trophectoderm cells derived from WT_ Δ or *NDUFA4*^{Δ} hiPSCs at 72 hpi (ZIKV^{\cup}, MOI=0.15) quantified by plaque assay.

Data are representative of at least three independent experiments. *P* values were calculated by two-way ANOVA analysis; n.s. no significance and ***P < 0.001.

Figure S6

Figure S6, related to figure1-5. Raw data of western blotting.

Table S1. Primers/probes used for Sanger sequencing, PCR and qRT-PCR, Related toSTAR Methods.

Primer Name	Sequence
ZIKV (+) vRNA-RT	TACTTGTACAGCTCGTCCATGCCACTAACGTTCT
	TTTGCAGACAT
ZIKV (+) vRNA-PCR forward	CCGCTGCCCAACACAAG
ZIKV (+) vRNA-PCR reverse	TACTTGTACAGCTCGTCCATG
ZIKV (+) vRNA-PCR probe	5'-/56-
	FAM/AGCCTACCT/ZEN/TGACAAGCAATCAGACA
	CTCAA/3IABkFQ/-3'
ZIKV (-) vRNA-RT	AACAGCCACAACGTCTATATCCCGCTGCCCAAC
	ACAAG
ZIKV (-) vRNA-PCR forward	AACAGCCACAACGTCTATATC
ZIKV (-) vRNA-PCR reverse	CCACTAACGTTCTTTTGCAGACAT
ZIKV (-) vRNA-PCR probe	5'-/56-
	FAM/TTGAGTGTC/ZEN/TGATTGCTTGTCAAGGTA
	GGCT/3IABkFQ/-3'
Human ACTB-RT	CCTGGATAGCAACGTACATGG
Human ACTB-PCR forward	CCTTGCACATGCCGGAG
Human ACTB-PCR reverse	ACAGAGCCTCGCCTTTG
Human ACTB-PCR probe	5'-
	/5HEX/TCATCCATG/ZEN/GTGAGCTGGCGG/3IABk
	FQ/-3'
Human ACTB-PCR forward	ACCTTCTACAATGAGCTGCG
Human ACTB-PCR reverse	CCTGGATAGCAACGTACATGG
Human NDUFA4-PCR forward	CATCGGTCAGGCCAAGAA
Human NDUFA4-PCR reverse	GGGCTCTGGGTTATTTCTGTC
Human ISG15 forward	CGCAGATCACCCAGAAGATCG
Human <i>ISG15</i> reverse	TTCGTCGCATTTGTCCACCA
Human IRF7 forward	CCCACGCTATACCATCTACCT
Human IRF7 reverse	GATGTCGTCATAGAGGCTGTTG

Usage	Antibody	Clone #	Host	Catalog #	Vendor	Dilution
Immunocytoche	Anti-Flavivirus	D1-4G2-4-	Mouse	GTX57154	GeneT	1:100
mistry	group antigen	15			ex	
Immunocytoche	Anti-Flavivirus	D1-4G2-4-	Mouse	MAB1021	Millipor	1:1000
mistry	group antigen	15		6-I-100UG	е	
Western blot	Anti-NDUFA4	Polyclonal	Rabbit	ab129752	Abcam	1:200
Immunocytoche	Anti-SOX2	D6D9	Rabbit	3579	Cell	1:400
mistry					Signali	
					ng	
Immunocytoche	Keratin7 Rabbit	D1E4	Rabbit	4465	Cell	1:200
mistry	mAb				Signali	
					ng	
Immunocytoche	Alexa Fluor 594	Polyclonal	Donkey	A-21203	Thermo	1:500
mistry	anti-Mouse IgG				Scientifi	
	(H+L)				с	
	Secondary					
	Antibody					
Immunocytoche	Alexa Fluor 488	Polyclonal	Donkey	A-21206	Thermo	1:500
mistry	anti-Rabbit IgG				Scientifi	
	(H+L)				с	
	Secondary					
	Antibody					
Western blot	Anti-β actin	15G5A11/	Mouse	MA1-140	Thermo	1:5000
		E2			Scientifi	
					с	
Western blot	680RD Donkey	Polyclonal	Donkey	926-68072	Li-Cor	1:15000
	anti-Mouse IgG					
	Secondary					
	Antibody					
Western blot	800CW Donkey	Polyclonal	Donkey	926-32213	Li-Cor	1:15000
	anti-Rabbit IgG					

Table S2. Antibodies used for immunocytochemistry, intracellular flow cytometryanalysis and western blotting analysis, Related to STAR Methods.

Secondary			
Antibody			