
 

1 
 

Supplementary Information for 

simCAS: an embedding-based method for simulating single-cell 

Chromatin Accessibility Sequencing data 

Chen Li1,#, Xiaoyang Chen1,#, Shengquan Chen2, Rui Jiang1,*, and Xuegong Zhang1,* 
1 Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the 

Beijing National Research Center for Information Science and Technology, Center for 

Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 

100084, China 
2 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China 
* Corresponding author: zhangxg@tsinghua.edu.cn, ruijiang@tsinghua.edu.cn 
# These authors contributed equally: Chen Li, Xiaoyang Chen 

  

mailto:zhangxg@tsinghua.edu.cn
mailto:ruijiang@tsinghua.edu.cn


 

2 
 

Contents 

Supplementary Notes .................................................................................................................... 3 

Supplementary Figures ............................................................................................................... 15 

Supplementary Tables ................................................................................................................. 26 

References .................................................................................................................................... 27  



 

3 
 

Supplementary Notes 

Supplementary Note 1: Adapted simCAS framework with a Bernoulli assumption 

Adapted simCAS with a Bernoulli assumption (referred to as simCAS_Bernoulli) is different from the 

original simCAS (referred to as simCAS_Poisson) in the following steps: estimation for distributions 

of statistics, parameter matrix correction and synthetic peak-by-cell matrix generation. 

In the step of estimation for distributions of statistics, simCAS_Bernoulli only estimates 

distributions of library size (the number of aligned reads per cell) and peak summation (the sum of 

aligned reads per peak), except for cell non-zero proportion (the proportion of non-zero values per cell), 

which is repeated with library size under a Bernoulli assumption. The estimation of library size and 

peak mean of simCAS_Bernoulli is consistent with simCAS_Poisson. The estimated distributions of 

log-transformed library size and peak summation as ℧𝑙𝑙 and ℧𝑝𝑝 as in simCAS_Poisson. 

In the step of parameter matrix correction, simCAS_Bernoulli performs the corrections by ℧𝑙𝑙 and 

℧𝑝𝑝. For simplicity, here we used the symbols with the same meaning in simCAS_Poission. Suppose 

𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙, 𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 and 𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙′  denote number of simulated cells, number of simulated peaks and number of 

referenced cells in real data, respectively. After the low-dimensional embeddings generation and 

activation transformation as in simCAS_Poisson, we obtained the activated parameter matrix  𝚲𝚲� ∈

ℝ𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐. The library size correction is performed as follows: 

(1) Multiply the CEV 𝒍𝒍  and the CEM 𝑪𝑪 , and obtain �̂�𝒍 ∈ ℝ1×𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 . Each value of �̂�𝒍  represents the 

weight of potential library size of each column vector (represents each cell) in 𝚲𝚲�. 

(2) Randomly sample 𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 values from ℧𝑙𝑙 to form the synthetic library size set 𝐿𝐿 ∈ ℝ𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐. Then 

assign the values of 𝐿𝐿 to each column vector in 𝚲𝚲� with the same order of the potential library size 

weights. Denote the value of 𝐿𝐿 assigned to 𝑗𝑗th cell of 𝚲𝚲� as 𝑙𝑙𝑗𝑗. 

(3) For each column in 𝚲𝚲� we perform a uniform correction. For the 𝑗𝑗th column vector 𝝀𝝀�⋅,𝑗𝑗 in 𝚲𝚲�, sort 

it with an ascending order to get 𝝀𝝀�⋅,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Then search from the largest value to the lowest value of 𝝀𝝀�⋅,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

to find an index 𝐼𝐼𝑗𝑗 and a factor 𝑘𝑘𝑗𝑗 to satisfy the equations: 

⎩
⎨

⎧(Σ𝑖𝑖=1
𝐼𝐼𝑗𝑗 �̂�𝜆𝑖𝑖,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑗𝑗) + �𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 − 𝐼𝐼𝑗𝑗� = 𝑙𝑙𝑗𝑗

�̂�𝜆𝐼𝐼𝑗𝑗,𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑗𝑗 < 1

�̂�𝜆𝐼𝐼𝑗𝑗+1,𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑗𝑗 ≥ 1

, 
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where �̂�𝜆𝑖𝑖,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 𝑖𝑖th value of 𝝀𝝀�⋅,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

(4) Then multiply 𝝀𝝀�⋅,𝑗𝑗 with 𝑘𝑘𝑗𝑗 and set the values exceeding 1 to 1 to get the corrected parameters. 

(5) Conduct the uniform correction for each column in 𝚲𝚲�  and acquire the library size corrected 

parameter matrix 𝚲𝚲�. 

The peak mean correction is conducted with a similar operation: 

(1) Randomly sample 𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝  values from the ℧𝑝𝑝  to form the synthetic peak summation set 𝑃𝑃 ∈

ℝ𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Then assign the values of 𝑃𝑃 to each row vector (represents each peak) in 𝚲𝚲� with the same 

order of the peak-wise summations in 𝚲𝚲�. Denote the value of 𝑃𝑃 assigned to 𝑖𝑖th peak of 𝚲𝚲� as 𝑝𝑝𝑗𝑗 

(2) For each row in 𝚲𝚲� we perform a uniform correction. For the 𝑖𝑖th row vector 𝝀𝝀�𝑖𝑖,⋅ in 𝚲𝚲�, sort it with 

an ascending order to get 𝝀𝝀�𝑖𝑖,⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Then search from the largest value to the lowest value of 𝝀𝝀�𝑖𝑖,⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to find 

an index 𝐼𝐼𝑖𝑖 and a factor 𝑘𝑘𝑖𝑖 to satisfy the equations: 

⎩
⎪
⎨

⎪
⎧�Σ𝑗𝑗=1

𝐼𝐼𝑖𝑖 �̌�𝜆𝑖𝑖,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖� + (𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 − 𝐼𝐼𝑖𝑖) = 𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙
𝑝𝑝𝑗𝑗
𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙′  

�̌�𝜆𝑖𝑖,𝐼𝐼𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖 < 1

�̌�𝜆𝑖𝑖,𝐼𝐼𝑖𝑖+1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑖𝑖 ≥ 1

, 

where �̌�𝜆𝑖𝑖,𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 𝑗𝑗th value of 𝝀𝝀�𝑖𝑖,⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

(3) Then multiply 𝝀𝝀�𝑖𝑖,⋅ with 𝑘𝑘𝑖𝑖 and set the values exceeding 1 to 1 to get the corrected parameters. 

(4) Conduct the uniform correction for each row in 𝚲𝚲� and acquire the peak mean corrected parameter 

matrix 𝚲𝚲. 

In the step of synthetic peak-by-cell matrix generation, we replaced the Poisson distribution with the 

Bernoulli distribution, of which the probability parameter is the corresponding parameter in 𝚲𝚲.  
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Supplementary Note 2: Distributions for modeling peak summation  

For simplicity of notation, we assume 𝑥𝑥  as a random variable with no practical meaning in the 

following discussion. With specific modeling for the count of zero and one, the probability mass 

function of the Log-variant distribution is:  

𝑓𝑓Log−vairant(𝑥𝑥;𝑝𝑝,𝜋𝜋0,𝜋𝜋1) 

= 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + 𝜋𝜋1𝛿𝛿1(𝑥𝑥) + (1 − 𝜋𝜋0 − 𝜋𝜋1)𝑓𝑓𝐿𝐿𝑠𝑠𝐿𝐿𝑝𝑝𝑠𝑠𝑖𝑖𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑐𝑐(𝑥𝑥 − 1; 𝑝𝑝) 

= 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + 𝜋𝜋1𝛿𝛿1(𝑥𝑥) + (1 − 𝜋𝜋0 − 𝜋𝜋1)
−1

ln(1 − 𝑝𝑝)
𝑝𝑝𝑥𝑥−1

𝑥𝑥 − 1
, 

where 𝛿𝛿0(·) and 𝛿𝛿1(·) indicate the point mass function at zero and one, respectively, and 𝜋𝜋0 and 𝜋𝜋1 

are the corresponding probabilities. 𝑝𝑝 is a parameter ranging from 0 to 1 in Logarithmic distribution. 

We also provide five discrete distributions for modeling peak summation as alternatives, namely 

Log-variantB (another variant of Logarithmic distribution different with Log-variant), NB (Negative 

Binomial), ZINB (Zero-Inflated Negative Binomial), NB-variant (a variant of Negative Binomial 

distribution) and ZIP distributions. For simplicity of notation, we assume 𝑥𝑥 as a random variable with 

no practical meaning in the following discussion.  

The probability mass function (PMF) of the Log-vairantB distribution is: 

𝑓𝑓Log−vairantB(𝑥𝑥;𝑝𝑝,𝜋𝜋) 

= 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)𝑓𝑓Logarithmic(𝑥𝑥; 𝑝𝑝) 

= 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)
−1

ln(1 − 𝑝𝑝)
𝑝𝑝𝑥𝑥

𝑥𝑥
 

where 𝛿𝛿0(·)  indicates the point mass at zero, and 𝜋𝜋0  is the corresponding probability. 𝑝𝑝  is a 

parameter ranging from 0 to 1 in Logarithmic distribution. 

The PMF of the NB distribution is: 

𝑓𝑓NB(𝑥𝑥; 𝑟𝑟,𝑝𝑝0) =
(𝑥𝑥 + 𝑟𝑟 − 1)!
(𝑟𝑟 − 1)! 𝑥𝑥!

𝑝𝑝0𝑥𝑥(1− 𝑝𝑝0)𝑥𝑥 

where 𝑟𝑟 denotes the number of successes, and 𝑝𝑝0 denotes the probability of success on each trial. 

The PMF of the ZINB distribution is: 

𝑓𝑓ZINB(𝑥𝑥;𝜋𝜋0, 𝑟𝑟,𝑝𝑝0) = 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)𝑓𝑓NB(𝑥𝑥; 𝑟𝑟,𝑝𝑝0) 

The PMF of the NB-variant distribution is: 

𝑓𝑓NB−variant(𝑥𝑥;𝜋𝜋0, 𝑟𝑟,𝑝𝑝0) = 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)𝑓𝑓NB(𝑥𝑥 − 1; 𝑟𝑟,𝑝𝑝0) 

The PMF of the ZIP distribution is: 
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𝑓𝑓ZIP(𝑥𝑥;𝜋𝜋0, 𝑟𝑟,𝑝𝑝0) = 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)𝑓𝑓Poisson(𝑥𝑥; 𝜆𝜆) = 𝜋𝜋0𝛿𝛿0(𝑥𝑥) + (1 − 𝜋𝜋0)
𝜆𝜆𝑥𝑥𝑒𝑒−𝜆𝜆

𝑥𝑥!
 

where 𝜆𝜆 denotes the mean parameter of Poisson distribution. 
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Supplementary Note 3: Two operations for parameter matrix correction  

First, we developed two activation functions adaptive to different modes. For the discrete or continuous 

mode, we provide a piecewise function 𝑓𝑓1(·)  by integrating an exponential function and a linear 

function as the activation function:  

𝑓𝑓1(𝑥𝑥) = �
𝑒𝑒𝑥𝑥,𝑥𝑥 ≤ 𝑘𝑘1

𝑘𝑘1𝑒𝑒𝑝𝑝1−1𝑥𝑥 + 𝑒𝑒𝑝𝑝1 − 𝑘𝑘1,𝑥𝑥 > 𝑘𝑘1
, 

where 𝑘𝑘1 is a parameter to control the variance of simulated data, and a higher 𝑘𝑘1 value brings higher 

variance of peak accessibility. In this study 𝑘𝑘1 is fixed to 2. For pseudo-cell-type mode, we expect the 

diversity within a cell type less than between different cell states, and a Sigmod-format function 𝑓𝑓2(·) 

with a smaller slope is provided as the activation function:  

𝑓𝑓2(𝑥𝑥) =
1

1 + 𝑘𝑘2−𝑥𝑥
, 

where 𝑘𝑘2 is a parameter to adjust the steepness of the activation function curve and fixed to 2 in this 

study. After this operation, the parameter matrix 𝚲𝚲� is transformed into an activated parameter matrix 

𝚲𝚲�. 

Second, simCAS conducts correction with ℧𝑙𝑙 , ℧𝑐𝑐  and ℧𝑝𝑝  in turn, to make simulated data 

preserve the cell-wise and peak-wise properties as with the real. For instance, simCAS performs the 

library size correction as follows: 

(1) Multiply the CEV 𝒍𝒍 and the CEM 𝑪𝑪, and obtain  �̂�𝒍 ∈ ℝ1×𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐. 

(2) Randomly sample 𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 values from ℧𝑙𝑙 to form the synthetic library size set 𝐿𝐿 ∈ ℝ𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐. 

(3) Sort the elements of �̂�𝒍 and values in 𝐿𝐿 to obtain the sorting indices. 

(4) Obtain the vector �̂�𝒍′ ∈ ℝ1×𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 of the library sizes of synthetic cells by replacing the elements 

in �̂�𝒍 with the sampled values from 𝐿𝐿 one by one according to the sorting indices. 

(5) For each column vector (represents each cell) in 𝚲𝚲�, divide each element by the sum of the vector, 

multiply all elements by the corresponding element (represents the associated cell) in �̂�𝒍′, and 

obtain the corrected parameter matrix 𝚲𝚲�. 

After correction of library size, simCAS obtains the corrected parameter matrix 𝚲𝚲�. simCAS then 

performs the peak summation correction as follows: 
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(1) Randomly sample 𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝  values from ℧𝑝𝑝  to form the synthetic peak summation set 𝑃𝑃 ∈

ℝ𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

(2) Sum the elements of each row vector in 𝚲𝚲�, and obtain 𝒑𝒑� ∈ ℝ𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×1 

(3) Sort the elements of 𝒑𝒑� and values in 𝑃𝑃 to obtain the sorting indices. 

(4) Obtain the vector 𝒑𝒑�′ ∈ ℝ𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×1  of the peak summations of synthetic cells by replacing the 

elements in 𝒑𝒑� with the sampled values from 𝑃𝑃 one by one according to the sorting indices. 

(5) For each row vector (represents each peak) in 𝚲𝚲�, divide each element by the sum of the vector, 

and then multiply all elements by the corresponding element (represents the associated cell) in 

𝒑𝒑�′. Then obtain the corrected parameter matrix �́�𝚲. 

After correction of peak summation, simCAS obtains the corrected parameter matrix �́�𝚲. simCAS 

finally performs the cell sparsity correction as follows: 

(1) Randomly sample 𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 values from ℧𝑐𝑐 to form the synthetic cell sparsity set 𝑆𝑆 ∈ ℝ𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐. 

(2) For the 𝑗𝑗th synthetic cell, randomly select a value in 𝑆𝑆 without replacement, called 𝑠𝑠𝑗𝑗, as the 

sparsity of the cell.  

(3) For the 𝑗𝑗th synthetic cell, obtain 𝑘𝑘𝑗𝑗 and 𝜋𝜋𝑗𝑗 by solving two nonlinear equations as follows: 

⎩
⎪
⎨

⎪
⎧ ��1 − 𝜋𝜋𝑗𝑗���́�𝜆𝑚𝑚,𝑗𝑗𝑘𝑘𝑗𝑗�

𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐

𝑚𝑚=1

=  � �́�𝜆𝑚𝑚,𝑗𝑗

𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐

𝑚𝑚=1

 

𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝜋𝜋𝑗𝑗 + �1 − 𝜋𝜋𝑗𝑗� � 𝑒𝑒−�́�𝜆𝑚𝑚,𝑗𝑗𝑝𝑝𝑗𝑗

𝑛𝑛𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐

𝑚𝑚=1

= 𝑛𝑛𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝(1− 𝑠𝑠𝑗𝑗)

 

where 𝑘𝑘𝑗𝑗  and 𝜋𝜋𝑗𝑗  denote a scaling factor and a zero-setting probability of the 𝑗𝑗th synthetic cell, 

respectively, and �́�𝜆𝑚𝑚,𝑗𝑗 is the element in �́�𝚲 corresponding to the 𝑚𝑚th peak and the 𝑗𝑗th cell. 

(4) For the 𝑗𝑗th synthetic cell, randomly set elements of the corresponding column vector to zero with 

the probability 𝜋𝜋𝑗𝑗, and then multiple the remaining non-zero elements by 𝑘𝑘𝑗𝑗. 

(5) For each cell, performing the processing from (2) to (4), obtain the final parameter matrix 𝚲𝚲. 
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Supplementary Note 4: Details of the optional steps in simCAS 

simCAS could generates multi-batch data by incorporating the batch effects in the discrete simulation 

mode. For simulating data with the technical batch effect, we add the Gaussian noise on the corrected 

parameter matrix 𝚲𝚲: 

𝚲𝚲′ = 𝚲𝚲 + 𝜀𝜀1 , 

where 𝜀𝜀1 is Gaussian noise sampled from 𝒩𝒩(𝜇𝜇𝑠𝑠 ,𝜎𝜎𝑠𝑠2). 𝜀𝜀1 can be deemed as technical variations when 

sequencing reads and results in an evident variation in library size values, and 𝜇𝜇𝑠𝑠 and 𝜎𝜎𝑠𝑠 control the 

variance of batches and degree of technical noise, respectively. 𝚲𝚲′ and 𝚲𝚲 generated from the common 

CEM guarantees the ground truth of same cells from different batches. With different levels of Gaussian 

noise added on 𝚲𝚲, data with multiple technical batch effects can be generated. Note that the technical 

variance may be different in the cell types with different library sizes, we add Gaussian noise proportion 

to the average cell-wise summations of 𝚲𝚲 in different cell populations. 

The biological batch effect can be directly modeled by adding Gaussian noise to the PEM: 

𝑷𝑷′ = 𝑷𝑷 + 𝜀𝜀2 , 

where 𝜀𝜀2 is Gaussian noise sampled from 𝒩𝒩�𝜇𝜇𝑏𝑏 ,𝜎𝜎𝑏𝑏2�. Then synthetic data with different batches is 

generated with a common CEM, which provides the ground truth of cells with same population.  

The interactive peaks are constructed by assigning similar vectors in the PEM generation step. First, 

we pick up high chromatin accessibility regions to define hubs of interactive peaks, and then the 

correlation is added on the peaks of each hub. In a defined peak hub, randomly select some peaks as the 

interactive peaks and remaining peaks are non-interactive peaks. For interactive peaks in the hub, we 

first generate a general peak embedding vector 𝒑𝒑� ∈ R1×𝑛𝑛𝑝𝑝𝑚𝑚𝑒𝑒𝑝𝑝𝑒𝑒 , then the embedding vector of each 

interactive peak is generated by: 

𝒑𝒑𝑗𝑗′ = 𝒑𝒑� + 𝜀𝜀3 , 

where 𝜀𝜀3 is sampled from 𝒩𝒩(0,𝜎𝜎𝑝𝑝2) and 𝜎𝜎𝑝𝑝 is a parameter to control the degree of co-accessibility 

among interactive peaks.  
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Supplementary Note 5: Details for baseline methods implementations, downstream 

analysis methods for benchmarking, and the procedure for data visualization 

For simATAC simulation, we used simATAC (Navidi, et al., 2021) R package to directly simulate peak-

by-cell matrix by regarding the peaks as bins in the input matrix. Since the scMultisim R package lacks 

the interface to simulate the data resembling real cell type, we implemented scMultisim with the same 

settings (Li, et al., 2022) as our framework. 

For benchmarking clustering methods, we tested Leiden clustering, k-means clustering and 

Hierarchical clustering (HC) methods (Chen, et al., 2019) using the simulated data generated by 

simCAS in the discrete mode. For benchmarking trajectory inference methods, we tested Monocle3 

(Cao, et al., 2019) with different parameters. For benchmarking methods of data integration or cis-

regulatory interaction inference, we also tested Harmony (Korsunsky, et al., 2019) and Cicero (Pliner, 

et al., 2018) on synthetic data with multiple batches and cis-regulatory interactions, respectively. 

For data visualization, we first select 50000 highly accessible peaks, then perform term frequency-

inverse document frequency (TF-IDF) and principal component analysis (PCA) transformation to 

reduce dimensions to 50, and finally apply uniform manifold approximation and projection (UMAP) to 

project the cells into a 2-dimensional space. Unless otherwise stated, we perform the above pipeline for 

visualization in this study.  
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Supplementary Note 6: Evaluation metrics 

Suppose 𝑅𝑅 is the sorted real statistic values 𝑆𝑆 is the sorted simulated statistic values, MAD, MAE 

and RMSE are calculated as following equations: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅, 𝑆𝑆) = 𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛(|𝑅𝑅 − 𝑆𝑆|) 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅, 𝑆𝑆) = 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(|𝑅𝑅 − 𝑆𝑆|) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀(𝑅𝑅, 𝑆𝑆) = �𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛((𝑅𝑅 − 𝑆𝑆)2) 

PCC calculates linear correlation between 𝑅𝑅 and 𝑆𝑆: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅, 𝑆𝑆) =
cov(𝑅𝑅, 𝑆𝑆)
𝜎𝜎𝑅𝑅𝜎𝜎𝑆𝑆

 , 

where cov is the variance and 𝜎𝜎 is the standard deviation. 

JSD is a measurement of the similarity between two probability distributions. For the reason that 

integral of continuous variable is incapable be calculated directly, JSD is merely calculated to compare 

discrete statistic peak mean: 

𝐽𝐽𝑆𝑆𝑀𝑀(𝑅𝑅, 𝑆𝑆) =
1
2
𝑀𝑀(𝑅𝑅||𝑀𝑀) +

1
2
𝑀𝑀(𝑆𝑆||𝑀𝑀) 

𝑀𝑀 =
1
2

(𝑅𝑅 + 𝑆𝑆) 

𝑀𝑀(𝑃𝑃||𝑄𝑄) = Σ𝑥𝑥𝑃𝑃(𝑥𝑥) log�
𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥)� , 

where 𝑀𝑀 is Kullback–Leibler divergence, 𝑃𝑃 and 𝑄𝑄 are two probability distributions. 

KS statistic quantifies the distance between the empirical distribution of two samples, which is 

derived from a nonparametric test of the equality of two continuous samples named KS test. We apply 

it on continuous statistics such as the log-transformed library size and the cell sparsity. 

Median integration local inverse Simpson’s index (miLISI) is a score first proposed to evaluate the 

integration of data with different batches. Gaussian kernel-based distributions of neighborhoods of the 

mixing batches are built in low-dimensional embedding space. iLISI is then computed for each 

neighborhood: 

iLISI =
1

Σ𝑏𝑏=1𝐵𝐵 𝑝𝑝(𝑏𝑏)
 , 

where 𝑝𝑝(𝑏𝑏) refers to the probability that two sampling neighbors are from the same batch 𝑏𝑏 and 𝐵𝐵 

is the number of batches. By considering original data and synthetic data as different batches, this score 

can directly be adapted to quantify the similarity between synthetic cells and real cells. This score ranges 
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from 1 to 2, and a larger value indicates a greater similarity. The closer miLISI is to 2, the local 

neighborhood has more equal synthetic and real cells. We calculate miLISI value on the 2D UMAP 

embedding space containing real and synthetic cells using the R package LISI. 

Denoting ground truth with 𝑔𝑔𝑔𝑔 and clustering labels with 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚. Homo is calculated using: 

𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚) = 1 −
𝐻𝐻(𝑔𝑔𝑔𝑔|𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚)
𝐻𝐻(𝑔𝑔𝑔𝑔)

, 

where 𝐻𝐻 is the entropy and 𝐻𝐻(𝑔𝑔𝑔𝑔|𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚) is the conditional entropy of ground truth clusters given the 

unsupervised predictions. 

AMI is calculated using: 

𝑀𝑀𝑀𝑀𝐼𝐼(𝑔𝑔𝑔𝑔, 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚) =
𝑀𝑀𝐼𝐼 − 𝑀𝑀[𝑀𝑀𝐼𝐼]

𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛�𝐻𝐻(𝑔𝑔𝑔𝑔),𝐻𝐻(𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚)� − 𝑀𝑀[𝑀𝑀𝐼𝐼]
, 

where 𝑀𝑀𝐼𝐼 is the mutual information and 𝑀𝑀(⋅) is the expectation function. 

ARI is calculated using: 

𝑀𝑀𝑅𝑅𝐼𝐼(𝑔𝑔𝑔𝑔,𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚) =
𝑅𝑅𝐼𝐼 − 𝑀𝑀[𝑅𝑅𝐼𝐼]

max(𝑅𝑅𝐼𝐼)− 𝑀𝑀[𝑅𝑅𝐼𝐼]
, 

where Rand index (RI) is a similarity measurement between ground truth labels and predicted labels. 

F1 score is calculated as follows: 

F1 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 1
2 (𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹)

 , 

where 𝑇𝑇𝑃𝑃 , 𝐹𝐹𝑃𝑃 , 𝑇𝑇𝐹𝐹 , 𝐹𝐹𝐹𝐹  represent true positive, false positive, true negative and false negative, 

respectively. 
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Supplementary Note 7: Analysis of the computing resources 

To measure the CPU time and memory usage of simCAS, we performed simulations with varying 

cell numbers (500, 1,000, 2,000, and 5,000) and peak numbers (10,000, 20,000, 50,000, and 100,000), 

while keeping other parameters at their default values. The measurement interval for CPU time and 

memory usage encompasses the period from reading the training dataset to the completion of peak-by-

cell matrix generation. The peak-by-cell matrix of Buenrostro2018 dataset (Buenrostro, et al., 2018) is 

used as the training dataset for the comparisons across different simulators. Memory usage is calculated 

as the peak value recorded during the simulation. For python-based simulators, we employed the 

tracemalloc Python module to determine memory usage, while the R package peakRAM was utilized 

for R-based simulators.  

Supplementary Fig. S7a-b presents a comprehensive analysis of simCAS's performance based on 

CPU time and memory usage across three different modes with varying parameter settings of peak 

number and cell number. Supplementary Fig. S7a demonstrates a consistent linear increase in CPU time 

with an increasing cell number for each simulation mode. Interestingly, certain isolated scenarios exhibit 

shorter CPU times with smaller peak numbers. For instance, the CPU time with 50,000 peaks is 

observed to be shorter than that with 100,000 peaks. It is worth noting that the cell-wise correction 

within this step tends to be more time-consuming than the peak-wise correction. Consequently, due to 

random sampling variations, simulations may require less time with a higher peak number while 

maintaining the same cell number. Supplementary Fig. S7b showcases the linear growth pattern of 

memory usage, which corresponds to both the cell number and peak number. This can be attributed to 

the predominant factor occupying storage space in simCAS, namely the generated parameter matrix. 

Each element of this matrix represents a non-zero floating-point value. Notably, generating a peak-by-

cell matrix with 100,000 peaks and 5,000 cells in pseudo-cell-type mode requires approximately 120 

seconds and 8 GB of memory, suggesting that simCAS can be compatible with personal laptops. To 

summarize, considering the linear increase in CPU time and memory usage with both cell number and 

peak number, simCAS can be served as a valuable simulator for generating scCAS data with a 

substantial number of cells and peaks. 

We further conducted a comparative analysis of simCAS, simATAC and scMultisim, focusing on 

their CPU time and memory usage. Using the peak-by-cell matrix of Buenrostro2018 dataset as training 
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data, we first fixed the peak number of simulated data to 169,221 (as the real Buenrostro2018 dataset) 

and varied the cell number from 500 to 5,000 to examine the impact of cell number on CPU time and 

memory usage. Supplementary Fig. S7c illustrates the relationship between cell number and computing 

resourses required for simCAS, scMultisim, and simATAC. Both simCAS and scMultisim exhibit a 

linear proportionality with respect to the cell number, indicating increased computing resources as the 

number of simulated cells grows. Conversely, simATAC displays a less pronounced sensitivity to 

changes in the number of simulated cells. When simulating a large number of cells, scMultisim exhibits 

the longest computation time, while simCAS requires the largest memory allocation. We then fixed the 

cell number of simulated data to 2,000 and varied the peak number from 10,000 to 100,000. As shown 

in Supplementary Fig. S7d, the memory usage of simCAS is linearly proportional to the peak number, 

while the CPU time is not that sensitive to the increments of the peak number. For scMultisim, both the 

CPU time and memory usage demonstrate a linear correlation with the peak number. In contrast, 

simATAC displays relatively stable computing resource utilization across different peak number 

settings. The results align with the underlying principles of each simulator. In the framework of simCAS, 

parameter matrix correction step consumes the most time and occupies the most storage space, and cell-

wise correction is significantly more time-cosuming than the peak-wise correction. In the framework 

of scMultisim, the key step that significantly impacts computing resources is the value sorting of the 

parameter matrix, with CPU time and memory usage governed by both peak number and cell number. 

Conversely, simATAC primarily consumes computing resources during the estimation of the input peak-

by-cell matrix, suggesting that the CPU time and memory usage of simATAC are primarily influenced 

by the shape of the input peak-by-cell matrix rather than the simulation matrix itself. 
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Supplementary Figures 

 

Supplementary Fig. S1. The illustration of details of cell embedding matrix (CEM) generation 

for different modes. For pseudo-cell-type mode, the cell embeddings are generated from the 

same Gaussian distribution for different cell types, and the real manifold can be captured by 

the parameter matrix correction step. For discrete mode, the cell embeddings are generated 

based on the input covariance matrix, the values of which encode the relationship of cell 

populations. For continuous mode, the cell embeddings are generated from an input Newick 

tree, which encodes the predefined differentiation trajectories. 
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Supplementary Fig. S2. The comparison of the distributions of peak mean, library size and 

cell sparsity between real data and synthetic data for 10 cell types in Buenrostro2018 dataset. 
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Supplementary Fig. S3. Comparisons of synthetic data and real data in Li2021 dataset. (a) 

Comparison results of three statistics between synthetic cell types and real cell types measured 

by six metrics. (b) UMAP visualization of the synthetic datasets and real dataset. (c) Spearman 

correlation coefficients of synthetic and real datasets on the pairs of top 2000 highly variable 

peaks selected in real data.  
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Supplementary Fig. S4. Comparisons of synthetic data and real data in Pressl2018 dataset. (a) 

Comparison results of three statistics between synthetic cell types and real cell types measured 

by six metrics. (b) UMAP visualization of the synthetic datasets and real dataset. (c) Spearman 

correlation coefficients of synthetic and real datasets on the pairs of top 2000 highly variable 

peaks selected in real data.  
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Supplementary Fig. S5. Comparisons of synthetic data and real data in Chiou2021 dataset. (a) 

Comparison results of three statistics between synthetic cell types and real cell types measured 

by six metrics. (b) UMAP visualization of the synthetic datasets and real dataset. (c) Spearman 

correlation coefficients of synthetic and real datasets on the pairs of top 2000 highly variable 

peaks selected in real data. 
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Supplementary Fig. S6. Estimation performance of six discrete distributions on fitting the 

peak summation of real datasets. The estimation performance is measured by JS divergence. 

Four real datasets are utilized in the evaluation: (a) Buenrostro2018 dataset, (b) Li2021 dataset, 

(c) Pressl2018 dataset, and (d) Chiou2021 dataset. 
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Supplementary Fig. S7. The analysis for computing resources. (a-b) The running time (a) and 

memory usage (b) of simCAS across three modes with varying parameter settings of peak 

number and cell number. (c-d) The CPU time and memory usage of simCAS, simATAC, and 

scMultisim with varying parameter settings of peak number (c) and cell number (d). 
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Supplementary Fig. S8. QQ-plots of statistics’ comparison between real data and synthetic 

data. (a) Comparison for datasets A1-A3. (b) Comparison for datasets C1-C3. 
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Supplementary Fig. S9. UMAP visualization of the simulated datasets for cell clustering 

benchmarking and the clustering result. (a) UMAP visualization of datasets B1-B6, colored by 

the predefined cell populations. (b) An illustration of the clustering result of Leiden clustering, 

K-means clustering and hierarchical clustering applied on the dataset B3. 
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Supplementary Fig. S10. UMAP visualization of a synthetic dataset with simulated technical 

batch effect. Data of batch1 is generated with populations of 3 (the number of cells in cell 

population A, B and C is set to 600, 600 and 300, respectively) and a unit diagonal matrix as 

the covariance matrix. Denote 𝚲𝚲𝑖𝑖  is part of 𝚲𝚲  specifically for 𝑖𝑖 th cell population, add 

Gaussian noise on 𝚲𝚲𝑖𝑖 proportional to the average cell-wise summations of 𝚲𝚲𝑖𝑖 to generate 

data batch2 with technical batch effect compared to data batch1. In this experiment the 

Gaussian noise is added with mean of 1.88, 0.66 and 0.50 for population A, B and C, 

respectively, and a fixed standard deviation of 0.5. Then the matrices of data batch1 and data 

batch2 are concatenated to acquire the data with technical batch effect. 
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Supplementary Fig. S11. The illustration of four benchmark tasks on the synthetic data 

generated by simCAS_Bernoulli using Pressl2018 dataset as input. Except for the difference 

described in Supplementary Note 1, the generation of these binary synthetic matrices is 

consistent with the descriptions in the manuscript. (a) UMAP visualization of the clustering 

results of Leiden clustering, K-means clustering and Hierarchical clustering on the simulated 

discrete data. (b) UMAP visualization of cells with ground-truth trajectories and the inference 

result of Monocle3. (c) UMAP visualization of cells with technical batch effects and the 

integration result of Harmony. (d) The predicted connections by Cicero on the peak hub of gene 

Rgs7 region. 
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Supplementary Table S1 Summary of datasets used in this study. 
Dataset Tissue Protocol Number of cells Number of peaks Number of cell types Data accession 

Buenrostro2018 Blood (human) scATAC-seq (Fluidigm C1) 1,931 169,221 10 GSE96772 
Li2021 Cotex (mouse) snATAC-seq 5,532 154,308 16 GSM5273008

  

 

 

Pressl2018 Forebrain (mouse) snATAC-seq 2,062 115,763 10 GSE100033 
Chiou2021 Islet (human) snATAC-seq 15,298 91,754 12 GSE160472 

 

simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim
Peak mean 0.005±0.003 0.011±0.005 0.032±0.014 0.023±0.008 0.030±0.011 0.178±0.044 0.063±0.022 0.071±0.026 0.478±0.094 0.032±0.020 0.042±0.021 0.999±0.002 0.013±0.004 0.025±0.008 0.119±0.056

log(library szie) 0.075±0.056 0.094±0.043 0.151±0.068 0.088±0.060 0.105±0.040 0.179±0.077 0.112±0.073 0.127±0.043 0.235±0.087 0.009±0.010 0.010±0.008 0.023±0.018 0.091±0.055 0.112±0.036 0.154±0.043
Cell sparsity 0.002±0.002 0.032±0.013 0.005±0.002 0.003±0.002 0.032±0.009 0.005±0.002 0.004±0.002 0.035±0.009 0.007±0.003 0.014±0.016 0.017±0.011 0.016±0.006 0.094±0.058 0.433±0.070 0.159±0.044

Peak variance 0.017±0.011 0.020±0.009 0.063±0.027 0.303±0.092 0.161±0.040 0.406±0.111 2.717±0.913 0.676±0.217 1.288±0.406 0.226±0.060 0.163±0.049 0.999±0.002 0.194±0.036 0.177±0.029 0.421±0.116
Cell variance 0.209±0.100 0.109±0.035 0.045±0.027 0.240±0.088 0.152±0.040 0.060±0.038 0.299±0.108 0.231±0.112 0.109±0.078 0.023±0.022 0.039±0.047 0.024±0.014 0.320±0.067 0.330±0.085 0.159±0.051
Peak sparsity 0.003±0.003 0.012±0.005 0.015±0.006 0.017±0.005 0.035±0.009 0.068±0.016 0.042±0.009 0.068±0.013 0.149±0.024 0.162±0.025 0.037±0.018 0.999±0.002 0.028±0.004 0.021±0.005 0.126±0.057

simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim
Peak mean 0.001±0.002 0.002±0.002 0.006±0.005 0.005±0.001 0.006±0.002 0.030±0.007 0.074±0.025 0.069±0.026 0.121±0.028 0.571±0.123 0.439±0.096 1.000±0.001 0.007±0.002 0.004±0.005 0.166±0.113

log(library szie) 0.025±0.015 0.029±0.030 0.243±0.076 0.030±0.017 0.035±0.028 0.332±0.086 0.040±0.020 0.047±0.030 0.484±0.114 0.007±0.005 0.006±0.004 0.047±0.035 0.075±0.034 0.077±0.051 0.271±0.082
Cell sparsity 0.000±0.000 0.000±0.000 0.003±0.001 0.000±0.000 0.001±0.000 0.003±0.000 0.001±0.000 0.001±0.000 0.004±0.001 0.012±0.010 0.009±0.006 0.014±0.013 0.074±0.033 0.084±0.044 0.260±0.082

Peak variance 0.001±0.002 0.002±0.002 0.006±0.005 0.007±0.003 0.009±0.003 0.034±0.012 0.623±0.436 0.617±0.437 1.032±0.829 0.865±0.051 0.691±0.059 1.000±0.000 0.065±0.019 0.052±0.037 0.451±0.213
Cell variance 0.005±0.003 0.006±0.004 0.007±0.002 0.008±0.006 0.008±0.007 0.011±0.005 0.014±0.012 0.014±0.013 0.025±0.014 0.091±0.140 0.079±0.126 0.090±0.075 0.319±0.097 0.335±0.103 0.357±0.070
Peak sparsity 0.001±0.002 0.002±0.002 0.006±0.005 0.004±0.001 0.006±0.002 0.028±0.006 0.009±0.003 0.012±0.004 0.079±0.011 0.056±0.026 0.075±0.042 1.000±0.003 0.007±0.002 0.004±0.005 0.167±0.113

simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim
Peak mean 0.002±0.002 0.003±0.002 0.007±0.003 0.004±0.001 0.005±0.001 0.020±0.004 0.008±0.001 0.010±0.002 0.064±0.008 0.111±0.025 0.123±0.030 1.000±0.003 0.014±0.002 0.030±0.004 0.224±0.096

log(library szie) 0.022±0.008 0.030±0.014 0.146±0.050 0.036±0.015 0.039±0.016 0.247±0.060 0.056±0.026 0.054±0.024 0.421±0.076 0.007±0.004 0.008±0.005 0.091±0.022 0.061±0.025 0.069±0.026 0.215±0.055
Cell sparsity 0.000±0.000 0.000±0.000 0.002±0.000 0.000±0.000 0.000±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.014±0.008 0.014±0.010 0.029±0.014 0.061±0.025 0.069±0.026 0.215±0.055

Peak variance 0.002±0.002 0.002±0.002 0.007±0.003 0.004±0.001 0.005±0.001 0.016±0.003 0.007±0.001 0.009±0.002 0.036±0.003 0.095±0.020 0.129±0.031 1.000±0.003 0.111±0.014 0.172±0.023 0.560±0.147
Cell variance 0.000±0.000 0.000±0.000 0.002±0.000 0.000±0.000 0.000±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.002±0.000 0.013±0.008 0.014±0.010 0.029±0.014 0.061±0.025 0.069±0.026 0.215±0.054
Peak sparsity 0.002±0.002 0.003±0.002 0.007±0.003 0.004±0.001 0.005±0.001 0.020±0.004 0.008±0.001 0.010±0.002 0.064±0.008 0.111±0.025 0.123±0.030 1.000±0.003 0.014±0.002 0.030±0.004 0.224±0.096

simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim simCAS simATAC scMultiSim
Peak mean 0.001±0.001 0.001±0.001 0.004±0.004 0.008±0.002 0.008±0.004 0.045±0.011 0.024±0.006 0.022±0.015 0.163±0.027 0.078±0.062 0.057±0.052 0.999±0.003 0.022±0.005 0.024±0.009 0.183±0.150

log(library szie) 0.086±0.078 0.105±0.085 0.158±0.056 0.122±0.068 0.118±0.089 0.196±0.067 0.186±0.091 0.148±0.109 0.261±0.084 0.012±0.008 0.008±0.009 0.031±0.021 0.097±0.054 0.094±0.065 0.133±0.050
Cell sparsity 0.001±0.000 0.007±0.003 0.001±0.000 0.001±0.001 0.009±0.003 0.002±0.001 0.002±0.001 0.011±0.004 0.003±0.001 0.016±0.020 0.019±0.025 0.025±0.023 0.106±0.059 0.314±0.021 0.139±0.057

Peak variance 0.003±0.002 0.003±0.003 0.009±0.008 0.053±0.016 0.029±0.005 0.083±0.020 0.420±0.126 0.115±0.045 0.276±0.050 0.229±0.119 0.153±0.134 0.999±0.003 0.171±0.050 0.194±0.051 0.451±0.241
Cell variance 0.033±0.018 0.019±0.007 0.007±0.002 0.040±0.020 0.025±0.008 0.009±0.003 0.055±0.026 0.035±0.009 0.018±0.008 0.032±0.037 0.029±0.025 0.030±0.026 0.267±0.057 0.323±0.069 0.130±0.052
Peak sparsity 0.001±0.001 0.002±0.002 0.002±0.002 0.007±0.002 0.011±0.003 0.021±0.005 0.019±0.003 0.028±0.007 0.067±0.011 0.249±0.030 0.054±0.048 0.999±0.003 0.033±0.013 0.036±0.010 0.184±0.150

Chiou2021
MAD MAE RMSE 1-PCC KSS

Pressl2018
MAD MAE RMSE 1-PCC KSS

Supplementary Table S2. Comparisons of statistics between synthetic data and real data by metrics.
Buenrostro2018

MAD MAE RMSE

MAD MAE

1-PCC KSS
Li2021

RMSE 1-PCC KSS/JSD
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