1	Supplemental Information
2	
3	This PDF file includes:
4	1. Supplemental text
5	2. Supplemental Tables 1 to 9
6	3. Supplemental Figures 1 to 13
7	4. References
8	
9	Supplemental text
10	
11	1. Materials and Methods
12	Drug treatment. In vitro experiments of HK2 cells: the following reagents were used at
13	indicated concentrations: Erastin (MedChemExpress, HY-15763, New Jersey, USA),
14	RSL3 (MedChemExpress, HY-100218A), Deferoxamine (MedChemExpress, HY-
15	B0988), Ferrostatin-1 (Selleckchem, S7243, Houston, TX, USA), Z-VAD-FMK
16	(Selleckchem, S7023), 3-Methyladenine (Selleckchem, S2767), Necrostatin-1
17	(Selleckchem, S8037). In HT 1080 cells, RSL3 (MedChemExpress, HY-100218A) was
18	used to induce ferroptosis.
19	IRI and Cisplatin induced mouse models. Mice were randomly assigned to sham or IRI
20	groups. $n = 8$ mice per group. After skin antisepsis, mice were anesthetized and kept on
21	a homeothermic plate. After exposing both kidneys, the IRI-induced AKI was
22	established in mice by inducing ischemia for 30 min by clamping the renal pedicle with
23	nontraumatic bulldog clamps, followed by 24 h blood reperfusion. Ferrostatin-1 was

24	intraperitoneally injected to $Rest^{RTKO}$ mice and $Rest^{fl/fl}$ mice on the onset of reperfusion
25	to evaluate the additional benefits of ferrostatins and REST-deficiency in $AKI(1, 2)$.
26	For the IRI-induced AKI to CKD model, bilateral renal ischemia for 35 min was
27	followed by reperfusion for 2 or 4 weeks. The same operations were conducted in sham
28	groups except for induction of IRI.
29	To construct the cisplatin-induced AKI model, 30 mg/kg of cisplatin was
30	intraperitoneally injected into mice and they were sacrificed 3 days later, as described
31	previously (3). Blood samples and kidneys were collected at the indicated times. One
32	kidney was fixed in 4% paraformaldehyde for histological analyses, while the other
33	was snap-frozen for subsequent molecular analysis.
34	Renal function, histology, immunofluorescence and immunohistochemical staining.
35	Serum creatinine and BUN were determined to monitor renal function. Creatinine was
36	measured by using high-performance liquid chromatography (Waters, MA, USA).
37	BUN was measured using a urea assay kit (Nanjing Jiancheng Bioengineering Institute,
38	Nanjing, China). The paraffin-embedded kidney was cut into a thickness of $5\mu m$
39	sections and was stained with hematoxylin-eosin (HE), Masson, or used for
40	immunohistochemistry and immunofluorescence. Tubular injury was evaluated in a
41	blinded manner and random tissue sections were assessed based on the percentage of
42	damaged tubules: 0, no damage; 1, < 25%; 2, 25–50%; 3, 50–75%; 4, > 75% (4).
43	Results for each item were added to yield the ATN score, and images were obtained
44	with a Digital slice scanner (Kfbio Technology of Health, Ningbo, China).

45	Immunofluorescence staining were observed by Zeiss 880 (Carl Zeiss AG, Germany).
46	The intensities of the images were detected by Image J software (National Institutes of
47	Health, USA).
48	The antibodies against 4HNE (ab48506), Fibronectin (ab2413) and α -SMA (ab5694)
49	were bought from Abcam Biotechnology (Cambridge, MA, USA). The antibody
50	against REST (2590-R) was obtained from Biosis (Beijing, China). LTL was bought
51	from vector Laboratories Inc (San Francisco, California, USA).
52	Cell culture and treatment. Human proximal tubular epithelial cells (HK2 cells), rat
53	renal tubular epithelial cells (NRK52E cells) and Human fibrosarcoma cells (HT1080
54	cells) were bought from the American Tissue Culture Collection (ATCC, Manassas,
55	VA, USA). HK2 cells were cultured in F12 medium containing 10% fetal bovine serum
56	(Mediatech Inc., Herndon, VA, USA). NRK52E cells and HT1080 cells were cultured
57	in DMEM medium containing 10% fetal bovine serum (Mediatech).
58	HR model of HK2, primary renal tubular epithelial cells of mice and NRK52E cells
59	was induced according to 24h hypoxia (94% N_2 + 1% O_2 + 5%CO_2, glucose and serum-
60	free DMEM/F12 medium) followed by 1h, 3h, 6h, 9h, 12h of reoxygenation (95% air
61	and 5% CO ₂ , DMEM/F12 medium with 10% FBS.
62	For cisplatin injury model, cells were incubated with cisplatin for 24 h.
63	Mouse primary tubule isolation and cell culture. Tubular epithelial cells (TECs) were
64	isolated from 4-week-old WT or $Rest^{n/n}$ male mice kidneys as previous described (5)

65 (6). Kidneys were collected immediately after the mice were sacrificed. Renal cortexes

66	were minced into pieces (~ 1 mm ³) and washed by 0.1 ml ice-cold Dulbecco's
67	phosphate buffered saline (DPBS). Fragments were digested with 0.1% Collagenase II
68	for 8 minutes. After digestion, DMEM/F12 medium (containing 10% of fetal bovine
69	serum (FBS)) were added to stop the Collagenase activity. Then the tissue homogenate
70	was sieved through 70 μm nylon mesh (BD Falcon, Franklin Lakes, NJ, USA) and
71	centrifuged. Cells were centrifuged at 1000 rpm for 3 minutes. These renal tubules were
72	collected after an ultracentrifugation density gradient. Cells were washed with DPBS
73	and was resuspended in DMEM/F12 medium with 10% fetal bovine serum (Corning,
74	NY, USA). To obtain REST ^{-/-} primary tubule epithelial cells, Ad-Cre adenovirus
75	(HANBio, AP21031807, Shanghai, China) were used to infect cells for 72h. Infection
76	efficiency was estimated under fluorescence microscope by the presence of GFP-
77	positive cells (data not shown).
78	Overexpression or downregulation of target genes. For interfere REST or GCLM, HK2
79	cells or primary renal tubular epithelial cells of mice were transfected with control
80	siRNA or siRNA against REST or GCLM by using Lipofectamine 3000 (Invitrogen,
81	Carlsbad, CA, USA), according to the manufacturer's protocol. The siRNA sequences
82	are described in Supplemental Table 3. Control or REST overexpression plasmids were
83	transfected using Lipofectamine 3000 (Invitrogen, L3000075) in Opti-MEM (Hyclone,
84	Logan, UT, USA), according to the manufacturer's protocol. Then, cells were treated

85 with HR and were harvested for the subsequent experiments.

86	RNA extraction and quantitative real-time PCR. Total RNA was extracted from HK2
87	cells, NRK52E cells, primary renal tubular epithelial cells of the mouse kidney tissues
88	by using an RNA Purified Total RNA Extraction Kit (Beyotime Biotechnology,
89	R0077S, Shanghai, China) according to the manufacturer's instructions and reversely
90	transcribed into cDNA using an RT Master Mix for qPCR kit (MedChemExpress, HY-
91	K0511A). Real-time PCR was performed with a SYBR Green qPCR kit
92	(MedChemExpress, HY-K0501). Primers are described in Supplemental Table 4, 5 and
93	6. Each experiment was performed at least three times.
94	Generation of inducible GPX4 knockdown cellular model for ferroptosis. The
95	knockdown of GPX4 in HK2 cells (iGPX4KD) was obtained by lentiviral infection
96	using Tet-pLKO-puro vector with a cloned sequence of shRNA specific for GPX4
97	(RabbitBio, Chengdu, China) (7). The shRNA sequences are described in Supplemental
98	Table 7. The obtained pool of cells was selected with 2 μ M Puromycin (Beyotime
99	Biotechnology, ST551). Next, cells were seeded at 1 cell/well in a 96-well plate in the
100	presence of the selecting antibiotic. Growing clones were screened for ferroptotic cell
101	death induction upon doxycycline (Dox) incubation (Selleckchem, S5159) and the most
102	potent clone was selected for further experiments. For these experiments, iGPX4KD
103	cells were induced for 48 hours in the presence of 1 μ M Dox (Selleckchem, S5159). 1
104	μ M fer-1 was co-incubated with Dox for a positive control. siRNAs against REST were
105	transfected 48 hours before Dox induction.

106	Western Blot. Briefly, protein samples were boiled for 15 min, electrophoresed in 8-12%
107	SDS polyacrylamide gel, and transferred onto PVDF membranes (Merck Millipore,
108	Billerica, MA, USA). The blots were blocked with Quick block solution (Beyotime
109	Biotechnology, P0252) for 30 minutes at 37 °C. Then the corresponding primary and
110	secondary antibodies were incubated to visualize the protein. The signal was detected
111	by an enhanced chemiluminescence reagent (ProteinSimple, Santa Clara Valley, CA,
112	USA). The densitometry of protein bands was quantified through Image J software
113	(National Institutes of Health, USA).
114	The antibody against GCLM (ab126704), DHFR (ab288373), Lamin B1 (ab16048),
115	Fibronectin (ab2413), GSDMD (ab209845) and pro-caspase1+p10+p12 (ab179515)
116	were bought from Abcam (Cambridge, MA, UK). The antibodies against GPX4
117	(381958), β -actin (T200068-8F10), and ACSL4 (R24265) were obtained from
118	Zenbio(Chengdu, China). The antibody against REST (07-579) was obtained from
119	Merck Millipore. The antibodies against GCLC (12601-1-AP), α-SMA (14395-1-AP)
120	were obtained from proteintech (Wuhan, China) and the antibody against FSP1 (sc-
121	377120) was obtained from Santa Cruz Biotechnology (Dallas, TX, USA). LC3
122	(12741), P62 (5114), Bcl-2 (3498) and Bax (2772) were obtained from Cell Signaling
123	Technology (CST, Danvers, MA, USA).
124	LDH, MDA, GSH and GCL activity levels assay. The relative LDH, MDA, GSH and
125	GCL activity concentration in kidney tissues and cells was assessed with LDH (Solarbio,

126 BC0685, Beijing, China) or MDA (Beyotime Biotechnology, S0131S) or GSH

127 (Nanjing Jiancheng Bioengineering Institute, A006-1-1), or GCL activity assay kit

128 (Sangon, D799622) according to the manufacturer's instructions. Individual contents

of MDA, GSH, and GCL activity were measured at 532, 412 and 660 nm. Total protein

- 130 concentration was measured using the BCA method (Beyotime Biotechnology, P0009)
- 131 at 532 nm respectively with a microplate reader.
- 132 Cell viability assay. HK2 cells were seeded into 96-well plates at 3000 cells per well.
- 133 After treatment, the cell viability was measured by using the cell counting kit-8 (CCK-
- 134 8) assay (MedChemExpress, HY-K0301). 100 µl of fresh medium containing 10 µl of
- 135 CCK-8 solution was added to the cells, followed by incubation for 2 h at 37 °C. The
- 136 absorbance at 450 nm was measured at indicated times.
- *ROS and Lipid ROS assay using flow cytometer*. After exposed to HR injury, cells were
 washed with serum-free DMEM and incubated with DCFH-DA (Beyotime
 Biotechnology, S0033M) or BODIPY-C11 dye (Invitrogen, D3861) at 37 °C for 20 min.
 Both ROS and lipid ROS were analyzed using Accuri C6 flow cytometry (BD
 Biosciences, Franklin Lake, NJ, USA). The data were calculated by using the FlowJo
 Software.
- PI/Calcein-AM staining. HK2 cells or HT1080 cells were washed with PBS and
 incubated with PI/Calcein-AM(Meilunbio, Dalian, China) at 37 °C for 30min after they
 were exposed to HR injury or treated with drugs. Then cells were observed by Zeiss
 880 (Carl Zeiss AG, Germany).

147	Construction of reporter plasmids and point mutation. Putative REST binding sites in
148	the GCLM promoter region are listed in Supplemental Table 8. Various lengths of the
149	human GCLM promoter region were amplified by PCR using the genomic DNA of
150	HK2 cells as a template. The fragments including GCLM-2000 (-2000 to +200),
151	GCLM-1700 (-1700 to +200), GCLM-1000 (-1000 to +200), GCLM-500 (-500 to
152	+200), GCLM-200 (-200 to +200), and GCLM-100 (-100 to +200) were separately
153	cloned into a pGL3-basic vector (Promega, Madison, WI, USA) after digestion with
154	HindIII, and the recombinant reporter plasmids were separately named as pGL3-
155	GCLM-P6, pGL3-GCLM-P5, pGL3-GCLM-P4, pGL3-GCLM-P3, pGL3-GCLM-P2,
156	and pGL3-GCLM-P1. The pGL3-GCLM-M2, containing point mutations in the REST
157	binding element (GCCGCA <u>A</u> GC <u>A</u> AAG <u>A</u> GCCA <u>A</u> TC, the mutated bases are
158	underlined), was generated with MutanBEST kit (Takara) using pGL3-GCLM-P2
159	(-200 to +200) as a template. Negative control mutation plasmid pGL3-GCLM-M3,
160	containing point mutations in the GCLM binding element
161	(CGAGCGGCAGAGAGAGTCC, the mutated bases are underlined), was also
162	generated, using pGL3-GCLM-P2 (-500 to +200) as a template.
163	Luciferase reporter constructs and dual-luciferase reporter assay. The recombinant

reporter plasmids were co-transfected with pcDNA3.1 vector (Promega, Madison,
Wisconsin, USA) or *REST* overexpression plasmids and Renilla plasmids into renal
tubular epithelial cells using Lipofectamine 3000. Luciferase activity was detected

167 using The Dual-Luciferase Reporter Assay System (Promega, E1910). Firefly
168 luciferase activity was normalized against Renilla activity.

169 ChIP and ChIP-qPCR. ChIP assays were performed by using a Simple Enzymatic ChIP 170 Kit (Invitrogen, No. 26157) according to the manufacturer's instructions. After 171 treatment, cells were fixed by 1% formaldehyde for 10 min. Next, cells were lysed in 172 sodium dodecyl sulfate lysis buffer. The resulting chromatin was sonicated to shear DNA to an average length between 200 to 1000 bp, and immunoprecipitated with 3 µg 173 174 of primary antibody against REST overnight. Non-specific IgG was used as a technical 175 control. The precipitated DNA was amplified by PCR and qPCR with primers (-203 to -43) that covered the REST binding sites (-152 to -132). Total DNA (Input) served as 176 a positive control. The immunoprecipitated DNA was analyzed by qPCR, for which the 177 178 specific primers are listed in Supplemental Table 9.

179 *RNA-Seq Profiling*. Total RNA was extracted from HK2 cells using a TaKaRa RNAiso

180 Plus reagent. Library construction and RNA sequencing were conducted by Majorbio. 181 Briefly, cells were divided into three groups: (1) control, (2) HR control, and (3) HR 182 +siREST, each with four repeats. A total amount of 1 µg RNA per sample was used as 183 input material for RNA sample preparations. Sequencing libraries were generated using a TruSeqTM RNA sample preparation Kit (Illumina Inc., San Diego, CA, USA) 184 185 according to the manufacturer's recommendations, and index codes were added to 186 attribute sequences to each sample. mRNA was isolated according to the polyA selection method by oligo(dT) beads and then fragmented by fragmentation buffer. 187

188 Next, double-stranded cDNA was synthesized using a SuperScript double-stranded cDNA synthesis kit (Invitrogen) with random hexamer primers (Illumina). 189 190 Subsequently, the synthesized cDNA was subjected to end-repair, phosphorylation, and 191 'A' base addition according to Illumina's library construction protocol. After quantified 192 by TBS380, the paired-end RNA-seq sequencing library was sequenced with an 193 Illumina HiSeq xten/NovaSeq 6000 sequencer (2×150 bp read length). Gene Ontology (GO) enrichment analysis of differentially expressed genes and KEGG 194 195 pathways were implemented by the cluster profile R package, in which gene length bias 196 was corrected. Transcripts expression with |Log2 Fc| > 1.5, and P values < 0.05 were 197 deemed statistically significant. 198 Mitochondrial morphology observation by transmission electron microscopy. Briefly, 199 1 mm³ fresh renal cortex or primary renal tubular epithelial cells or HK2 cells aggregate was quickly placed in an electron microscopy fixative at 4 °C. Tissues were embedded 200 201 and cut into 60-80 nm ultrathin sections and then subjected to uranium lead double staining. Transmission electron microscopy was used to observe the mitochondria and 202 203 image acquisition (8).

204 Bioinformatics analysis. The binding sites of REST in GCLM promoter region were

205 predicted by using the JASPAR database (http://jaspar.genereg.net) (9).

206 2. Supplemental Tables

207	Supplemental Table 1. Clinical data of ATN and non-ATN patients examined.
208	Control subjects

		Control 5	ubjects	
Number	Age(year)	Sex	Scr (mg/dL)	BUN (mg/dL)
1	35	М	0.8937	16.576
2	18	М	0.5984	18.004
3	53	F	0.7783	14.224
4	22	F	0.6912	11.676
5	50	М	0.6980	10.248
6	43	F	0.9830	13.972
7	46	М	0.7998	16.436
8	25	F	0.8948	16.240
9	17	М	0.8903	14.588
10	50	F	0.9921	15.344
11	53	М	0.8360	7.448
12	37	F	0.6787	11.312
13	48	М	0.9661	10.024
14	44	М	0.8688	16.016
15	49	F	0.9434	9.912
16	49	F	0.9570	13.552
17	54	F	0.8009	11.004
18	49	F	0.8088	12.964
19	30	М	0.7613	18.480
20	54	М	0.6618	8.036
21	33	М	0.5803	10.808
22	50	М	0.7081	13.244
23	46	F	0.8111	12.964
24	25	F	0.6821	13.608
25	37	М	0.8812	13.804
26	51	F	0.9740	10.612
27	19	F	0.6210	12.992
28	31	М	0.5339	10.612
29	19	F	0.6041	12.880
30	60	М	0.8699	8.512
31	50	М	0.7443	9.436
32	50	F	0.6052	14.028
33	47	F	0.6844	7.980
34	57	F	0.6810	10.864

Subjects with acute tubular necrosis				
Number	Age(year)	Sex	Scr (mg/dL)	BUN (mg/dL)
1	42	F	1.0769	21.504
2	54	F	1.4016	40.908
3	52	F	3.9265	35.896
4	42	F	1.3710	17.444
5	50	М	1.4163	16.240
6	53	F	1.2161	11.032
7	60	F	2.7738	64.064
8	25	М	2.5860	43.932
9	35	Μ	2.4864	30.268
10	40	М	2.8462	35.672
11	59	М	2.6109	22.988
12	55	М	2.4921	58.016
13	33	F	1.8812	31.192
14	47	F	1.9921	30.016
15	28	М	2.1821	37.156
16	51	Μ	1.0645	11.452
17	46	F	1.1991	11.788
18	51	F	1.5803	16.352
19	63	М	5.4581	40.740
20	46	F	4.2353	53.816

212 Supplemental Table 2. Primers for tail PCR genotyping.

Gene	Primers	Product length
Rest ^{fl/fl}	F1: 5'-AGAGACGCTCAACTATCACCTTC-3'	218 bp (Rest-flox)
	R1: 5'-GACAAGAGAACACTTGCACCCATA-3'	150 bp (WT)
Cdh16-	F2: 5'- GCAGATCTGGCTCTCCAAAG -3'	420 bp
Cre	R2: 5'- AGGCAAATTTTGGTGTACGG -3'	

	Primer name		Primer Sequence (5'-3')
	$D \Gamma C T + 1$	Sense (5'-3')	GCAAGAGCUCGAAGACCAAdTdT
	KESI-SI-I	Antisense (5'-3')	UUGGUCUUCGAGCUCUUGCdTdT
	DECT = 2	Sense (5'-3')	GAGCGAGUCUACAAGUGUAdTdT
luman	KEST-SI-2	Antisense (5'-3')	UACACUUGUAGACUCGCUCdTdT
	DECT = 2	Sense (5'-3')	AGUUCACAGUGCUAAGAAAdTdT
	REST-SI-3	Antisense (5'-3')	UUUCUUAGCACUGUGAACUdTdT
	$C \rightarrow A$	Sense (5'-3')	GAAGAUAAAUCCCGAUGAAdTdT
	Geim-si-1	Antisense (5'-3')	UUCAUCGGGAUUUAUCUUCdTdT
	Colm si 2	Sense (5'-3')	GAUUGAAGAUGGAGUUAAUdTdT
nouse	Geim-si-2	Antisense (5'-3')	AUUAACUCCAUCUUCAAUCdTdT
lilouse	Golm-si-3	Sense (5'-3')	GCACCUCUGAUCUAGACAAdTdT
	Geim-si-5	Antisense (5'-3')	UUGUCUAGAUCAGAGGUGCdTdT
	NC	Sense (5'-3')	UUCUCCGAACGUGUCACGUdTdT
	NC	Antisense (5'-3')	ACGUGACACGUUCGGAGAAdTdT

214 Supplemental Table 3. The sequence sets for siRNA.

Gene (human)	Primers	Product length	
REST	Forward: 5'-CGGTTGGGGGATAACAACTTTTCA-3'	1075	
	Reverse: 5'-TCTACGACGCTGAGT TCCAAA-3'	127bp	
β -actin	Forward: 5'-CATGTACGTTGCTATCCAGGC-3'	250hn	
	Reverse: 5'-CTCCTTAATGTCACGCACGAT-3'	250bp	
ECD1	Forward: 5'-ACAGCCAGCCCTTCCTC-3'	143bp	
FSP1	Reverse: 5'-TGCCCTCACAGACAGACAC-3'		
CSS	Forward: 5'-ATGAACCCTGCCCCACT-3'	112ha	
035	Reverse: 5'-AGGCTATGCCCCTCCAC-3'	1150p	
	Forward: 5'-AACACAGACCCAACCCAGAG-3'	2011	
GCLU	Reverse: 5'-CCGCATCTTCTGGAAATGTT-3'	2016р	
CCIM	Forward: 5'-GCCACCAGATTTGACTGCCTTT-3'	1101	
GCLM	Reverse: 5'-CAGGGATGCTTTCTTGAAGAGCTT-3'	1196p	
DHER	Forward: 5'-CAGCGAGCAGGTTCTCAT-3'	126ha	
DHFK	Reverse: 5'-ACTATGTTCCGCCCACAC-3'	1300p	
CDV4	Forward: 5'-TTGCCGCCTACTGAAGC-3'	1411-	
GPX4	Reverse: 5'-ATGTGCCCGTCGATGTC-3'	1410p	
MMD74	Forward: 5'-CCAGGGCGTCTGAAGTG-3'	1251	
MMF 24	Reverse: 5'-GAGCGAGGTCAGCAAGG-3'	1236р	
IIMOVI	Forward: 5'-CTCCTCTCGAGCGTCCTCAG-3'	1071	
ΠΜΟΛΙ	Reverse: 5'-AAATCCTGGGGGCATGCTGTC-3'	1076р	
DELLO	Forward: 5'-CTCATGTCGGAACCACAGCCT-3'	269hz	
KELL2	Reverse: 5'-AGGCCTCAGCATTGGCTTCA-3'	2080p	
SE761)	Forward: 5'- GGAGAGAGATCGGGGTGAGT-3'	1025-	
SEZ0L2	Reverse: 5'- ATGAAGCAGTTCAGCCAGGG-3'	1920p	
VCNV2	Forward: 5'- TCGTGTGCACCTTCACCTAC-3'	126ha	
KCNK3	Reverse: 5'- CCCTGGCTGAGGTTGTAGC-3'	136bp	
SNAD25	Forward: 5'- ACCAGTTGGCTGATGAGTCG-3'	1241-	
SNAP25	Reverse: 5'- ACACGATCGAGTTGTTCTCCT-3'	124bp	
RTN2	Forward: 5'-TTTGTCCCACCAGATCACC-3'	1221	
	Reverse: 5'-GAAGATGGCACCCACGA-3'	1520p	
SDINIVI	Forward: 5'-GTGCGGTGCAGTTTTCA-3'	1005-	
SFINKI	Reverse: 5'-TTCCATCAGTCCCACAGAC-3'	1990р	
ΤΟΙλΑΙζ	Forward: 5'-GAGCCTATGGGGTTCAGAT-3'	1226	
IKIMIO	Reverse: 5'-CAGCCAGATGCGATGAC-3'	132bp	

Supplemental Table 4. The primer sets for human. 216

217

Gene (mouse)	Primers	Product length	
0	Forward: 5'-TGTTACCAACTGGGACGACA-3'	1651-	
p-actin	Reverse: 5'-GGGGTGTTGAAGGTCTCAAA-3'	165bp	
	Forward: 5'-ACATATCGTGGAATCACAACGAC-3'	1 1 41	
Kiml	Reverse: 5'-ACTGCTCTTCTGATAGGTGACA-3'	1140p	
NT. 1	Forward: 5'-GCAGGTGGTACGTTGTGGG-3'	95hn	
Ngal	Reverse: 5'-CTCTTGTAGCTCATAGATGGTGC-3'	956р	
D 4	Forward: 5'-CGGGTGAAGCCAACCAAAAG-3'	124bp	
Kest	Reverse: 5'-CTCTAACAGGCACCAAGCCA-3'		
	Forward: 5'-GCCTTGCCCTTCTCACA-3'	127bp	
FSP1	Reverse: 5'-GCTGGATCTGCTTCACCA-3'		
C	Forward: 5'-CTCCGACGTGGTGACGTA-3'	501	
USS	Reverse: 5'-GGGTACTGGTGAGGGGAAA-3'	52bp	
C4	Forward: 5'-TTCTCAGCCAAGGACATCG-3'	1 4 0 1	
Gpx4	Reverse: 5'-CACTCAGCATATCGGGCAT-3'	149bp	
0.1	Forward: 5'-GCCTTACAAGAAGCATCCC-3'	(51	
Gclm	Reverse: 5'-GCCCTCAAA ACTCAACACA-3'	65bp	
C^{-1}	Forward: 5'-GCACGTTGCTCATCTCTTT-3'	0.11	
Gele	Reverse: 5'-TCAGACTCGTTGGCATCA-3'	8160	
Dhf	Forward: 5'-CTCAGGGCTGCGATTTC-3'	104ha	
Dnjr	Reverse: 5'-ACGATGCAGTTCAATGGTC-3'	1046р	
11 1	Forward: 5'-CCTCACAGATGGCGTCACTT-3'	• • • • •	
HMOXI	Reverse: 5'-TGGGGGGCCAGTATTGCATTT-3'	2006р	
D 112	Forward: 5'-GCAACGCGAGTAGGCATT-3'	1201	
Kell2	Reverse: 5'-AGGATGTGGGCCGGTAG-3'	1206р	
14	Forward: 5'-CTGTCCCTCTGCCTCCTG-3'	115bp	
Mmp24	Reverse: 5'-GGGCTGCTCATACCCACT-3'		
S612	Forward: 5'-CCTTTCCCCTCCCACTTT-3'		
Sez012	Reverse: 5'-AGGTTATCCCCTTGTTCGG-3'	77бр	
Tuin 16	Forward: 5'-CCGGTCTATGCTGCTTTC-3'	67bp	
1rim10	Reverse: 5'-CCTCTCCCAGATCCACAA-3'		
Su an 25	Forward: 5'-ACGAAGCACCACTGACTTG-3'	106bp	
Snap25	Reverse: 5'-CCCTCCTCTGCATCTCCT-3'		
Dtra 2	Forward: 5'-CCACACCCTCTCCCACTC-3'	1501	
Rin2	Reverse: 5'-GGGCAGCGTCCTGACTAT-3'	1300p	
Crimt-1	Forward: 5'-TTCTTCTCAGTGCTTTGGC-3'	120h-	
Spinki	Reverse: 5'-ATTCCGTCAGTCCCACAC-3'	139bp	
Kenk?	Forward: 5'- CTACCTGCAACCCAGTGGAG-3'	00hn	
KCNK3	Reverse: 5'- CCATAGCCCCACACATACCC-3'	900p	

218 Supplemental Table 5. The primer sets for mouse.

Gene (rat)		Primers	Product length
0 (;	Forward: 5'-CGCGAGTACAACCTTCTTGC-3'		0.11
β-actin	Reverse: 5'-CGCAGC	GATATCGTCATCCA-3'	816p
D (Forward: 5'-CGGACC	GCCGGTAGCGA-3'	1 (0)
Kest	Reverse: 5'-ATAATG	AGCTGAGGTGCCGC-3'	168bp
upplemental T Primer name	able 7. The sequen	ce sets for shRNA. Primer Sequence (5'-3')	
		CCGGAAGGACATCGA	CGGGCACATGCTCG
	Sense (5'-3')	AGCATGTGCCCGTCG ATGTCCTTTTTTG	
GPX4-sh-1	Antisense (5'-3')	AATTCAAAAAAGGACATCGACGGGCAC	
		ATGCTCGAGCATGTGCCCGTCGATGTCC	
	~ (7) • •	CCGGAAGAGATCAAA	GAGTTCGCCGCTCG
CDV(1, 2)	Sense (5'-3')	AGCGGCGAACTCTTT	GATCTCTTTTTTTG
GPX4-sn-2	A	AATTCAAAAAAAGAG	GATCAAAGAGTTCGC
	Antisense (5'-5')	CGCTCGAGCGGCGAA	CTCTTTGATCTCTT
	G (51.21)	CCGGAAGCGCTACGG	ACCCATGGAGCTCG
	Sense (5'-3') AGCTCCATGGGTCCGTAGCGCTTTT		TAGCGCTTTTTTTG
GPA4-SN-3	Antigonas (51.21)	AATTCAAAAAAGCGCTACGGACCCATG	
	Antisense (5'-5')		

220 Supplemental Table 6. The primer sets for rat.

226 Supplemental Table 8. Putative binding sequences of REST in *GCLM* promoter

Name	Start	End	Strand	Predicted sequence
REST	76	96	-	TACACTACCACTGACAGTGTA
REST	370	390	-	GTTCATGTCCTTTGTAGGGAA
REST	1750	1768	-	TGACCGCCAGGGGGGAGCCC
REST	1849	1869	-	GCCGCAGGCCAAGGGCCAGT

230 Supplemental Table 9. The primer sets for ChIP.

Sup		able 5. The primer sets for Chill.	
	Gene	Primers	Product length
	CCIM	Forward: 5'-GCCACGCTCTCTCGACC-3'	1(1)-
	GCLM	Reverse: 5'-AGCCGAGAAAGTGCTTCGTA-3'	1610p

232 **3. Supplemental Figures**

233

234 Supplemental Figure 1. REST Expression in major organs and the renal tubules

- from sham and AKI mice. (A and B) qPCR (A) and Western blot (B) analysis of
- 236 REST expression levels in different organs. (C)Volcano plot of sham and IRI-induced
- 237 AKI (GSE52004).

238

239 Supplemental Figure 2. Establishment of IRI-induced AKI and cisplatin-induced

240 AKI. (A-F) Representative HE staining (A and D), serum levels of Scr and BUN (B

- and E) and the levels of Kim-1 and Ngal (C and F) in IRI-induced and cisplatin-
- induced AKI. Scale bar: 50 μ m, (n = 8 mice per group). Data shown are mean \pm SD
- and analyzed by two-tailed unpaired Student's t-test (**B**, **C**, **E** and **F**). *** $P \le 0.001$.

244

Supplemental Figure 3. Rest is upregulated in renal tubules from mice with AKI
and AKI-to-CKD. (A-C) immunofluorescence staining (A), qPCR (B) and Western

blot analysis (C) of Rest in cisplatin-induced AKI group. Scale bar: 50 μ m, (n = 8

248 mice per group). (D) Protein level of Rest after IRI 1, 3, 7, 14 and 28 days in mice.

249 (E and F) Western blot analysis of Rest in primary renal tubular epithelial cells of

250 mouse (mouse primary RTECs) (E) and NRK52E cells (F) after 24 hours of hypoxia 251 and subsequent different reoxygenation duration time. (G and H) Western blot of

REST in HK2 (G) and mouse primary RTECs (H) treated with a concentration

253 gradient of cisplatin. Data were shown as mean \pm SD and analyzed by two-tailed

unpaired Student's t-test (**B**). *** P < 0.001.

258 Supplemental Figure 5. Identification of *Rest* conditional knockout mice. (A-C)

259 The qPCR(A), Western blot analyses (B) and immunofluorescent analyses (C) of Rest

- 260 in $Rest^{fl/fl}$ and $Rest^{RTKO}$ mice with or without IRI. Scale bar: 50 µm. (n = 8 mice per
- 261 group). Data shown are mean \pm SD and analyzed by one-way ANOVA. *** *P* <
- 262 0.001.

ferroptosis. (A) mRNA of <i>REST</i> after conducted with control or siRNAs against <i>REST</i> (<i>siREST</i>). (n = 3). (B and C) Cell viability (B) and LDH release (C) of HK2 cells under normoxia or HR injury transfected with control or <i>siREST</i> . (n = 3). (D) HK2 cells were transfected with REST overexpression plasmids and incubated with deferoxamine (DFO) (100 μ M), ferrostain-1(fer-1) (1 μ M), Z-VAD (10 μ M), 3- Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under HR condition, and then cell viability was detected. (n = 3). (E-G) HK2 cells were transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) HT1080 cells were transfected with control or <i>siREST</i> , and then cultured normally or incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	264	Supplemental Figure 6. <i>REST</i> knockdown improves cell viability and inhibits
266 <i>REST</i> (<i>siREST</i>). (n = 3). (B and C) Cell viability (B) and LDH release (C) of HK2 267 cells under normoxia or HR injury transfected with control or <i>siREST</i> . (n = 3). (D) 468 HK2 cells were transfected with REST overexpression plasmids and incubated with 469 deferoxamine (DFO) (100 μ M), ferrostain-1(fer-1) (1 μ M), Z-VAD (10 μ M), 3- 470 Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under 471 HR condition, and then cell viability was detected. (n = 3). (E - G) HK2 cells were 472 transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 473 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H -L) 474 HT1080 cells were transfected with control or <i>siREST</i> , and then cultured normally of 475 incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), 476 MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by 477 two-tailed unpaired Student's t-test (E - H , J and K) and one-way ANOVA (A - D , I 478 and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	265	ferroptosis. (A) mRNA of <i>REST</i> after conducted with control or siRNAs against
267 cells under normoxia or HR injury transfected with control or <i>siREST</i> . (n = 3). (D) 268 HK2 cells were transfected with REST overexpression plasmids and incubated with 269 deferoxamine (DFO) (100 μ M), ferrostain-1(fer-1) (1 μ M), Z-VAD (10 μ M), 3- 270 Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under 271 HR condition, and then cell viability was detected. (n = 3). (E - G) HK2 cells were 272 transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 273 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H - L) 274 HT1080 cells were transfected with control or <i>siREST</i> , and then cultured normally or 275 incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), 276 MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by 277 two-tailed unpaired Student's t-test (E - H , J and K) and one-way ANOVA (A - D , I 278 and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	266	<i>REST</i> (<i>siREST</i>). ($n = 3$). (B and C) Cell viability (B) and LDH release (C) of HK2
HK2 cells were transfected with REST overexpression plasmids and incubated with deferoxamine (DFO) (100 μ M), ferrostain-1(fer-1) (1 μ M), Z-VAD (10 μ M), 3- Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under HR condition, and then cell viability was detected. (n = 3). (E-G) HK2 cells were transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally of incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	267	cells under normoxia or HR injury transfected with control or <i>siREST</i> . $(n = 3)$. (D)
269 deferoxamine (DFO) (100 μ M), ferrostain-1(fer-1) (1 μ M), Z-VAD (10 μ M), 3- 270 Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under 271 HR condition, and then cell viability was detected. (n = 3). (E - G) HK2 cells were 272 transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 273 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H - L) 274 HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally of 275 incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), 276 MDA (K), and lipid ROS (L). (n = 3). Data shown are mean ± SD and analyzed by 277 two-tailed unpaired Student's t-test (E - H , J and K) and one-way ANOVA (A - D , I 278 and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	268	HK2 cells were transfected with REST overexpression plasmids and incubated with
Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 μ M) respectively under HR condition, and then cell viability was detected. (n = 3). (E-G) HK2 cells were transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally or incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	269	deferoxamine (DFO) (100 µM), ferrostain-1(fer-1) (1 µM), Z-VAD (10 µM), 3-
HR condition, and then cell viability was detected. (n = 3). (E-G) HK2 cells were transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) HT1080 cells were transfected with control or <i>siREST</i> , and then cultured normally or incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	270	Methyladenine (3-MA) (3 mM) or necrostatin-1(nec-1) (10 µM) respectively under
transfected with <i>siREST</i> or control and incubated with RSL3 (0.5 μ M) or Erastin (10 µM). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally or incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	271	HR condition, and then cell viability was detected. $(n = 3)$. (E-G) HK2 cells were
273 μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L) 274 HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally of 275 incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), 276 MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by 277 two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I 278 and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	272	transfected with siREST or control and incubated with RSL3 (0.5 μ M) or Erastin (10
HT1080 cells were transfected with control or si <i>REST</i> , and then cultured normally of incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean ± SD and analyzed by two-tailed unpaired Student's t-test (E-H , J and K) and one-way ANOVA (A-D , I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	273	μ M). Then LDH release and PI/Calcein-AM staining were detected. (n = 3). (H-L)
incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J), MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H , J and K) and one-way ANOVA (A-D , I and L). * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001, ns: no significance.	274	HT1080 cells were transfected with control or siREST, and then cultured normally or
MDA (K), and lipid ROS (L). (n = 3). Data shown are mean \pm SD and analyzed by two-tailed unpaired Student's t-test (E-H , J and K) and one-way ANOVA (A-D , I and L). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, ns: no significance.	275	incubated with RSL3(1 μ M) for detection of LDH (H), PI/Calcein-AM (I), GSH (J),
277two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I278and L). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, ns: no significance.	276	MDA (K), and lipid ROS (L). ($n = 3$). Data shown are mean \pm SD and analyzed by
278 and L). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, ns: no significance.	277	two-tailed unpaired Student's t-test (E-H, J and K) and one-way ANOVA (A-D, I
	278	and L). * P < 0.05, ** P < 0.01, *** P < 0.001, ns: no significance.

280	Supplemental Figure 7. Knockdown of <i>REST</i> can overcome ferroptosis induced
281	by GPX4-deficiency. (A) HK2 cells were infected with lentivirus which can
282	knockdown GPX4 by doxycycline (Dox) treatment. Then they were divided into five
283	groups: (1) Ctrl group was cultured normally, (2) Dox group was incubated with Dox,
284	(3) Dox+Fer-1 group was co-incubated with Dox and fer-1, (4) Dox+siREST group
285	was transfected with siRNAs against REST for 48 h and then added with Dox, (5)
286	Dox+Fer-1+siREST group was transfected with siRNAs against REST for 48 h and
287	then added with Dox and Fer-1. (B-F) these cells were used to observe PI/Calcein-
288	AM staining (B), LDH release(C), GSH production (D), MDA levels (E) and lipid
289	ROS accumulation (F). Data shown are mean \pm SD and they were analyzed by one-
290	way ANOVA (B-F). (n = 3). * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.
291	

292

293 Supplemental Figure 8. REST-deficiency has additional benefits on

294 deferoxamine and ferrostatin-1 to attenuate ferroptosis. HK2 cells were incubated

295 with DFO or Fer-1 separately with control or *siREST* transfection, and then exposed

- to HR injury. Then they were used to detect GSH and MDA levels (A), lipid ROS
- 297 accumulation (**B**), and TEM observations (**C**). (n = 3). Data shown are mean \pm SD and 298 analyzed by one-way ANOVA (**A** and **B**). * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001, ns:
- 299 no significance.

301 Supplemental Figure 9. Screen of top ten upregulated genes in HK2 cells with

302 **REST** knockdown. qPCR of the top ten upregulated genes except GCLM in RNA-seq

303 after *REST* was knockdown in HK2 cells under HR condition (A-I). (n = 3). Data

304 shown are mean \pm SD and analyzed by one-way ANOVA (A-I). * P < 0.05, ** P <

305 0.01, *** P < 0.001, ns: no significance.

307 Supplemental Figure 10. Screen of top ten upregulated genes in *Rest^{RTKO}* mice.

- 308 qPCR of the top ten upregulated genes except *GCLM* in RNA-seq from renal tubules
- 309 in *Rest^{RTKO}* mice of IRI-induced AKI (A-I). Data shown are mean \pm SD and analyzed
- 310 by one-way ANOVA (A-I). (n = 3). * P < 0.05, ** P < 0.01, *** P < 0.001, ns: no
- 311 significance.

313 Supplemental Figure 11. Knockdown of REST has no effect on other ferroptosis-

314 related genes or other major forms of cell death. HK2 cells were transfected with

315 control or *siREST*, and then exposed to HR injury. (A and B) Represented relative

- 316 mRNA levels of GCLC (A) and GSS (B) between different groups. (n = 3). (C)
- 317 Western blot analyses of the protein levels of REST, GCLM, GPX4, ACSL4, GCLC,
- 318 DHFR and FSP1 in different groups. (**D**) Western blot analyses of the protein levels
- of Bcl-2, Bax, Caspase-1, GSDMD, LC3 and P62 in different groups. Data shown are
- 320 mean \pm SD and they were analyzed by one-way ANOVA (**A** and **B**). *** $P \le 0.001$,
- 321 ns: no significance.

323 Supplemental Figure 12. Knockdown of *Gclm* has no effect on other major forms

of cell death in REST-deficiency cells under HR condition. (A) The protein level

325 of Rest after Ad-Cre Adenovirus infection in primary RTECs. (B-E) Primary RTECs

326 from $Rest^{n/l}$ mice were infected with Ad-Cre Adenovirus and transfected with

322

327 siRNAs against *GCLM*, and then exposed to HR injury. Cells were collected to detect:

protein levels of Bcl2, Bax, Caspase-1, Gsdmd, LC3 and p62 (**B**), mRNA levels of

329 Gclm (C), Gclc (D) and Gss (E). (n = 3). (F) Primary REST-deficient RTECs were

isolated and cultured from $Rest^{RTKO}$ mice. Data shown are mean \pm SD and they were

analyzed by one-way ANOVA (C-E). ** P < 0.01, *** P < 0.001, ns: no significance.

333 Supplemental Figure 13. Renal tubular epithelial cell-specific knockout of *Rest*

- 334 restores the expressions of Gclm and Gpx4 in AKI-to-CKD mice. Western blot
- analysis of the expressions of Gclm and Gpx4 in the kidneys from $Rest^{l/l}$ and
- 336 $Rest^{RTKO}$ mice with or without IRI on reperfusion day 14 and day 28. (n = 8 mice per
- 337 group).

338 4. References

- Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J, et al. VDR activation attenuate
 cisplatin induced AKI by inhibiting ferroptosis. *Cell death & disease*.
 2020;11(1):73.
- Deng F, Sharma I, Dai Y, Yang M, and Kanwar YS. Myo-inositol oxygenase
 expression profile modulates pathogenic ferroptosis in the renal proximal tubule.
 The Journal of clinical investigation. 2019;129(11):5033-49.
- 345 3. Liu J, Livingston MJ, Dong G, Tang C, Su Y, Wu G, et al. Histone deacetylase
- inhibitors protect against cisplatin-induced acute kidney injury by activating
 autophagy in proximal tubular cells. *Cell death & disease*. 2018;9(3):322.
- 348 4. Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, et al. Extracellular vesicle-
- 349 encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. *Science*350 *advances*. 2020;6(33):eaaz0748.
- 351 5. Xiong J, Ran L, Zhu Y, Wang Y, Wang S, Wang Y, et al. DUSP2-mediated
- inhibition of tubular epithelial cell pyroptosis confers nephroprotection in acute
 kidney injury. *Theranostics*. 2022;12(11):5069-85.
- 354 6. Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C, et al.
- 355 Mitochondrial Damage and Activation of the STING Pathway Lead to Renal
- 356 Inflammation and Fibrosis. *Cell Metab.* 2019;30(4):784-99 e5.

357	7.	Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T,
358		Ravichandran KS, et al. Cancer cells dying from ferroptosis impede dendritic
359		cell-mediated anti-tumor immunity. Nature communications. 2022;13(1):3676.
360	8.	Huang Y, Wang S, Zhou J, Liu Y, Du C, Yang K, et al. IRF1-mediated
361		downregulation of PGC1a contributes to cardiorenal syndrome type 4. Nature
362		communications. 2020;11(1):4664.
363	9.	Huang Y, Zhou J, Wang S, Xiong J, Chen Y, Liu Y, et al. Indoxyl sulfate
364		induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy
365		impairment. Theranostics. 2020;10(16):7384-400.
366		