

Supplementary Fig. 1. MSC-EV characteristics.

a. Representative image of hMSC-EV visualized *via* transmission electron microscopy (TEM). Scale bar = 200 nm. **b.** Immunoblotting for Alix, HSP70, CD63, CD9, CD81, and H2AX in hMSC-EV and MSC lysates. **c.** Size and concentration analysis of non-concentrated hMSC-EV after 2 days of conditioning (green) and control aliquots of MSC-CM after 30 min of conditioning (blue) by NTA using ZetaView.

Supplementary Fig. 2. Comparison of murine and human MSC-EV antifibrotic effects *in vitro*. Representative images of HDF, MLF, and HLF immunocytochemical analysis for the α SMA expression. The cells were incubated with TGFb for 4 days (TGFb) in the presence of human MSC-EV (TGFb + hMSC-EV) or murine MSC-EV (TGFb + mMSC-EV) and compared with the cells cultured without TGFb (control). Scale bar = 200 µm.

Supplementary Fig. 3. Dynamic changes in the lung tissue density in mice bleomycin-induced pulmonary fibrosis treated with MSC-EV with measured via MRI. a. Representative MR images for the fibrosis prevention groups. b. Quantification of dynamic changes in the lung tissue density measured *via* MRI in the fibrosis prevention groups. **a–b Ctrl** (DMEM 1 day after bleomycin administration), n = 11; **EV_p** (MSC extracellular vesicles 1 day after bleomycin administration), n = 9; SF_p (MSC soluble factors 1 day after bleomycin administration), n = 6, n = biological independent animals per group. Number of analyzed fields of view per sample = 3-10 for each animal. Representative MR image for the fibrosis treatment groups. c. d. Quantification of dynamic changes in the lung tissue density measured via MRI in the fibrosis treatment groups. c-d; Ctrl (DMEM 14 days after bleomycin administration), n = 11; EV_t (MSC extracellular vesicles 14 days after bleomycin administration), n = 9; **SF_t** (MSC soluble factors 14 days after bleomycin administration), n = 6; n = biological independent animals per group. Number of analyzed fields of view per sample = 3-10 for each animal.

Supplementary Fig. 4. Isolation of MSC-EV by gradient ultracentrifugation does not change their antifibrotic effect.

a. Representative image of myofibroblast immunocytochemical analysis for the α SMA expression. Scale bar = 100 µm. **b**. Westernblot analysis of aSMA. n = 2 biological independent experiments. **c**. Dot blot analysis of collagen type I. n = 2 biological independent experiments for all methods. #1 and #2 – independent data for two different HDF donors. **Fibroblast** – undifferentiated fibroblasts, **ctrl** – myofibroblasts treated with DMEM during 4 days, **EV** – myofibroblasts treated with EV during 4 days.

Supplementary Fig. 5. Critical contribution of RNAs to the MSC-EV antifibrotic effects, part 1. a. Representative image of the myofibroblast immunocytochemical analysis for the α SMA expression in the presence of MSC-EV treated with RNase. MSC-EV treated with RNAse for 3 h (EV RNase 3h, internal RNA-depleted EV) or for 30 min (EV RNase 30', external RNA-depleted EV), MSC-EV transfected by scramble miR ± RNase 30-min treatment, MSC-EV transfected by the miR-29c and miR129 inhibitor ± RNase 30-min treatment. n = 3 biological independent experiments. b. Analysis of the length distribution of nucleic acid fragments within native MSC-EV or MSC-EV treated by RNAse for 3 h. c NTA for MSC-EV or MSC-EV treated by RNAse for 3 h.

Supplementary Fig. 6. Critical contribution of RNAs to the MSC-EV antifibrotic effects, part 2. a. Representative image of the myofibroblast immunocytochemical analysis for the α SMA expression in the presence of EV from MSC with Crispr-Cas9 miR-29 knockdown. Wt, EV from hTERT-MSC ; Crispr_ctrl, EV from hTERT-MSC with Crispr-Cas9 nonsense knockdown; and Crispr_miR29, EV from hTERT-MSC with Crispr-Cas9 miR-29 knockdown. b.1 miR29 expression within hTERT-MSC (left graph) or appropriate EV (right graph), RT-PCR. b.2,3. Analysis of the aSMA expression within the myofibroblasts after exposure to serum-free cultured control (ctrl) or hTERT-MSC EV (EV wt), hTERT-MSC Crispr_ctrl EV (EV Crispr_ctrl), or hTERT-MSC Crispr_miR29 EV (EV Crispr_miR29). b.2 Western blotting, b.3 immunocytochemical analysis, n = 2. b,c Western blot analysis specific targets for miR-29c (b1, b2. n = 2 biological independent experiments) and miR-129 (c1, c2. n = 3 biological independent experiments)

Supplementary Fig. 7. MSC-EV transfection with scramble oligos as specific miR inhibitors affect for does not **MSC-EV** controls antifibrotic effects in vivo. a. Representative images of hematoxylin–eosin (H&E), Masson trichrome and Picrosirius Red (PSR) staining. Scale bar = $100 \,\mu\text{m}$. **b.** Quantification of the pulmonary fibrosis severity using the Ashcroft scale; Ctrl (DMEM 14 days after bleomycin administration), n 11; EV_t (MSC extracellular vesicles 14 days after bleomycin administration), n = 9; **EV_inh** (MSC extracellular vesicle, transfected by miRNA-29 & miRNA-129 inhibitors 14s day after bleomycin the administration), n = 8; inh (miRNA-29 and miRNA-129 inhibitors 14 days after bleomycin administration), n = 5; **EV_scramble** (MSC extracellular vesicle, transfected by the miRNA Inhibitor Control 14s day after bleomycin administration), n = 4, n = biological independent animals per group. Assessment was conducted by two independent blinded experts. c. Quantification of the ECM deposition on the PSR staining image. The green line indicates the median for the intact group.

Supplementary Fig. 8. Dynamic changes in the lung tissue density in mice with bleomycin-induced pulmonary fibrosis treated with MSC-EV transfected by miR inhibitors measured via MRI. a. Quantification of dynamic changes in the lung tissue density measured via MRI. b. Representative Ctrl (DMEM 14 days after bleomycin MR images. administration), n = 11; EV_t (MSC extracellular vesicles 14) days after bleomycin administration), n = 9; EV_inh (MSC extracellular vesicle, transfected by the miRNA-29 & miRNA-129 inhibitors 14s day after bleomycin administration), n = 9; inh (miRNA-29 and miRNA-129 inhibitors 14 days after bleomycin administration), n = 5; n = biological independent animals per group. Number of analyzed fields of view per sample = 3-10 for each animal.

Supplementary Fig. 9. Immunohistochemical analysis for the aSMA, CD90, CD163, and FAPa expressions in pulmonary tissue (antibody) compared with staining with the corresponding isotype control antibodies (IgG). Scale bar = $100 \mu m$.

MicroRNA and Target Gene Description:

miRNA Name	<u>hsa-miR-129-5p</u>	miRNA Sequence	CUUUUUGCGGUCUGGGCUUGC
Previous Name	hsa-miR-129		
Target Score	90	Seed Location	96, 225
NCBI Gene ID	<u>1277</u>	GenBank Accession	<u>NM 000088</u>
Gene Symbol	COL1A1	3' UTR Length	1406
Gene Description	collagen type I alp	ha 1 chain	

3' UTR Sequence

1	actccctcca	tcccaacctg	gctccctccc	acccaaccaa	ctttcccccc	aacccggaaa
61	cagacaagca	acccaaactg	aaccccctca	aaagc caaaa	<pre>aatgggagac</pre>	aatttcacat
121	ggactttgga	aaatatttt	ttcctttgca	ttcatctctc	aaacttagtt	tttatctttg
181	accaaccgaa	catgaccaaa	aaccaaaagt	gcattcaacc	ttaccaaaaa	аааааааааа
241	aaaagaataa	ataaataact	ttttaaaaaa	ggaagcttgg	tccacttgct	tgaagaccca
301	tgcgggggta	agtccctttc	tgcccgttgg	gcttatgaaa	ccccaatgct	gccctttctg
361	ctcctttctc	cacacccccc	ttggggcctc	ccctccactc	cttcccaaat	ctgtctcccc
421	agaagacaca	ggaaacaatg	tattgtctgc	ccagcaatca	aaggcaatgc	tcaaacaccc
481	aagtggcccc	caccctcagc	ccgctcctgc	ccgcccagca	cccccaggcc	ctgggggacc
541	tggggttctc	agactgccaa	agaagccttg	ccatctggcg	ctcccatggc	tcttgcaaca
601	tctcccttc	gtttttgagg	gggtcatgcc	gggggagcca	ccagcccctc	actgggttcg
661	gaggagagtc	aggaagggcc	acgacaaagc	agaaacatcg	gatttgggga	acgcgtgtca
721	atcccttgtg	ccgcagggct	gggcgggaga	gactgttctg	ttccttgtgt	aactgtgttg
781	ctgaaagact	acctcgttct	tgtcttgatg	tgtcaccggg	gcaactgcct	gggggcgggg
841	atgggggcag	ggtggaagcg	gctccccatt	ttataccaaa	ggtgctacat	ctatgtgatg
901	ggtggggtgg	ggagggaatc	actggtgcta	tagaaattga	gatgccccc	caggccagca
961	aatgttcctt	tttgttcaaa	gtctatttt	attccttgat	atttttcttt	tttttttt
1021	tttttgtgg	atggggactt	gtgaattttt	ctaaaggtgc	tatttaacat	gggaggagag
1081	cgtgtgcggc	tccagcccag	cccgctgctc	actttccacc	ctctctccac	ctgcctctgg
1141	cttctcaggc	ctctgctctc	cgacctctct	cctctgaaac	cctcctccac	agctgcagcc
1201	catcctcccg	gctccctcct	agtctgtcct	gcgtcctctg	tccccgggtt	tcagagacaa
1261	cttcccaaag	cacaaagcag	tttttccccc	taggggtggg	aggaagcaaa	agactctgta
1321	cctattttgt	atgtgtataa	taatttgaga	tgtttttaat	tattttgatt	gctggaataa
1381	agcatgtgga	aatgacccaa	acataa			

miRNA Name	<u>mmu-miR-129-5p</u>	miRNA Sequence	CUUUUUGCGGUCUGGGCUUGC
Previous Name	mmu-miR-129		
Target Score	60	Seed Location	228, 1421
NCBI Gene ID	<u>12842</u>	GenBank Accession	<u>NM 007742</u>
Gene Symbol	Col1a1	3' UTR Length	1439
Gene Description	collagen, type I, al	pha 1	

3' UTR Sequence

1	actccctcca	ccccaatctg	gttccctccc	acccagccca	cttttcccca	accctggaaa
61	cagacgaaca	acccaaactc	aatttccccc	aaaagccaaa	aatatgggag	ataatttcac
121	atggactttg	gaaaacattt	tttttccttt	gcattcacct	ttcaaactta	gtttttacct
181	ttgaccaact	gaacgtgacc	aaaaaccaaa	agtgcattca	accttac caa	aaaagaaaaaa
241	aaaaaaaga	ataaataaat	aactttttaa	aaaaggaagc	ttggtcctct	tgcttgaaga
301	cctatgtggg	tataagtccc	ttcctgccca	cttggcttat	gataccctaa	tgctgccttt
361	tctgctcctt	tctccacccc	ctcttggggc	ctctcctcca	ttgctcccca	aatttaagtc
421	tccccaaga	cacaggaaat	aatgcattgt	ctgcccagca	aacaaaggca	atgctgaaat
481	gtcccaccag	cccctcaacc	ccgtctactt	ccctacccag	caccctcaaa	tcctgctggg
541	acatggggtt	cttggactgt	tgaaggaacc	taaccatctg	gcatctccat	ggcctctgca
601	acaaaccccc	cacttttttc	tctcccccc	cccccaggga	gggcctgtgc	tttgggcagc
661	cacctgcccc	tctcaggggt	ttggagccag	gcagggtcac	agcagactgg	aaacatcgga
721	catgcatgtg	caggctgggt	gggagagacc	gttctattcc	tcagtgcaat	tgtgttgctg
781	aaagactacc	tcgttcttgt	ctttgtgtgt	caccggggca	actgtgtggg	ggcggggatg
841	ggggcagggt	ggcagcacgc	ccagtttggt	atcaaaggtg	ctacatctct	gtgaaggggt
901	ggggtgggaa	ggaatttctg	gtgctataga	agctgagatg	ctccctagac	cagcaaatgt
961	ttcttttgtt	caaagtattt	tttattcttt	tttttttt	ttttaatgga	tagggacttg
1021	tgtgaattgt	tggggttttt	tttttttt	tttttggttt	tgttttttt	tgttttgttt
1081	tgttttttt	cctgaaggtg	ctatttaaca	agggagaaga	gagtgcgggg	acttcaccct
1141	gcccactctc	tactctctct	ccactcttct	agttcctggg	cctatctgat	ctctcttt
1201	cttctgaaac	cctcccctct	tgctgctgct	ccctccctc	tgcctctctc	ttggtctgtc
1261	ctgcatcagg	gtttcagagc	accactttcc	aaagcacaaa	acagttttta	cccctgggct
1321	gggaggaaac	aagagactct	gtacctattt	tgtatgtgta	taataatttg	agatgttttt
1381	aattatttg	attgctggaa	taaagcatgt	ggaaatgacc	caaaaaaaaaa	aaaaaaaa

Supplementary Table 1. hsa-microRNA-129-5p and mmumicroRNA-129-5p have binding sites on collagen type I alpha 1

MicroRNA and Target Gene Description:

miRNA Name Previous Name Target Score	<u>hsa-miR-29c-3p</u> hsa-miR-29c 98	miRNA Sequence Seed Location	UAGCACCAUUUGAAAUCGGUUA 881, 923, 1056
NCBI Gene ID	<u>1277</u>	GenBank Accession	<u>NM_000088</u>
Gene Symbol	COL1A1	3' UTR Length	1406
Gene Description	collagen type I alp	ha 1 chain	

3' UTR Sequence

1	actccctcca	tcccaacctg	gctccctccc	acccaaccaa	ctttcccccc	aacccggaaa
61	cagacaagca	acccaaactg	aaccccctca	aaagccaaaa	aatgggagac	aatttcacat
121	ggactttgga	aaatatttt	ttcctttgca	ttcatctctc	aaacttagtt	tttatctttg
181	accaaccgaa	catgaccaaa	aaccaaaagt	gcattcaacc	ttaccaaaaa	aaaaaaaaaa
241	aaaagaataa	ataaataact	ttttaaaaaa	ggaagcttgg	tccacttgct	tgaagaccca
301	tgcgggggta	agtccctttc	tgcccgttgg	gcttatgaaa	ccccaatgct	gccctttctg
361	ctcctttctc	cacaccccc	ttggggcctc	ccctccactc	cttcccaaat	ctgtctcccc
421	agaagacaca	ggaaacaatg	tattgtctgc	ccagcaatca	aaggcaatgc	tcaaacaccc
481	aagtggcccc	caccctcagc	ccgctcctgc	ccgcccagca	cccccaggcc	ctgggggacc
541	tggggttctc	agactgccaa	agaagccttg	ccatctggcg	ctcccatggc	tcttgcaaca
601	tctcccttc	gtttttgagg	gggtcatgcc	gggggagcca	ccagcccctc	actgggttcg
661	gaggagagtc	aggaagggcc	acgacaaagc	agaaacatcg	gatttgggga	acgcgtgtca
721	atcccttgtg	ccgcagggct	gggcgggaga	gactgttctg	ttccttgtgt	aactgtgttg
781	ctgaaagact	acctcgttct	tgtcttgatg	tgtcaccggg	gcaactgcct	gggggcgggg
841	atgggggcag	ggtggaagcg	gctccccatt	ttataccaaa	ggtgctacat	ctatgtgatg
901	ggtggggtgg	ggagggaatc	actggtgcta	tagaaattga	gatgccccc	caggccagca
961	aatgttcctt	tttgttcaaa	gtctatttt	attccttgat	atttttcttt	ttttttttt
1021	tttttgtgg	atggggactt	gtgaattttt	ctaaaggtgc	<pre>tatttaacat</pre>	gggaggagag
1081	cgtgtgcggc	tccagcccag	cccgctgctc	actttccacc	ctctctccac	ctgcctctgg
1141	cttctcaggc	ctctgctctc	cgacctctct	cctctgaaac	cctcctccac	agctgcagcc
1201	catcctcccg	gctccctcct	agtctgtcct	gcgtcctctg	tccccgggtt	tcagagacaa
1261	cttcccaaag	cacaaagcag	tttttccccc	taggggtggg	aggaagcaaa	agactctgta
1321	cctattttgt	atgtgtataa	taatttgaga	tgtttttaat	tattttgatt	gctggaataa
1381	agcatgtgga	aatgacccaa	acataa			

MicroRNA and Target Gene Description:

miRNA Name	<u>mmu-miR-29c-3p</u>	miRNA Sequence	UAGCACCAUUUGAAAUCGGUUA
Previous Name	mmu-miR-29c		
Target Score	95	Seed Location	877, 919, 1097
NCBI Gene ID	<u>12842</u>	GenBank Accession	<u>NM 007742</u>
Gene Symbol	Col1a1	3' UTR Length	1439
Gene Description	collagen, type I, al	pha 1	

3' UTR Sequence

1	actccctcca	ccccaatctg	gttccctccc	acccagccca	cttttcccca	accctggaaa
61	cagacgaaca	acccaaactc	aatttccccc	aaaagccaaa	aatatgggag	ataatttcac
121	atggactttg	gaaaacattt	tttttccttt	gcattcacct	ttcaaactta	gtttttacct
181	ttgaccaact	gaacgtgacc	aaaaaccaaa	agtgcattca	accttaccaa	aaaagaaaaa
241	aaaaaaaga	ataaataaat	aactttttaa	aaaaggaagc	ttggtcctct	tgcttgaaga
301	cctatgtggg	tataagtccc	ttcctgccca	cttggcttat	gataccctaa	tgctgccttt
361	tctgctcctt	tctccacccc	ctcttggggc	ctctcctcca	ttgctcccca	aatttaagtc
421	tccccaaga	cacaggaaat	aatgcattgt	ctgcccagca	aacaaaggca	atgctgaaat
481	gtcccaccag	cccctcaacc	ccgtctactt	ccctacccag	caccctcaaa	tcctgctggg
541	acatggggtt	cttggactgt	tgaaggaacc	taaccatctg	gcatctccat	ggcctctgca
601	acaaaccccc	cacttttttc	tctcccccc	cccccaggga	gggcctgtgc	tttgggcagc
661	cacctgcccc	tctcaggggt	ttggagccag	gcagggtcac	agcagactgg	aaacatcgga
721	catgcatgtg	caggctgggt	gggagagacc	gttctattcc	tcagtgcaat	tgtgttgctg
781	aaagactacc	tcgttcttgt	ctttgtgtgt	caccggggca	actgtgtggg	ggcggggatg
841	ggggcagggt	ggcagcacgc	ccagtttggt	atcaaa <mark>ggtg</mark>	<pre>ctacatctct</pre>	gtgaaggggt
901	ggggtgggaa	ggaatttc tg	gtgctataga	agctgagatg	ctccctagac	cagcaaatgt
961	ttcttttgtt	caaagtattt	tttattcttt	ttttttttt	ttttaatgga	tagggacttg
1021	tgtgaattgt	tggggttttt	ttttttttt	tttttggttt	tgttttttt	tgttttgttt
1081	tgttttttt	cctgaaggtg	<pre>ctatttaaca</pre>	agggagaaga	gagtgcgggg	acttcaccct
1141	gcccactctc	tactctctct	ccactcttct	agttcctggg	cctatctgat	ctctcttt
1201	cttctgaaac	cctcccctct	tgctgctgct	ccctccctc	tgcctctctc	ttggtctgtc
1261	ctgcatcagg	gtttcagagc	accactttcc	aaagcacaaa	acagttttta	cccctgggct
1321	gggaggaaac	aagagactct	gtacctattt	tgtatgtgta	taataatttg	agatgttttt
1381	aattatttg	attgctggaa	taaagcatgt	ggaaatgacc	сааааааааа	88888888

Supplementary Table 2. hsa-microRNA-29c-3p and mmumicroRNA-29c-3p have binding sites on collagen type I alpha 1