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Supplementary Figures and Tables 

 

Figure S1. (a) TEM image (inset shows particle size distribution), (b) HRTEM image and (c) aberration-corrected 

HAADF-STEM image of P-Cu1/CuNP. 
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Figure S2. (a) TEM image (inset shows particle size distribution), (b) HRTEM image and (c) aberration-corrected 

HAADF-STEM image of R-Cu1/CuNP. 
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Figure S3. XPS survey spectra of (a) P-Cu1/CuNP, (b) M-Cu1/CuNP and (c) R-Cu1/CuNP. 
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Figure S4. Cu Auger LMM spectra of (a) P-Cu1/CuNP, (b) M-Cu1/CuNP and (c) R-Cu1/CuNP. 
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Figure S5. XPS spectra of N 1s orbits of (a) P-Cu1/CuNP, (b) M-Cu1/CuNP, and (c) R-Cu1/CuNP. 
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Figure S6. Least-squares EXAFS fittings of (a) P-Cu1/CuNP, (b) M-Cu1/CuNP, and (c) R-Cu1/CuNP. 
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Figure S7. The scheme of flow cell used for CO2RR tests. 
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Figure S8. LSV curves of R-Cu1/CuNP, M-Cu1/CuNP and P-Cu1/CuNP in CO2 or N2 atmosphere, the experiments were 

performed in 5 M KOH electrolyte with 20 mV s-1 scan rate and 80% ohmic compensation. 
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Figure S9. (a) Product FEs and (b) current density of M-Cu1/CuNP at -0.6V in 5 M KOH electrolyte with various 

catalyst loading. Both C2 products selectivity and total current density increased as the increasing loading of M-

Cu1/CuNP until 1 mg cm-2, and no obvious difference was observed among 1, 1.5 and 2 mg cm-2. Therefore, we chose 

1 mg cm-2 as the catalyst loading to conduct activity experiments. 
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Figure S10. The CO2RR prodcuct FEs of (a) R-Cu1/CuNP, (b) M-Cu1/CuNP and (c) P-Cu1/CuNP under different 

applied potentials, the experiments were performed in 5 M KOH electrolyte with 80% ohmic compensation. Values 

are means and error bars indicate s.d. (n = 3 replicates). 
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Figure S11. (a) TEM and (b) aberration-corrected HAADF-STEM images of Cu-N-C. The Cu-N-C was obtained by 

acid treatment of M-Cu1/CuNP: the M-Cu1/CuNP was added into 50 mL 1 M sulfuric acid aqueous solution and heated 

at 80 °C for 48 h, then washed with deionized water several times and dried at 80°C overnight. 

No obvious nanoparticles were observed in TEM image and a large amount of isolated bright dots recognized as Cu 

single atoms were observed in aberration-corrected HAADF-STEM image. 
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Figure S12. (a) XRD pattern, (b) Cu Auger LMM spectrum, (c) EXAFS spectra, and (d) least-squares EXAFS 

fittings of Cu-N-C. The Cu-N-C was obtained by acid treatment of M-Cu1/CuNP: the M-Cu1/CuNP was added into 50 

mL 1 M sulfuric acid aqueous solution and heated at 80 °C for 48 h, then washed with deionized water several times 

and dried at 80°C overnight. 

No diffraction peaks related to crystalline Cu species can be identified in XRD pattern. XPS spectra showed that Cu 

element existed in Cu-N-C catalyst and Cu+ was main specie. More importantly, the EXAFS profiles in the R-space 

of Cu-N-C suggested that only the peak attributed to Cu-N coordination located at around 1.4 Å, while the Cu-Cu 

coordination peak at around 2.2 Å disappeared, which confirmed that the Cu species only existed as single atom 

form. The results of least-squares EXAFS fitting confirmed that the Cu-N coordination numbers in Cu-N-C was 4.0 

(Table S2), implying that the atomic Cu species mainly existed as Cu-N4 structure. 
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Figure S13. Total current density of R-Cu1/CuNP, M-Cu1/CuNP and P-Cu1/CuNP at different applied potentials in 5 M 

KOH electrolyte. Values are means and error bars indicate s.d. (n = 3 replicates). 
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Figure S14. Cyclic voltammograms with different scan rates (20, 40, 60, 80, 100 mV s-1) for (a) P-Cu1/CuNP, (b) M-

Cu1/CuNP, and (c) R-Cu1/CuNP in 0.5 M KHCO3 electrolyte. (d) Linear fitting of double-layer capacitive currents Δj 

versus scan rate. 
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Figure S15. The jC2 of R-Cu1/CuNP, M-Cu1/CuNP and P-Cu1/CuNP after normalized by ECSA in 5 M KOH electrolyte. 
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Figure S16. The (a) products FE and (b) jC2 of R-Cu1/CuNP, M-Cu1/CuNP and P-Cu1/CuNP under similar ECSA 

condition in 5 M KOH electrolyte. 
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Figure S17. Long-term stability of (a) R-Cu1/CuNP at a constant current density of 200 mA cm-2 and (b) P-Cu1/CuNP 

at a constant current density of 400 mA cm-2 in 5 M KOH electrolyte (the electrode was washed, then dried and the 

electrolyte was refreshed at intervals 5 h to address the issues of flooding and carbonation). 
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Figure S18. (a) TEM image (inset shows particle size distribution), (b) HRTEM image and (c) aberration-corrected 

HAADF-STEM image of M-Cu1/CuNP after 40 h electrolysis. 
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Figure S19. (a) Cu Auger LMM spectrum (b) XPS spectra of N 1s orbits and (c) XRD pattern of M-Cu1/CuNP after 

40 h electrolysis. 
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Figure S20. The kinetic isotope effect of H2O/D2O on P-Cu1/CuNP M-Cu1/CuNP and R-Cu1/CuNP at -0.6 V in flow 

cell with 5 M KOH electrolyte. Values are means and error bars indicate s.d. (n = 3 replicates). 
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Figure S21. (a) FEC2 of R-Cu1/CuNP,M-Cu1/CuNP and P-Cu1/CuNP in different concentrations KOH electrolyte at -

0.6 V. (b) C2 formation rate of R-Cu1/CuNP,M-Cu1/CuNP and P-Cu1/CuNP in different concentrations KOH electrolyte 

at -0.6 V and RateM/RateP of M-Cu1/CuNP to P-Cu1/CuNP. Values are means and error bars indicate s.d. (n = 3 

replicates). 
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Figure S22. The device scheme of gas electro-response experiments. 
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Figure S23. The CO2 and CO gas adsorption electroresponse current density of (a) R-Cu1/CuNP, (b) M-Cu1/CuNP and 

(c) P-Cu1/CuNP. 

The capacity adsorption of CO2 and CO molecules on the catalysts surface was tested by a self-desined gas adsorption 

electroresponse device. The Cu foam sprayed with the catalyst was used as electrode. The as-prepared electrode was 

placed in a sealed container and connected with the electrochemical workstation. Various gas (CO2、CO and Ar) 

were injected into the container and the curve of current was monitored under different applied potentials (-0.05, -

0.1 and -0.15 V). 
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Figure S24. Results of (a) CO2 and (b) CO adsorption responses under different applied voltages over R-Cu1/CuNP, 

M-Cu1/CuNP and P-Cu1/CuNP. 
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Figure S25. The LSV cruve of M-Cu1/CuNP in 0.1 M Na2SO4 aqueous solution without CO adsorption. 
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Figure S26. The optical photo of flow cell used for in situ XAS experiment. 
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Figure S27. The in situ XANES spectra at Cu K-edge over M-Cu1/CuNP at -0.5 and -0.8 V in 5 M KOH electrolyte. 
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Figure S28. The photograph of cell used for in situ SERS spectroscopy. 
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Figure S29. In situ surface-enhanced Raman spectra recorded at different applied potentials for Cu-N-C during 

CO2RR. 
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Figure S30. The scheme of cell used for online DEMS measurements. 
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Figure S31. The m/z signal of 29 of P-Cu1/CuNP, M-Cu1/CuNP and R-Cu1/CuNP during online DEMS 

measurements for CO2RR at -0.6 V in five continuous cycles in 5 M KOH electrolyte. 
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Figure S32. The photograph and scheme of cell used for in situ ATR-SEIRAS spectroscopy. 
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Figure S33. In situ ATR-SEIRAS spectra recorded at different applied potentials for (a) P-Cu1/CuNP, (b) M-Cu1/CuNP 

and (c) R-Cu1/CuNP during CO2RR in CO2-saturated 3 M KOH electrolyte. 
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Figure S34. The top and side views of (a) Cu(111) and (b) Cu-N4 models. 
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Figure S35. The free energy diagram for CO2RR to describe the activation of CO2 over Cu(111) and Cu-N4. 
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Figure S36. Side views of (a) *CO and (b) *COH on the Cu(111) facet. 
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Figure S37. Side views of (a) *CO and (b) *CHO on the Cu(111) facet. 
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Figure S38. Side views of (a) *CO-*CO, (b) *COH-*COH and (c) *COH*COH on the Cu(111) facet. 
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Figure S39. Side views of (a) *CO-*CO, (b) *CO-*CHO and (c) O*CCHO on the Cu(111) facet. 
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Figure S40. Side views of (a) *CO-*CO, (b) *CHO-*CHO and (c) *OHCCHO* on the Cu(111) facet. 
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Figure S41. Free energy of *CO hydrogenation to *CHO on Cu(111) under different *H coverage.  
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Table S1. The contents of Cu, N and C of the catalysts measured by XPS  

Sample Cu at% N at% C at% 

P-Cu1/CuNP 7.4 33.5 59.1 

M-Cu1/CuNP 4.3 40.5 55.2 

R-Cu1/CuNP 1.9 47.2 50.9 
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Table S2. Structural parameters extracted from the EXAFS fitting. (S0
2=0.80) 

Sample Scattering pair CNreal R(Å) σ 2(10-3Å2) ΔE0(eV) P (%) 

R-Cu1/CuNP 
Cu-N 3.9 1.96 5.8 -3.5 28（Cu1） 

Cu-Cu 8.6 2.56* 4.9 2.1 72（CuNP） 

M-Cu1/CuNP 
Cu-N 3.8 1.96 5.1 -3.4 20（Cu1） 

Cu-Cu 8.6 2.56* 5.4 2.1 80（CuNP） 

P-Cu1/CuNP 
Cu-N 0.4 1.96 6.0 -3.5 5（Cu1） 

Cu-Cu 8.4 2.56* 4.8 2.1 95（CuNP） 

Cu-N-C Cu-N 4.0 1.96 5.9 -3.5 - 

S0
2 is the amplitude reduction factor S0

2=0.8; CNreal is the coordination number; R is interatomic distance (the bond 

length between central atoms and surrounding coordination atoms); σ2 is Debye-Waller factor (a measure of thermal 

and static disorder in absorber-scatterer distances); ΔE0 is edge-energy shift (the difference between the zero kinetic 

energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting. * 

represents a fixed value for the parameter. P represents the percentage of Cu-N4 (Cu1) and Cu NPs Cu in total Cu 

species of catalyst. 
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Table S3. Product FEs, total current density and error bar of R-Cu1/CuNP at various potentials in 5 M KOH electrolyte. 

Potential (V) C2H5OH FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 0.0  0.0  0.0  0.00  

-0.6 14.8  11.3  7.0  3.90  

-0.7 17.2  21.6  19.2  2.20  

-0.8 9.0  11.7  6.4  2.65  

-0.9 6.3  7.1  7.5  0.61  

 

Potential (V) CH3COOH FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 0.0  0.0  0.0  0.00  

-0.6 5.5  8.2  6.8  1.35  

-0.7 12.7  12.0  13.7  0.85  

-0.8 3.8  5.7  4.7  0.95  

-0.9 2.8  3.3  3.7  0.45  

 

Potential (V) C2H4 FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 7.6  7.7  7.9  0.15  

-0.6 9.1  9.5  9.2  0.21  

-0.7 9.6  8.5  10.6  1.05  

-0.8 4.8  4.5  4.5  0.17  

-0.9 3.2  4.4  4.0  0.61  

 

Potential (V) HCOOH FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 17.4  17.1  16.4  0.51  

-0.6 4.1  6.7  5.5  1.30  

-0.7 2.7  2.1  3.0  0.46  

-0.8 0.5  0.7  0.6  0.10  

-0.9 0.5  0.6  0.7  0.10  

 

Potential (V) CO FE (%) Error bar 
-0.4 22.3 23.1 21.4 0.85  

-0.5 23.1 22.8 23 0.15  

-0.6 7.9 10.8 9.2 1.45  

-0.7 4 4.5 5.1 0.55  

-0.8 0.8 1.8 1.2 0.50  

-0.9 1.2 1.6 0.9 0.35  

 

Potential (V) CH4 FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 2.8  2.2  2.4  0.31  

-0.6 19.4  18.6  20.0  0.70  

-0.7 22.6  24.0  22.9  0.74  

-0.8 17.8  21.3  20.0  1.77  

-0.9 13.7  20.5  17.5  3.41  
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Potential (V) H2 FE (%) Error bar 
-0.4 71.8  73.7  74.0  1.19  

-0.5 51.1  52.7  52.1  0.81  

-0.6 40.2  39.5  40.1  0.38  

-0.7 30.9  28.5  26.6  2.15  

-0.8 64.8  54.2  59.8  5.30  

-0.9 76.4  64.0  70.5  6.20  

 

Potential (V) Total current density (mA cm-2) Error bar 
-0.4 5.7  6.2  6.0  0.25  

-0.5 21.3  22.9  19.8  1.55  

-0.6 81.1  82.3  81.5  0.60  

-0.7 191.0  187.0  189.0  2.00  

-0.8 493.2 487.0  497.2  5.14  

-0.9 798.0  787.0  792.0  5.51  
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Table S4. Product FEs, total current density and error bar of M-Cu1/CuNP at various potentials in 5 M KOH 

electrolyte. 

Potential (V) C2H5OH FE (%) Error bar 
-0.4 0 0 0 0 

-0.5 10.8 15.3 14 2.30 

-0.6 30.1 29.2 29 0.59 

-0.7 27 28 28 0.58 

-0.8 24.1 23.9 23.6 0.25 

-0.9 19.6 19.9 19 0.46 

 

Potential (V) CH3COOH FE (%) Error bar 
-0.4 12.7 13.1 10.9 1.17  

-0.5 18.3 11.8 18 3.67  

-0.6 15.5 14.4 20 2.97  

-0.7 17.7 16.7 15.3 1.21  

-0.8 11.8 13.1 10 1.56  

-0.9 7.2 6.3 6.5 0.47  

 

Potential (V) C2H4 FE (%) Error bar 
-0.4 6.9 7.3 10.5 1.97  

-0.5 17.6 17.9 20.5 1.59  

-0.6 29.8 30.8 27.5 1.69  

-0.7 26.7 25.7 25.4 0.68  

-0.8 22.1 23.9 22.9 0.90  

-0.9 22.6 20.4 19.7 1.51  

 

Potential (V) HCOOH FE (%) Error bar 
-0.4 8.6 8.9 9.2 0.30  

-0.5 12.5 7.5 7.9 2.78  

-0.6 2.4 3.1 2.5 0.38  

-0.7 3.5 2.2 2.3 0.72  

-0.8 1.5 2.1 1.5 0.35  

-0.9 1.2 2.7 3.2 1.04  

 

Potential (V) CO FE (%) Error bar 
-0.4 35.3 35.6 30.4 2.92  

-0.5 23.7 27.8 22.4 2.82  

-0.6 10.1 11.3 10.7 0.60  

-0.7 7.4 5.4 5.3 1.18  

-0.8 3.2 3.4 4.7 0.81  

-0.9 4.1 3.6 4.5 0.45  

 

Potential (V) CH4 FE (%) Error bar 
-0.4 0 0 0 0.00  

-0.5 1.6 1.3 1.9 0.30  

-0.6 2.2 1.7 4.5 1.49  

-0.7 2.9 7.3 5.3 2.20  

-0.8 4.9 5.8 7.6 1.37  

-0.9 4.5 3.7 2.2 1.17  
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Potential (V) H2 FE (%) Error bar 
-0.4 37.4 39.8 41.8 2.20  

-0.5 18.3 20.9 17.8 1.66  

-0.6 11.1 11.3 17.0 3.35  

-0.7 17.3 17.7 22.6 2.95  

-0.8 33.8 27.9 31.7 2.99  

-0.9 42.8 46 45.3 1.68  

 

Potential (V) Total current density (mA cm-2) Error bar 
-0.4 58.4 49.5 56.5 4.69  

-0.5 166.8 163.6 140 14.64  

-0.6 426 365.5 358.7 37.05  

-0.7 635.2 650.5 663.5 14.17  

-0.8 895.6 913.5 892.7 11.27  

-0.9 1211.83 1212.3 1198.8 7.66  
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Table S5. Product FEs, total current density and error bar of P-Cu1/CuNP at various potentials in 5 M KOH electrolyte. 

Potential (V) C2H5OH FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 0.0  0.0  0.0  0.00  

-0.6 13.4  12.3  12.6  0.57  

-0.7 14.2  16.0  15.2  0.90  

-0.8 14.5  13.1  11.6  1.45  

-0.9 12.2  10.2  13.9  1.85  

 

Potential (V) CH3COOH FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 3.5  3.9  3.2  0.35  

-0.6 4.0  4.5  5.1  0.55  

-0.7 10.0  10.1  10.3  0.15  

-0.8 8.0  7.2  7.5  0.40  

-0.9 8.3  6.7  9.9  1.60  

 

Potential (V) C2H4 FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 3.1  2.9  3.5  0.31  

-0.6 16.2  17.2  14.5  1.37  

-0.7 21.1  24.7  20.3  2.34  

-0.8 23.0  23.2  24.0  0.53  

-0.9 27.8  23.9  22.9  2.59  

 

Potential (V) HCOOH FE (%) Error bar 
-0.4 42.0  45.0  44.0  1.53  

-0.5 30.1  32.2  31.0  1.05  

-0.6 13.4  14.6  15.0  0.83  

-0.7 5.7  5.7  5.7  0.00  

-0.8 5.7  3.9  4.5  0.92  

-0.9 4.2  4.5  4.0  0.25  

 

Potential (V) CO FE (%) Error bar 
-0.4 10.6  11.4  13.0  1.22  

-0.5 16.9  14.1  17.0  1.65  

-0.6 16.9  17.0  20.4  1.99  

-0.7 16.5  13.2  14.7  1.65  

-0.8 12.0  11.1  13.5  1.21  

-0.9 11.6  10.8  12.2  0.70  

 

Potential (V) CH4 FE (%) Error bar 
-0.4 0.0  0.0  0.0  0.00  

-0.5 1.0  1.2  1.4  0.20  

-0.6 4.5  3.1  3.4  0.74  

-0.7 5.9  5.1  6.2  0.57  

-0.8 4.5  5.5  5.5  0.58  

-0.9 6.7  6.6  6.5  0.10  
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Potential (V) H2 FE (%) Error bar 
-0.4 45.6  43.1  44.0  1.27  

-0.5 48.1  53.1  51.1  2.52  

-0.6 30.5  28.2  37.1  4.62  

-0.7 28.4  28.0  28.5  0.26  

-0.8 31.5  33.7  35.8  2.15  

-0.9 40.4  38.1  40.5  1.36  

 

Potential (V) Total current density (mA cm-2) Error bar 
-0.4 21.2  19.8  20.4  0.70  

-0.5 83.4  85.9  84.3  1.27  

-0.6 211.2  196.0  204.5  7.62  

-0.7 367.0  365.7  370.0  2.21  

-0.8 554.0  598.3  573.2  22.22  

-0.9 860.1  860.0  852.0  4.65  
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Table S6. Product FEs, total current density and error bar of Cu-N-C at various potentials in 5 M KOH electrolyte. 

Potential (V) CO FE (%) Error bar 
-0.4 0 0 0 0 

-0.5 3.1 2.7 2.5 0.30 

-0.6 2.4 3.4 2.4 0.57 

-0.7 2 3.5 2 0.86 

-0.8 1.3 3.2 1.4 1.06 

-0.9 0 1.8 0 1.03 

 

Potential (V) CH4 FE (%) Error bar 
-0.4 0 0 0 0.00  

-0.5 2.7 4.3 4.4 0.95  

-0.6 2.1 7.8 4.4 2.87  

-0.7 3.2 8.8 3.8 3.07  

-0.8 1.4 8.6 2.7 3.84  

-0.9 0 1.4 1.2 0.76  

 

Potential (V) H2 FE (%) Error bar 
-0.4 98.1  98.2  98.5  0.21  

-0.5 93.8  92.0  94.2  1.17  

-0.6 95.1  87.8  93.3  3.80  

-0.7 95.4  87.9  92.1  3.76  

-0.8 98.4  87.4  95.7  5.73  

-0.9 99.8  97.6  98.3  1.12  

 

Potential (V) Total current density (mA cm-2) Error bar 
-0.4 33.3  32.6  27.9  2.95  

-0.5 81.1  64.7  73.7  8.19  

-0.6 114.3  99.0  101.8  8.14  

-0.7 153.2  136.4  149.4  8.82  

-0.8 196.2  168.2  187.0  14.26  

-0.9 249.2  228.3  241.0  10.52  
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Table S7. Performance comparison of various catalysts for CO2 electroreduction to C2+ products. 

Samples E 

(V vs. RHE) 

FEC2+ 

(%) 

jC2+ 

(mA cm-2) 

References 

M-Cu1/CuNP -0.60 75.4 289.2 This work 

Nanoporous Cu -0.67 62.0 404.8 1 

Reconstructed Cu -1.80 77.0 346.5 2 

NGQ/Cu-nr -0.90 ~74.0 ~208.0 3 

F-Cu -0.89 80.0 1280.0 4 

Multihollow Cu2O -0.61 75.0 267.0 5 

CuAg wire -0.70 85.0 255.0 6 

FeTPP[Cl]/Cu -0.82 85.0 257.0 7 

OD-Cu-III - 74.9 224.7 8 

Cu dendrites -0.68 64.0 255.0 9 

Cu - 80.4 120.6 10 

Cu(0)@PIL@Cuba(I) -0.85 76.1 304.2 11 

3-shell HoMSs -0.88 77.0 513.7 12 

Cu-PTFE -1.50 86.0 ~250.0 13 

CuS/Cu-V -0.92 52.8 147.8 14 

Ce(OH)x-doped-Cu -0.70 80.3 211.2 15 

Cu-KI -1.09 ~72.6 29.0 16 

Graphite/Cu/PTFE -0.54 83.0 275.0 17 

Polyamine-

incorporated Cu 
-0.47 87.0 ~35.0 18 
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