Supplementary Information

Methane formation driven by light and heat prior to the origin of life and beyond

Leonard Ernst^{1,2} *, Uladzimir Barayeu^{3,4}, Jonas Hädeler⁵, Tobias P. Dick^{3,4}, Judith M. Klatt^{2,6,7}, Frank Keppler^{5,8} & Johannes G. Rebelein^{1,2} *

¹ Max-Planck-Institute for Terrestrial Microbiology; 35043 Marburg, Germany.

⁴ Faculty of Biosciences, Heidelberg University; 69120 Heidelberg, Germany.

⁵ Institute of Earth Sciences, Heidelberg University; 69120 Heidelberg, Germany.

 6 Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology & Philipps University Marburg; 35032 Marburg, Germany.

⁷ Biogeochemistry Group, Department for Chemistry, Philipps University Marburg; 35032 Marburg, Germany.

⁸ Heidelberg Center for the Environment HCE, Heidelberg University; 69120 Heidelberg, Germany.

* *To whom correspondence should be addressed:* leonard.ernst@mpi-marburg.mpg.de (L.E.); johannes.rebelein@mpi-marburg.mpg.de (J.G.R.)

² Center for Synthetic Microbiology (SYNMIKRO); 35032 Marburg, Germany.

³ Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance; 69120 Heidelberg, Germany.

Supplementary Fig. 1. Heat-driven CH⁴ and C2H⁶ formation from DMSO. Formed CH⁴ amounts increase from ~20 nmol (37 °C) to ~460 nmol (97 °C). Formed C_2H_6 amounts increase from ~190 pmol (37 °C) to ~415 pmol (97 °C), thereby resulting in CH₄:C₂H₆ ratios from ~110 (37 °C) to ~1100 (97 °C). In a total volume of 4 mL, samples containing a 20 mM potassium phosphate buffer (pH 7), 1 M DMSO, 10 mM FeSO⁴ were incubated at different temperatures in sealed 20 mL glass vials under N_2 for 4 days. The bars are the mean + standard deviation of triplicates, shown as circles.

Supplementary Fig. 2. Light-driven H_2O_2 **formation in pure buffer.** Formed H_2O_2 concentrations increase from ~7 nM in the dark to ~95 nM under light. In a total volume of 4 mL, samples contained 20 mM potassium phosphate buffer (pH 7) that was bubbled with N_2 for 1 h and kept in an anoxic tent for 5 days. Samples were incubated in the dark or under illumination (Supplementary Fig. 3) for 20 h and analysed via fluorescence-based H_2O_2 endpoint measurements (see Methods). The bars are the mean + standard deviation of triplicates, shown as circles.

Supplementary Fig. 3. Light spectrum of the used light bulbs. For broad-spectrum sample illumination, Osram (Superlux, Super E SIL 60) light bulbs were used, with an intensity of 82 ± 4 umol photons m⁻² s⁻¹, and an energy flux of 52 ± 2 kJ m⁻² h⁻¹. The light spectrum was determined with a spectrometer (see Methods).

Supplementary Fig. 4. Light-driven CH⁴ formation is enhanced upon [Fe(H2O)6] 3+ photolysis under acidic conditions. Only trace CH₄ levels $(<0.0002 \mu M h^{-1})$ were measured without iron addition. Upon Fe²⁺-supplementation, CH₄ formation rates increased at pH 7 from ~0.015 μ M h⁻¹ in the dark to ~0.077 μ M h⁻¹ under light and at pH 3 from <0.0002 μ M h⁻¹ in the dark to ~0.013 µM h⁻¹ under light, suggesting a light-driven ·OH formation from OH Conversely, ~0.67 µM CH₄ h⁻¹ are formed upon Fe³⁺-supplementation in the light under acidic conditions, while only trace amounts of CH₄ were detected under pH-neutral conditions or in the dark. At pH 7, a stoichiometric 1:1 ratio of Fe^{3+} and Fe^{2+} increased CH₄ formation rates by ~1.3-fold to ~0.1 μ M h⁻¹ in comparison to Fe²⁺-supplemented samples, while the corresponding CH₄ formation rates at pH 3 increased \sim 25-fold to \sim 0.316 μ M h⁻¹. Samples consisting of buffered solutions (pH 3 or 7) were incubated in the dark or under broad spectrum light (Supplementary Fig. 3) for 24 h under N_2 . The bars are the mean $+$ standard deviation of triplicates, shown as circles.

Supplementary Fig. 5. Iron and DMSO reduce H2O² concentrations generated by light. Under light, H₂O₂ concentrations decrease from \sim 238 nM (buffer + citrate) to \sim 135 nM in the presence of iron (buffer + citrate + Fe³⁺). This decrease in H₂O₂ concentration indicates the reaction of H_2O_2 with Fe²⁺ formed by LMCT. Upon addition of DMSO, H_2O_2 levels further decrease to ~45 nM under light, underlining the ROS-scavenging effect of DMSO. In a total volume of 4 mL, samples contained 20 mM potassium phosphate buffer (pH 7), 10 mM citrate and, optionally, 2 mM FeCl₃ and 500 mM DMSO that were previously degassed with N₂ and kept in an anoxic tent overnight. Samples were incubated in the dark or under illumination (Supplementary Fig. 3) for 3 h and directly analysed via fluorescence-based H_2O_2 endpoint measurements (see Methods). Statistical analysis was performed using paired two-tailed *t*-tests, *: $p \le 0.05$, ***: $p \le 0.001$. The bars are the mean + standard deviation of triplicates, shown as circles.

Supplementary Fig. 6. Light-driven formation of CH4, CH3OH and Fe2+ from DMSO and Fe3+ under varying O² concentrations. In a total volume of 4 mL, samples containing 20 mM potassium phosphate buffer (pH 7), 500 mM DMSO, 2 mM FeCl₃ and 10 mM citrate were incubated for one day in sealed 20 mL glass vials under constant broad-spectrum illumination (Supplementary Fig. 3). Mixtures of air and N_2 were generated and adjusted to 1 bar, ranging from \sim 21 % O₂ to pure N₂ (0 % O₂). From 0 % O₂ to \sim 1 % O₂, CH₄ rates decreased from \sim 0.44 μ M h⁻¹ to ~0.35 μ M h⁻¹, while Fe²⁺ levels decreased from ~1 mM to ~0.07 mM. From ~1 % O₂ to 21 % O_2 , CH₄ rates further decreased by an additional ~0.2 μ M h⁻¹, while Fe²⁺ levels further decreased from ~0.07 mM to ~0.04 mM, indicating an immediate Fe^{2+} oxidation by O₂ or the Fenton reaction at high O_2 concentrations and a formation of excess Fe^{2+} under suboxic and anoxic conditions. Apart from the anoxic sample (0 % O_2), formation of CH₃OH was detected in the presence of O_2 , ranging from ~0.003 μ M h⁻¹ (~0.2 % O₂) to ~0.07 μ M h⁻¹ (21 % O₂). Experiments were conducted in triplicates; individual values are shown.

Supplementary Fig. 7. Light-driven CH4 formation from DMSO correlates with the iron concentration. In a total volume of 4 mL, samples containing 20 mM potassium phosphate buffer (pH 7), 500 mM DMSO and 10 mM citrate were incubated for one day under N_2 in sealed 20 mL glass vials under constant broad-spectrum illumination (Supplementary Fig. 3). Different amounts of Fe³⁺ (as FeCl₃) were added, ranging from 0 μ M to 2000 μ M. Only trace amounts of CH₄ (<0.01 μ M h⁻¹) were formed upon supplementation with 0 or 20 μ M Fe³⁺. Methane amounts then increased from ~0.06 μM h⁻¹ CH₄ (50 μM Fe³⁺) to ~0.4 μM h⁻¹ (200 μM Fe³⁺), with Fe²⁺ levels also increasing from ~0.03 mM to ~0.11 mM. From 200 μ M Fe³⁺ to 2000 μ M Fe³⁺ supplementation, CH₄ levels increased by ~0.3 μ M h⁻¹. In the same range, Fe²⁺ levels increased from \sim 0.11 mM to \sim 1.5 mM, indicating that LMCT-driven Fe²⁺ formation occurred at higher rates as its consumption to Fe^{3+} via the photochemical Fenton reaction. Experiments were conducted in triplicates; individual values are shown.

Supplementary Fig. 8. Magnesium decreases light-driven CH⁴ formation from DMSO. In a total volume of 4 mL, samples containing 20 mM potassium phosphate buffer (pH 7), 500 mM DMSO and, optionally, 2 mM Fe^{3+} (as FeCl₃) and 10 mM citrate were incubated for one day under N_2 in sealed 20 mL glass vials under constant broad-spectrum illumination (Supplementary Fig. 3). Different amounts of Mg^{2+} (as $MgCl_2$) were added, ranging from 0 mM to 500 mM. Only trace amounts of CH₄ (<0.01 μ M h⁻¹) were formed in the presence of Mg²⁺ and citrate Upon supplementation with Fe³⁺ without addition of citrate trace amounts of CH₄ (<0.01 μ M h⁻¹) were detected. Upon citrate and Fe³⁺ supplementation, CH₄ rates increased to ~0.7 μ M h⁻¹, while increasing Mg^{2+} amounts decreased CH₄ rates until ~0.16 μ M h⁻¹ at 500 mM Mg^{2+} . Experiments were conducted in triplicates; individual values are shown as cirlces.

Supplementary Fig. 9. Decomposition of the LMCT-induced citrate radical drives ·CH³ formation from DMSO. (A) Illumination of a $Fe³⁺$ -citrate complex results in $Fe²⁺$ and a citrate radical, disassembling into CO₂ and a carbon-centered radical that further reacts with DMSO by cleaving off a \cdot CH₃. **(B)** While no CO₂ is formed in the dark, \sim 1080 nmol CO₂ is detected from illuminated samples containing 2 mM FeCl₃, 10 mM citrate, 500 mM DMSO in 20 mM potassium phosphate buffer (pH 7) under N_2 , after 24 h. The bars are the mean + standard deviation of three independent measurements, shown as circles.

Supplementary Fig. 10. Organic radicals drive CH⁴ formation from DMSO. (A) At 40 °C, the compound 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) decomposes into 2 carbon-centered organic radicals and N_2 . **(B)** CH₄ is formed upon the interaction between DMSO and AAPH. While only ~ 0.2 nmol or ~ 0.6 nmol CH₄ are formed from DMSO or AAPH alone, respectively, \sim 11 nmol CH₄ are formed upon combining both substances, indicating CH₄ formation driven by carbon-centered radicals. 500 mM DMSO was mixed with 20 mM AAPH and incubated for 3 h in N₂-saturated DPBS buffer at 40° C under N₂. The bars are the mean + standard deviation of triplicates, shown as circles.

Supplementary Fig. 11. Light-driven CH⁴ formation sustains methanotrophic growth of *Methylocystis hirsuta***.** Methanotrophic growth of *M. hirsuta* is sustained by light-generated CH4. While CH₄-supplemented samples (yellow squares) grew, N₂-supplemented samples (blue squares) did not exhibit bacterial growth (see Methods). Experiments were conducted in triplicates; individual values are shown.