Supplementary Information

Title: Cardiac progenitor cell-derived extracellular vesicles promote angiogenesis through both associated- and co-isolated proteins

Marieke Theodora Roefs¹, Julia Bauzá-Martinez^{2,*}, Simonides Immanuel van de Wakker^{1,*}, Jiabin Qin¹, Willem Theodoor Olijve¹, Robin Tuinte¹, Marjolein Rozeboom¹, Christian Snijders Blok¹, Emma Alise Mol¹, Wei Wu^{2,3,*}, Pieter Vader^{1,4,*}, Joost Petrus Gerardus Sluijter^{1,*}

[1] Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands.

[2] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.

[3] Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research),

Singapore, Singapore.

[4] CDL Research, University Medical Center Utrecht, The Netherlands.

Supplementary Table 1

Sequences of all guide RNAs for each CRISPR

		Genomic target region
PAPP-A gRNA 1	5'-AGGAGTAGCAACTTGGCCAT-3'	exon 3
PAPP-A gRNA 2	5'-AGTTGGCAGGAGTAGCAACT-3'	exon 3
PAPPA-A gRNA 3	5'-GGCCTCTATCACGTCTTCCG-3'	exon 4
NID1 gRNA 1	5'-GGGTTTGCGGGACCGCAGTT-3'	5'UTR/exon1
NID1 gRNA 2	5'-GAACTGCGGTCCCGCAAACC-3'	5'UTR
NID1 gRNA 3	5'-TGTCGGATCTGTCGTAGAAG-3'	exon1
Non targeting	5'-ATTTCCCTACGGAGATATCC-3'	

Primer sequences of genomic DNA amplification for T7 endonuclease assay

PAPP-A exon 3	F: 5'-GCCTGTTATCTTTTTGGGGGC-3'			
	R: 5'-CTGTGCCAGTACAGTGTGGT-3'			
PAPPA-A exon 4	F: 5'-GCTCTCAGGGCAATGGAGTC-3'			
	R: 5'-AACCCAGAAAGAGAATGACCGA-3'			
NID1 exon 1	F: 5'-AACAAGTTGACAGCGACCCC-3'			
	R: 5'-CCGGTTACATCCCCGCCTTC-3'			

Supplementary Table 2

Top-20 proteins (of n=105) enriched in veh-EVs compared with Ca ion-EVs and SKOV-3-EVs. Ranked by the mean protein abundance (log2) in veh-EVs, the top 20 significantly enriched (q-value of Student's T-test) proteins are displayed.

Gene name	Mean veh- EVs	Mean Calon-EVs	Mean SKOV-3- EVs	q-value (Student's T-test) veh-EVs <i>vs.</i> Calon- EVs	q-value (Student's T-test) veh-EVs <i>vs.</i> SKOV- 3-EVs
COL1A1	31.2	23.7	19.2	0.0228	0.0056
COL6A3	30.9	24.9	19.4	0.0013	0.0045
FN1	29.9	26.6	26.5	0.0171	0.0059
LAMA4	29.5	23.3	19.7	0.0053	0.0000
LAMC1	29.4	24.8	27.1	0.0000	0.0032
COL1A2	29.3	22.0	19.8	0.0241	0.0060
APP	29.3	22.1	21.8	0.0009	0.0054
UBA52	29.1	27.4	27.7	0.0122	0.0249
VCAN	29.0	25.2	18.9	0.0050	0.0055
EDIL3	29.0	24.3	17.6	0.0029	0.0000
LAMB1	28.8	24.2	26.5	0.0000	0.0030
COL6A1	28.8	23.9	22.8	0.0049	0.0043
SRGN	28.2	18.3	19.3	0.0051	0.0066
COL6A2	28.1	22.1	18.6	0.0047	0.0000
PAPPA	28.1	21.5	16.7	0.0051	0.0000
ANPEP	28.0	24.6	17.8	0.0118	0.0000
THBS1	27.9	23.9	26.4	0.0030	0.0200
NID1	27.8	19.2	19.7	0.0000	0.0049
BASP1	27.7	25.5	23.7	0.0050	0.0057
ITGB1	27.6	25.4	26.3	0.0175	0.0068

Supplementary Figures

ز

Supplementary Figure 1. SKOV-3 EVs do not activate intracellular signaling in HMEC-1. (a) Total protein content of HMEC-1 lysates collected 0 or 6 hrs after stimulation with PBS, 2^*10^{10} or 6^*10^{10} EVs. Data are displayed as mean ±SD (n=3). (b) Representative NTA plot showing the size distribution and particle concentration of SKOV-3-EVs. (c) Western blot analysis showing the presence of CD81, CD63, β-actin (β-ACT), and absence of Calnexin (CNX) in Ca ion-EVs and SKOV-3-EVs. β-ACT and CNX were present in Ca ion-CPC lysate (CL). (d, e) Representative western blot analysis of phosphorylated AKT (pAKT), total AKT (tAKT), phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 (tERK1/2) in HMEC-1 treated with veh-, Ca ion- and SKOV-3-EVs normalized on two doses of EV particle numbers, and with 1 nM and 0.1 nM calcium ionophore A23187 in PBS. β-ACT was included as housekeeping protein. (e) Quantification of pAKT, tAKT, pERK1/2 and tERK1/2 expression levels using densitometry expressed as pAKT/AKT and pERK/ERK ratios. (f, g) Biological replicate of (d) and (e). Data are presented as mean ± SD.

Supplementary Figure 2. Workflow used for phosphoproteomic analysis. Schematic of workflow used for phosphoproteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS). EV stimulated HMEC-1 were lysed and extracted proteins were digested into peptides and loaded into Fe(III)-Immobilized Metal Affinity Chromatography (Fe(III)-IMAC) cartridges for phosphopeptide enrichment. Fe(III)- IMAC flow-through containing the non-phosphorylated subset of proteome, and elutions containing the phosphorylated subset of the proteome were analysed by (LC-MS/MS).

Supplementary Figure 3. Influence of iodixanol concentration on EV-mediated HMEC-1 activation. (a) Silver stain of fractions (F1-8) collected after ultracentrifugation of SEC-EVs loaded in the bottom of a discontinuous Optiprep[™] gradient. Equal volumes of each sample were analysed, and 1 µg CPC lysate (CL) was included as control. (b) Representative wound healing assay showing effects of PBS and 1 µg CPC-EVs simultaneous with different concentrations of iodixanol on HMEC-1 migration, analysed both as absolute migration distance (top) and % wound closure (bottom) (n=3, technical replicates. Data are representative of three biologically independent experiments). Data are presented as mean \pm SD. (c) Representative western blot analysis of phosphorylated AKT (pAKT), total AKT (tAKT), phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 (tERK1/2) in HMEC-1 treated with PBS and 2x10¹⁰ EVs. simultaneous with different concentrations of iodixanol (0-5%). β -ACT was included as housekeeping protein.

Supplementary Figure 4. Generation of PAPPA knock-out CPC lines. (a) Boxplots representing protein abundance (log_2) of PAPP-A and NID1 in veh-, Ca ion- and SKOV-3-EVs, as measured with by LC-MS/MS. Corrected P-values were calculated using student's T-test. ** = q<0.01. *** = q<0.001. Boxes represent the 25%, 50% (median) and 75% quartiles and whiskers represent the ±1.5 interquartile range. (b) T7 endonuclease assay confirming a double-stranded break at the CRISPR/Cas9 target site in exon 3 of *PAPPA* in CPCs transduced with three different gRNAs (1-3). (c) Sanger sequencing results confirming frameshift in *PAPPA* exon 3 at the CRISPR/Cas9 target site of gRNA1 and gRNA2, compared with wild-type (WT) CPC genomic DNA. (d) Genomic DNA sequence surrounding two gRNA target sites in exon 3 of *PAPPA* of three individual PAPPA KO clones. Clones had homozygous mutations on both alleles. (e) Growth curves of NTgRNA- and PAPPA KO-CPC lines selected for functional studies, as visualized as cumulative cell growth. (f) Cell viability of PAPPA KO- and NTgRNA-CPC clones.

Supplementary Figure 5. Generation of NID1 knock-out CPC lines. (a) T7 endonuclease assay confirming a double-stranded break at the CRISPR/Cas9 target site in exon 1 of *NID1* in CPCs transduced with three different gRNAs (1-3). (b) Sanger sequencing results confirming frameshift in *NID1* exon 1 at the CRISPR/Cas9 target site of gRNA3, compared with wild-type (WT) CPC genomic DNA. (c) Genomic DNA sequence surrounding the gRNA3 target site in exon 1 of *NID1* of five individual NID1 KO clones. Clones had homozygous mutations on both alleles. (d) Sanger sequencing results confirming 8 bp deletion in exon 1 of *NID1* at the CRISPR/Cas9 target site of the NID1 KO-CPC clone, compared with the NTgRNA polyclonal CPC line. (e) Growth curves of NTgRNA- and NID1 KO-CPC lines selected for functional studies, as visualized as cumulative cell growth. (f) Cell viability of NID1 KO- and NTgRNA-CPC clones. (g) Western blot analysis showing the absence of NID1 in NID1 KO-EVs compared with NTgRNA-EVs; the presence of CD81, Syntenin-1 (SYNT), β -actin (β -ACT), and absence of Calnexin (CNX) in both EV populations. β -ACT and CNX were present in CPC lysate (CL). (h) Representative NTA plot showing the size distribution and particle concentration of NID1 KO- and NTgRNA-CPC-EVs. (i) Protein content per 1x10¹⁰ NID1 KO- and NTgRNA-EVs of two representative experiments.

Supplementary Figure 6. NID1 KO-EVs were as potent as NTgRNA-EVs in activating intracellular signalling in HMEC-1 and in inducing HMEC-1 migration. (a) Representative western blot analysis of phosphorylated AKT (pAKT), total AKT (tAKT), phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 (tERK1/2) in HMEC-1 treated with NID1 KO- and NTgRNA-EVs normalized on two doses of EV particle numbers or EV total protein content. β -actin (β -ACT) was included as housekeeping protein. (b) Quantification of pAKT, tAKT, pERK1/2 and tERK1/2 expression levels using densitometry expressed as pAKT/AKT and pERK/ERK ratios. (c, d) Biological replicate of (a) and (b). (e) Representative wound healing experiment showing effects of 2x10¹⁰ and 1 µg NTgRNA- and NID1 KO-EVs on HMEC-1 migration, analysed both as % wound closure and absolute migration distance (n=3, technical replicates. Data are representative of biologically independent experiments). Data are presented as mean ± SD. **= p < 0.0021.

Supplementary Figure 7. Influence of Integrin $\alpha V\beta$ 3 blocking on HMEC-1 activation and migration. (a) Representative western blot analysis of phosphorylated AKT (pAKT), total AKT (tAKT), phosphorylated ERK1/2 (pERK1/2) and total ERK1/2 (tERK1/2) in HMEC-1 treated with 2x10¹⁰ CPC-EVs, or with 5 µg/mL or 1 µg/mL recombinant IGF-1 after pre-incubation with (+) or without (-) 10 µg/mL Integrin α V β 3 antibody. β -actin (β -ACT) was included as housekeeping protein. (b) Representative wound healing assay showing effects of 10 µg/mL Integrin α V β 3 antibody addition to CPC-EV-induced HMEC-1 migration, analysed both as % wound closure and absolute migration distance. 5 µg/mL and 1 µg/mL recombinant NID1 (recNID1) were included as control (n=3, technical replicates. Data are representative of biologically independent experiments). (c, d) Biological replicates of (a). Data are presented as mean ± SD. ns= not-significant.

Supplementary Figure 8. PAPP-A presence in iodixanol gradient fractions.

SEC-EVs were separated in a discontinuous Optiprep[™] gradient and resulting fractions (F1-8) were analysed for the presence of EV-marker proteins CD81, CD63, Syntenin-1 (SYNT), β-actin (β-ACT) and PAPP-A and absence of Calenexin (CALN) by western blotting. Equal volumes of each sample were analysed. Cell lysate (CL) and Opti-EVs, retrieved by pooling and concentration of fractions 1-5 using a 100 kDa cut-off spin filter, were included. CD81, CD63 and SYNT blots are also displayed in *Figure 8b*.

Supplementary Figure 9. Biological replicates of western blot analysis and quantification of pAKT, AKT, pERK and ERK expression levels. Biological replicates of Figure: (a, b) 2e; (c) 2g; (d) 4d; (e-f) 8g; (g, h) 6b; (i-k) 7a, c.

Supplementary Figure 10. Unedited western blots. Unedited western blots of *Figure 1b, 1e, 2c, 2e* (=overlay of protein blots with markers); *Figure 2g, 4c, 4d, 8b, 8e, 5c, 8g, 6b, 6d, 7a, 7b, S1c, S1d, S1f, S3c, S5g, S6a, S6c, S7a, S7c, S7d, S9a-S9k*. Blots are displayed with marker and with the selected area with specific proteins.