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SUMMARY
Insufficient sleep impairs glucose regulation, increasing the risk of diabetes. However, what it is about the
human sleeping brain that regulates blood sugar remains unknown. In an examination of over 600 humans,
we demonstrate that the coupling of non-rapid eye movement (NREM) sleep spindles and slow oscillations
the night before is associated with improved next-day peripheral glucose control. We further show that this
sleep-associated glucose pathway may influence glycemic status through altered insulin sensitivity, rather
than through altered pancreatic beta cell function. Moreover, we replicate these associations in an indepen-
dent dataset of over 1,900 adults. Of therapeutic significance, the coupling between slow oscillations and
spindles was the most significant sleep predictor of next-day fasting glucose, even more so than traditional
sleep markers, relevant to the possibility of an electroencephalogram (EEG) index of hyperglycemia. Taken
together, these findings describe a sleeping-brain-body framework of optimal human glucose homeostasis,
offering a potential prognostic sleep signature of glycemic control.
INTRODUCTION

Diabetes—a condition of marked glucose dysregulation—is a

major cause of death globally. TheWorld Health Organization es-

timates that over 420 million people are suffering from the condi-

tion, which carries a direct societal cost of $760 billion each

year.1 These preventable mortality and financial costs are pro-

jected to increase markedly over the next decade.1,2

Experimental studies in humans and animals have demon-

strated that one causal factor impairing blood glucose equilib-

rium is insufficient sleep.3,4 Both acute and chronic partial

sleep restriction, including that of non-rapid eye movement

(NREM) slow-wave sleep, impair glucose tolerance and insulin

sensitivity.5–8 Conversely, sleep extension improves glucose

metabolism.9

But why? Currently, the mechanism(s) through which sleep

optimally governs next-day glucose homeostasis in humans re-

mains unknown. A recent seminal study in rodents has offered

one candidate pathway.10 Specifically, hippocampal sharp-

wave ripples—which are temporally coupled with NREM slow

oscillations (SOs) and sleep spindles11–13—were associated

with the moment-to-moment, top-down regulation of peripheral

blood glucose through activation of the hypothalamus (which it-

self provides autonomic control of peripheral circulating hor-

mones, including insulin).10,14

Collectively, these findings lead to the untested hypothesis

that one function of synchronized (i.e., temporally coupled)

NREM SO-sleep spindle events in humans is the brain-body

regulation of optimal glucose homeostasis. More specifically,
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that both the extent and quality of coupled NREM SO-spindle

events in humans would predict optimal next-day regulation of

peripheral blood glucose levels.

RESULTS

In short (see STARMethods and Table S1), a total of 647 humans

with overnight polysomnography data and next-morning

glucose and insulin measurements were analyzed to test the

experimental hypothesis. Together with electrophysiological

analysis of sleep oscillations and circulating morning measures

of glucose, insulin resistance and pancreatic beta cell function

were further quantified using the validated homeostatic model

assessment of insulin resistance and beta-cell function

(HOMA-IR and HOMA-B respectively; see STAR Methods and

Figure S1 for details). Using these evaluations, we specifically

tested the prediction that coupled NREM SO spindles the night

before are associated with improved next-day peripheral blood

glucose levels. To examine the robustness of these findings,

we then tested these same associations between NREM SO-

spindle coupling and peripheral blood glucose levels in an inde-

pendent, larger replication cohort of 1,996 humans with the

same sleep and glucose indices.

Focusing first on the cohort of 647 participants, and as ex-

pected, NREM SOs (<1 Hz) were functionally coupled with sleep

spindles (mean, 87.6%; SD, 3.35; Table S1), such that the phase

of the SO modulated the amplitude of the spindle-related fre-

quency band (12–16 Hz), hereafter referred to as SO-spindle

coupling (for conciseness). The strongest coupling between
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er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:raphaelvallat9@gmail.com
mailto:mpwalker@berkeley.edu
https://doi.org/10.1016/j.xcrm.2023.101100
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101100&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Slow oscillations are functionally coupled with sleep spindles

(A) In human NREM sleep, slow oscillations (SOs; <1 Hz) are functionally coupled with sleep spindles, such that the phase of the SO modulates the amplitude of

the spindle-related frequency band (12–16 Hz). The plot shows the average peak-locked SO calculated across all the participants (black thick line) and the

associated time-frequency representation of the coupling strength.15 Warmer color indicates higher phase-amplitude coupling. The strongest coupling between

SO and spindle-related activity occurs �0.4 s after the negative peak of the SO.

(B) Histogram of the average SO-spindle coupling strength across all participants. The coupling strength is calculated using the normalized direct phase

amplitude coupling (ndPAC) method.16 The circular plot shows the histogram of the preferred phase of the coupling. For most individuals, the maximum coupling

occurs near the up phase of the SO (0�).
(C) Example of a coupled SO. The thick black line shows the SO-filtered signal (0.3–1.5 Hz), whereas the orange lines show the associated spindle-filtered (12–

16 Hz) signal, scaled by a factor of 4 for illustrative purposes.

(D) Example of an uncoupled SO from the same individual as in (C). No statistical SO-spindle coupling was detected for this SO (see STAR Methods).
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SO and spindle-related activity occurred �0.4 s after the nega-

tive peak of the SO (Figure 1A; Table S1). For most individuals,

the maximum coupling occurred near the up phase of the SO

(�12.15� ± 28.32�; Figure 1B; Table S1).

Next, we tested the prediction that the degree of such

coupling of NREM sleep oscillations was associated with glyce-

mic control the following day. Supporting the hypothesis, greater

SO-spindle coupling at night predicted lower next-day fasting

blood glucose levels (partial correlation adjusted for age, r =

�0.20, n = 631, p < 0.001; Figure 2A). Beyond the simple quantity
2 Cell Reports Medicine 4, 101100, July 18, 2023
of synchronized SO-spindle events, the strength of the temporal

synchrony (meaning the precision of the timing of the coupling)

between SOs and spindle activity was similarly associated with

lower subsequent fasting blood glucose levels (partial r =

�0.17, n = 631, p < 0.001; Figure 2B).

To date, multiple other factors have been identified that influ-

ence glycemic control beyond sleep. Prima facie examples

include age, gender, race, body mass index (BMI), hypertension,

and even certain sleep features, such as apnea-hypopnea index

(AHI), the quantity of sleep, and specific sleep stages.17,18



Figure 2. SO-spindle coupling predicts lower next-day fasting glucose in the CFS dataset

(A) Partial correlation adjusted for age between the extent of SO-spindle coupling (i.e., the proportion of SOs that are significantly coupled, see STAR Methods)

and next-day fasting blood glucose levels.

(B) Partial correlation adjusted for age between SO-spindle coupling strength and next-day fasting blood glucose levels. Translucent bars represent 95%

bootstrapped confidence intervals. Fasting glucose levels were normalized using a square-root transformation (see STAR Methods). Of note, both coupling

measures remained significantly correlated with fasting glucose levels when removing fasting glucose values above 12 (= 144mg/dL; r =�0.20, p < 0.001 and r =

�0.15, p < 0.001, respectively).
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To ensure that the relationship between SO-spindle coupling

and blood glucose levels was robust, multilevel regression

models were fitted to adjust for these known co-risk factors.

With all factors included in the analysis model (age, gender,

race, BMI, hypertension, AHI, sleep duration, sleep efficiency,

and family as a random effect), the relationships between higher

SO-spindle coupling and lower next-day fasting blood glucose

levels remained significant (p = 0.001 and p = 0.020 respectively;

Tables S2 and S3). This suggests a statistically independent

contribution of coordinated sleep oscillations to the mapping

of next-day blood glucose control beyond these other classic

factors known to govern glycemic state.

An additional sensitivity analysis was conducted adjusting for

diabetes status as an additional covariate, to check if this asso-

ciation is different in normoglycemic versus diabetic individuals.

The association between coupling quantity and lower fasting

blood glucose levels remained at trending significance when

including diabetes status as an additional covariate in the regres-

sion analysis (b = �1.79, p = 0.063). However, the association

between coupling strength and fasting glucose did not remain

significant (b = �2.59, p = 0.133).

Two other important risk factors for metabolic health are smok-

ing status and education level.19,20 These two factors were not

included in the main regression model because of a high missing-

ness of data, which resulted in the exclusion of �30% of partici-

pants from the analysis. However, the association between

coupling quantity and lower fasting blood glucose levels remained

significant when including smoking status and education level as

additional covariates in the regression analysis (b = �4.22, p =

0.002). This was not true of the coupling strength (b = �2.65, p =

0.29). Based on in vivo cellular recordings in animal models, the
proportionofSO-spindlecouplingmaybeabettermetricof hippo-

campal sharp-wave ripple density, which is causally associated

with peripheral blood glucose levels via a hypothalamic signaling

pathway,10 than the strength of that brainwave coupling.13 Taken

together, such selectivity suggests that the proportion of coupled

SO-spindle events represents the most sensitive sleep biomarker

of human next-day glucose homeostasis.

Beyond the predictive relationships with fasted blood glucose

levels, similar associations were observed with 2-h postprandial

glucose values following an oral glucose tolerance test (OGTT).

To assess whether overnight sleep was associated with next-

day OGTT glucose levels, we re-ran the models reported above

for fasting blood glucose and SO-spindle coupling, similarly

adjusted for known risk factors including age, gender, race,

BMI, hypertension status, AHI, sleep duration, and efficiency.

Here again, both the proportion (b = �5.36, p = 0.037) and

strength (b = �9.31, p = 0.044) of SO-spindle coupling were

significantly associated with lower (superior) next-day OGTT

values. Therefore, SO-spindle coupling demonstrated predictive

relationships with glycemic status in both the fasted state, and

the body’s dynamic reaction to a metabolic glucose challenge

that requires a functional regulatory glycemic-control response.

The next series of analyses sought to test the replicability and

robustness of the SO-spindle coupling reflecting a marker of

glucose homeostasis in a larger, independent cohort. For this

purpose, we examined the Multi-Ethnic Study of Atherosclerosis

(MESA21; see STARMethods; Figure 3A; Table S4) of over 1,900

participants involving fasted glucose measurements and over-

night polysomnography sleep recording.

Consistent with the results in the first independent cohort, SO-

spindle coupling during NREM sleep once again predicted
Cell Reports Medicine 4, 101100, July 18, 2023 3



Figure 3. SO-spindle coupling during sleep is a prominent marker of glucose homeostasis, in an independent (MESA) dataset

(A) Histogram of the average SO-spindle coupling strength across all participants in the MESA dataset. The coupling strength is calculated using the ndPAC

method.16 The circular plot shows the histogram of the preferred phase of the coupling. For most individuals, the maximum coupling occurs near the up-phase of

the SO (0�).
(B) Partial correlation adjusted for age between the extent of SO-spindle coupling (i.e., the proportion of SOs that are significantly coupled, see STAR Methods)

and next-day fasting blood glucose levels in the MESA dataset.

(C) Partial correlation adjusted for age between SO-spindle coupling strength and next-day fasting blood glucose levels. Translucent bars represent 95%

bootstrapped confidence intervals, in the MESA dataset. Fasting glucose levels were normalized using a square-root transformation (see STAR Methods).
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superior fasting peripheral blood glucose in this second cohort

(partial correlation adjusted for age, r = �0.103, n = 1968,

p < 0.001; Figure 3B). Moreover, the strength of the temporal

synchrony between SO-spindle coupling was similarly associ-

ated with lower fasting blood glucose levels, as in the first cohort

(partial r = �0.130, n = 1968, p < 0.001 respectively; Figure 3C).

In addition, both the proportion and strength of SO-spindle

coupling remained significantly associated with fasting blood

glucose after adjusting for assessed risk factors (age, gender,

race, BMI, hypertension, AHI, and the quantity and quality of

sleep; p = 0.034 and p = 0.011, respectively; Tables S5 and S6).

Taken together, these results replicate the association be-

tween SO-spindle coupling and fasting blood glucose levels

from the first cohort dataset and support the association of

SO-spindle coupling as a central brain marker of peripheral

body glycemic status.

Glucose homeostasis is governed by several independent

mechanisms, key among them being the function ability of

pancreatic beta cells. Pancreatic beta cells initially sense in-

creases in glucose and lead to the release of insulin and, sepa-

rately, the sensitivity of cells in the body to the signal of insulin

(the impairment of which can result in insulin resistance). Having

established the association between coupled NREM sleep oscil-

lations and peripheral body glucose state, we next sought to

determine whether this sleep biomarker was mapping one or

both of these glucose homeostasis pathways within the first

main cohort. This was accomplished using the added measures

of HOMA-IR, which provides a representation of insulin resis-

tance/sensitivity, while HOMA-B provides an index of insulin

secretory function.22–24

Lower SO-spindle coupling predicted higher (i.e., worse) next-

day insulin resistance the following day, quantified using the vali-

dated metric of HOMA-IR—the marker of insulin sensitivity (r =

�0.213, n = 634, p < 0.001; Figure 4A). However, suggesting a

mechanistic dissociation, no such sleep associations were iden-
4 Cell Reports Medicine 4, 101100, July 18, 2023
tified with HOMA-B, reflecting pancreatic beta cell insulin

secretion (r = �0.072, n = 626, p = 0.074).

Furthermore, both the proportion and strength of SO-spindle

coupling remained significantly associated with HOMA-IR after

adjusting for all aforementioned risk factors (p = 0.005 and p =

0.016, respectively; Tables S7 and S8).

Beyond the simple number (quantity) of synchronized SO-

spindle events, the quality of coupling (indexed by the strength

of temporal synchrony between SOs and spindle activity) was

similarly associated with improved next-day blood glucose ho-

meostasis, as assessed by fasted glucose levels (r = �0.170,

n = 634, p < 0.001; Figure 2B) as well as next-day insulin sensi-

tivity as measured by HOMA-IR (r = �0.197, n = 634, p < 0.001;

Figure 4B). Once again, there was no such association with the

pancreatic beta cell secretion function using the measure of

HOMA-B (r = �0.066, n = 626, p = 0.097).

Such results further support the proposal that the association

between NREM sleep oscillations and next-day glucose homeo-

stasis is best understood through altered insulin sensitivity within

the body rather than changes in insulin secretion by way of

pancreatic beta cell function.

One candidate pathway explaining the association between

SO-spindle coupling and next-day glucose homeostasis is an

alteration in heart rate variability (HRV) during sleep, an indirect

measure of autonomic parasympathetic activity. Accordingly,

we conducted a mediation analysis which revealed that HRV

(see STAR Methods) significantly mediated the association be-

tween both proportion and strength of SO-spindle coupling

and next-day fasting glucose levels in theMESA dataset (indirect

effect, p = 0.0014 and p = 0.0008 respectively; Figures S2A and

S2B). Specifically, the greater the proportion of coupled SOs

during sleep, the higher the HRV (indicative of greater parasym-

pathetic dominance) during sleep (p = 0.001; adjusted for all

aforementioned cofactors), which, in turn, was linked to superior

(i.e., lower) next-day fasting blood glucose levels (p < 0.001). In



Figure 4. Insulin resistance is significantly correlated with the coupling between SOs and spindle-related activity in the CFS dataset

(A) Partial correlation adjusted for age between the extent of SO-spindle coupling (i.e., the proportion of SOs that are significantly coupled, see STAR Methods)

and next-day HOMA-IR.

(B) Partial correlation adjusted for age between SO-spindle coupling strength and next-day HOMA-IR. Translucent bars represent 95% bootstrapped confidence

intervals.
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the Cleveland Family Study (CFS) dataset, a similar effect was

observed for HRV during sleep mediating the association be-

tween the proportion of SO-spindle coupling and insulin resis-

tance, with trending significance (indirect effect, p = 0.076; Fig-

ure S4A), such that a higher proportion of coupled SO-spindle

events was associated with higher HRV (p = 0.037) through the

statistical mediation pathway, further predictive of lower insulin

resistance (p = 0.022). However, HRV in the CFS cohort did

not significantly mediate the association between the proportion

(indirect effect, p = 0.135; Figure S3A) or strength (indirect effect,

p = 0.66; Figure S3B) of SO-spindle coupling and next-day fast-

ing glucose levels.

Since impaired glucose function has been associated with

broad, macro-level sleep features such as sleep apnea

severity, sleep duration, and certain stages of sleep,17,18 we

next examined the predictive sensitivity of our a priori micro-

sleep measures of SO-spindle oscillation coupling and how it

ranked relative to all other sleep metrics. Notably, after adjust-

ing for known risk factors for glucose homeostasis (specifically

age, gender, BMI, hypertension, and family as a random effect),

SO-spindle coupling was the single strongest sleep predictor of

next-day fasting glucose levels and insulin resistance relative to

all other traditional sleep metrics (Figure 5). This included the

amount of time (number of minutes and percentage) in each

sleep stage (N1, N2, N3, and rapid eye movement [REM]), sleep

duration and sleep efficiency, wake after sleep onset (WASO),

the arousal index, sleep apnea severity as measured with the

AHI, individual morphological features of either SOs or spindles

(density, frequency, amplitude), and spectral band power

in REM or NREM sleep (slow delta, fast delta, total delta,

theta, alpha, sigma, beta; see Figure 5; STAR Methods).

Together, these findings indicate that SO-spindle coupling is
a predominant and prominent marker of next-day glucose

homeostasis.

For purely ecological relevance, we examined the effect-size

association between superior to inferior SO-spindle coupling

and next-day glucose homeostasis balance. Going from the first

percentile of the proportion of coupled SOs (77%) to the 99th

percentile (94%) represented a decrease of 13.2mg/dL in fasting

blood glucose levels (holding all other covariates constant). Simi-

larly, going from the first percentile to the 99th percentile value of

the coupling strength represented a decrease of 9.9 mg/dL in

fasting glucose levels. For reference, the current Centers for Dis-

ease Control and Prevention (CDC) guidelines indicate that a dif-

ference of�15mg/dL in fasting glucose levels reflects the differ-

ence between an individual in a normoglycemic zone to being

prediabetic (e.g., from 95 to 110 mg/dL) or from a prediabetic

state to being diabetic (e.g., from 115 to 130 mg/dL).

DISCUSSION

Taken together, these findings support a NREM sleep-oscillation

brain-body framework of glucose homeostasis in humans, one

that describes a mapped association between prior SO-spindle

coupling and next-day glucose homeostasis.

Prior observations in rodents have demonstrated that hippo-

campal ripples during sleep decrease peripheral blood glucose

levels moment-to-moment, in part through a hypothalamic

signaling pathway.10 Considering that coupled SO-spindle activ-

ity coincides subcortically with hippocampal sharp-wave rip-

ples,11,13 our results indicate the presence of a similar

sleeping-brain—glycemic association observable in humans.

Furthermore, the report in rodents reported that isolated ripples

did not show an association with peripheral glucose levels,
Cell Reports Medicine 4, 101100, July 18, 2023 5



Figure 5. SO-spindle coupling is the top sleep predictor of next-day glucose homeostasis

(A) Top sleep predictors of lower next-day fasting glucose, ranked in descending order of significance (negative log10 p value).

(B) Top sleep predictors of lower next-day insulin resistance (HOMA-IR) ranked in descending order. The proportion of SOs with significant coupling was the best

sleep predictor of both fasting glucose and insulin resistance. Unadjusted two-tailed p values were obtained by fitting, for each sleep predictor separately, a

multilevel regression model adjusted for age, gender, BMI, race/ethnicity, hypertension, and family identification. A total of 47 sleep parameters were included in

the rank analysis. NREM refers to N2 + N3 sleep (N1 excluded). A full description of these parameters is provided in Tables S9 and S10.
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whereas bursts of hippocampal ripples did. Independent of

glucose control, there is also evidence in humans that the nest-

ing of ripples in spindle troughs during SO-spindle coupling is

more strongly associated with ripple bursts, compared with iso-

lated ripples.11–13,25 These findings indicate the possibility that

the SO-spindle coupling-glucose homeostasis association we

identify here is driven by collective burst trains of hippocampal

sharp-wave ripples, as opposed to isolated ripples. Such oscil-

lation trains may therefore underlie part of the mechanistic

pathway accounting for the associations reported here in

humans.

It is also important to note, however, that the above NREM

sleep-oscillation framework of brain-to-body glucose homeo-

stasis can be considered across at least two different time-

scales, which may not be mutually exclusive. The first, as we

describe here in humans, involves a temporally longer (hours),

feedforward association, such that NREM SO-spindle coupling
6 Cell Reports Medicine 4, 101100, July 18, 2023
predicts superior next-day glucose homeostasis. The second,

previously observed in rodents,10 involves a short-term feed-

back loop (seconds to minutes) between hippocampal sharp-

wave ripple activity and concurrent changes in circulating

glucose during sleep. Both processes, either independently or

interactively (e.g., moment-to-moment changes in glucose

across the night cumulatively determine next-morning glucose

status), may aid in generalized glycemic homeostasis. Impor-

tantly, these two pathways offer disease insights into the brain

(sleep)-body (glucose) mechanisms that help explain the well-

characterized associations between short and disrupted sleep,

hyperglycemia, and type-II diabetes.3

Moreover, and critical from a clinical and public-health

perspective, our findings demonstrate that these associations

remained significant when controlling for prototypical factors

that themselves are known to affect blood glucose, including

age, gender, race, BMI, hypertension, and even sleepmeasures,
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such as the AHI, and the quantity and quality of sleep. That is, an

association between SO-spindle coupling and glucose homeo-

stasis that is independent of other cofactors influencing

glycemic control, both in measures of fasted blood glucose

assessment and following the standard metabolic challenge of

an OGTT.

Importantly, this association between SO-spindle coupling

and peripheral glucose homeostasis was also validated in an in-

dependent, larger replication dataset, suggesting that the effects

are less likely to be driven by single cohort-specific idiosyn-

crasies (though additional cohort replications are required).

Nevertheless, the replication of the association between SO-

spindle coupling and fasting blood glucose levels at least offers

some appended support to the framework of SO-spindle

coupling metric in a predictive or supervisory role of glucose ho-

meostasis,10 above and beyond other traditional sleep metrics.

Adding to these insights, SO-spindle coupling predicted next-

day improved (enhanced) insulin sensitivity, but not pancreatic

beta cell function. That is, a potential dissociation between two

key glycemic control mechanisms: (1) the ability of pancreatic

beta cells to respond to the glucose status of the body, which

can release insulin in the presence of sensed high glycemic

load; and (2) the sensitivity of cells within the body to that conse-

quential signal of insulin released by the pancreas, resulting in

the cellular uptake of glucose from the blood.17 Our findings sug-

gest that the link identified between SO-spindle coupling and

glucose homeostasis is not one associated with a dual-action

regulation of glycemic control. Rather, relationships were

observed only for the measure of HOMA-IR (indexing insulin

sensitivity within the body), and not HOMA-B, reflecting pancre-

atic beta cell sensing and the release of insulin. Therefore, the as-

sociation with blood glucose stasis appears to bemost parsimo-

niously explained by a link between NREM sleep oscillations and

a select alteration in insulin sensitivity,26,27 rather than regulating

pancreatic beta cell function or insulin synthesis/secretion.24,28

The identified alterations in fasting glucose levels and impair-

ments in the oral glucose tolerance test (OGTT) each reflect

different aspects of insulin resistance. The former measured in

the fasted state has been linked to hepatic insulin resistance,

while the latter OGTT response is primarily associated with

impaired muscle insulin resistance.29 It is important to note,

however, that the OGTT findings were only assessed in normo-

glycemic individuals. Future examinations in hyperglycemic co-

horts are needed to explore whether this sleep-associated allo-

static response (i.e., OGTT) is different in diabetes.

One possible mechanism explaining the recognized link be-

tween deficient sleep and impaired blood glucose control is

an alteration of autonomic sympathovagal balance resulting in

a biased state of sympathetic activity over parasympathetic ac-

tivity,30 which may chronically lead to insulin resistance and

metabolic dysfunction.31 Addressing this question, we con-

ducted a mediation analysis to test whether coupled NREM os-

cillations and superior glycemic status were mediated through

an association with increased parasympathetic autonomic

activity during sleep. Heart rate variability (HRV), an indirect

measure of autonomic parasympathetic activity, significantly

mediated the association between both the proportion of SO-

spindle coupling and next-day fasting glucose levels in the
MESA dataset, though it should be noted that this relationship

did not reach significance within the CFS cohort dataset.

Based on this, parasympathetic activity may only be one partial

pathway linking SO-spindle coupling with next-day glucose ho-

meostasis. Other such pathways may exist that account for the

additional variance in mediation that is not explained by para-

sympathetic activity in this sleep-glycemic relationship.

To date, associations between sleep loss, blood glucose sta-

tus, and diabetes risk have productively focused on traditional

sleep statistics, including sleep duration, sleep efficiency,

amount of each sleep stage (particularly the loss of deep

NREM sleep7,8), and markers of sleep disorders (e.g., AHI).3,32

However, exactly what it is within sleep that accurately maps gly-

cemic control in humans has remained unknown. Addressing

this issue, we demonstrate that SO-spindle coupling is not only

a sensitive glycemic index but, of all sleep features, including

sleep stages, and all other sleep electrical oscillation spectra,

such coupling offers the highest predictive sensitivity of next-

day glucose homeostasis. Indeed, this predictive relationship

with glucose status exceeded that of all other sleep measures

assessed, including total sleep amount, sleep efficiency,

NREM slow-wave sleep, as well as sleep apnea severity (AHI

score). Our findings in no way challenge these now robust links

between those aforementioned sleep measures and diabetes

risk and/or blood glucose status.3,33 Rather, our results establish

the measure of SO-spindle coupling as an additional, indepen-

dent contributing feature of sleep, one that offers insights into

potential disease pathways associated with diabetes consid-

ering recent rodent data causally linking SO-spindle coupling

with momentary glucose regulation.

In conclusion, our findings suggest a sleeping-brain—glyce-

mic-body framework of insulin-associated glucose homeostasis

in humans, and further re-emphasize the importance of sleep in

the clinical management of hyperglycemia and diabetes.

Limitations of the study
Our study must be appreciated within the context of important

limitations. First, although our findings describe a temporal as-

sociation between sleep the night before and peripheral

glucose homeostasis, the results do not establish causality.

The mechanism(s) by which SO-spindle coupling affects next-

day glucose homeostasis in humans needs further exploration.

Given that our data are non-invasive and only measure next-

day glucose, we are unable to gain causal and temporal insight

into the association between hippocampal sharp-wave ripple

activity and SO-spindle coupling and glucose homeostasis.

Future studies in intracranial patients, along with continuous

glucose monitoring, would help provide further mechanistic

insight. However, multiple studies have shown that hippocam-

pal sharp-wave ripples are temporally coupled with NREM SOs

and sleep spindles,11–13 making SO-spindle coupling a prom-

ising non-invasive marker of hippocampal sharp-wave ripple

bursts. Our findings motivate the design of studies capable of

testing bidirectional causality (e.g., manipulating SO-spindle

coupling in humans34 to alter glucose regulation or vice versa).

Second, the effect sizes observed in this study are, as antici-

pated, in the small-to-moderate range, and similar to those

recently reported in rodents.10 This is expected, considering
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that an individual’s blood glucose level is determined by multi-

ple factors, including genetics, food intake/diet, and gut micro-

biome.35–37 Sleep—an indirect lifestyle factor—is therefore

anticipated to account for a somewhat modest, yet still clini-

cally meaningful, proportion of between-person variability in

glucose levels.38 This was affirmed in our findings by the signif-

icant difference between those in the upper and lower quartiles

of SO-spindle coupling activity. Future studies that provide lon-

gitudinal repeated assessment will help examine how potential

individual differences in baseline general health could

contribute to differences in SO-spindle coupling and metabolic

deficiencies. Finally, measures of glucose in the main dataset

(CFS) were assessed in the morning for closest proximity to

sleep, affording a test of the sleep-dependent hypothesis.

Nevertheless, these measures do not provide insight into

glucose regulation across the entire day, although it should

be noted that there is a significant correlation between blood

glucose levels measured across the day.39 Still, temporal

knowledge of glycemic status across the day can have impor-

tant benefits to understanding metabolic dysfunction, requiring

continuous glucose monitoring across the 24-h period as an

ideal next experimental step.40,41
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Grittner, U., and Flöel, A. (2017). Promoting Sleep Oscillations and Their

Functional Coupling by Transcranial Stimulation Enhances Memory

Consolidation in Mild Cognitive Impairment. J. Neurosci. 37, 7111–7124.

35. Berry, S., Wyatt, P., Franks, P., Blundell, J., O’Driscoll, R., Wolf, J., Hadji-

georgiou, G., Drew, D., Chan, A., Spector, T., and Valdes, A. (2020). Effect

of Postprandial Glucose Dips on Hunger and Energy Intake in 1102 Sub-

jects in US and UK: The PREDICT 1 Study. Curr. Dev. Nutr. 4.

nzaa063_009.

36. Simonis-Bik, A.M.C., Eekhoff, E.M.W., Diamant, M., Boomsma, D.I.,

Heine, R.J., Dekker, J.M., Willemsen, G., van Leeuwen, M., and de

Geus, E.J.C. (2008). The heritability of HbA1c and fasting blood glucose

in different measurement settings. Twin Res. Hum. Genet. 11, 597–602.

37. Tsereteli, N., Vallat, R., Fernandez-Tajes, J., Delahanty, L.M., Ordovas,

J.M., Drew, D.A., Valdes, A.M., Segata, N., Chan, A.T., Wolf, J., et al.

(2022). Impact of insufficient sleep on dysregulated blood glucose control

under standardised meal conditions. Diabetologia 65, 356–365. https://

doi.org/10.1007/s00125-021-05608-y.

38. Brouwer, A., van Raalte, D.H., Rutters, F., Elders, P.J.M., Snoek, F.J.,

Beekman, A.T.F., and Bremmer, M.A. (2020). Sleep and HbA1c in Patients

With Type 2Diabetes:Which Sleep Characteristics Matter Most? Diabetes

Care 43, 235–243.

39. Bonora, E., Calcaterra, F., Lombardi, S., Bonfante, N., Formentini, G., Bo-

nadonna, R.C., and Muggeo, M. (2001). Plasma glucose levels throughout

the day and HbA(1c) interrelationships in type 2 diabetes: implications for

treatment and monitoring of metabolic control. Diabetes Care 24,

2023–2029.

40. Daenen, S., Sola-Gazagnes, A., M’Bemba, J., Dorange-Breillard, C.,

Defer, F., Elgrably, F., Larger, E., and Slama, G. (2010). Peak-time deter-

mination of post-meal glucose excursions in insulin-treated diabetic pa-

tients. Diabetes Metab. 36, 165–169.

41. Azhar, A., Gillani, S.W., Mohiuddin, G., andMajeed, R.A. (2020). A system-

atic review on clinical implication of continuous glucose monitoring in dia-

betes management. J. Pharm. BioAllied Sci. 12, 102–111.

42. Zhang, G.-Q., Cui, L., Mueller, R., Tao, S., Kim, M., Rueschman, M., Ma-

riani, S., Mobley, D., and Redline, S. (2018). The National Sleep Research

Resource: towards a sleep data commons. J. Am. Med. Inf. Assoc. 25,

1351–1358.

43. Redline, S., Tishler, P.V., Tosteson, T.D., Williamson, J., Kump, K.,

Browner, I., Ferrette, V., and Krejci, P. (1995). The familial aggregation of

obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 151, 682–687.

44. Chen, X., Wang, R., Zee, P., Lutsey, P.L., Javaheri, S., Alcántara, C., Jack-
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d The CFS dataset can be obtained, with the appropriate permissions, and for non-commercial use, at https://sleepdata.org/

datasets/cfs. The MESA dataset can be obtained, with the appropriate permissions, through the BioLINCC repository at:

https://biolincc.nhlbi.nih.gov/studies/mesa/. In addition to the public access repository, interested investigators may also ac-

cess the data through the MESA Coordinating Center at the University of Washington. Use of the data via this mechanism is

overseen by standardMESA policies and procedures, which assure that participant consent is honored. Additional information

can be found at: https://www.mesa-nhlbi.org/. Computer code to reproduce the results of this paper has been deposited at

https://github.com/raphaelvallat/vallat2023_coupling_glucose, and will be made publicly available as of the date of publica-

tion.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two independent cohorts were used to test the hypothesis. The first (main cohort) was the Cleveland Family Study data set

(CFS;42,43), and the second (replication cohort) was the Multi-Ethnic Study of Atherosclerosis (MESA;21) data set. Both the CFS

and the MESA datasets followed the guidelines of the National Sleep Research Resource (NSRR), and Institutional Review Board

(IRB) approval was obtained at each study site.

The former Cleveland Family Study (CFS) data set is a longitudinal family-based epidemiological study of sleep apnea with over

2400 participants. Families were selected based on the presence of a proband diagnosed with Obstructive Sleep Apnea (OSA;48).

Neighboring families without a diagnosis of OSA were used as controls. A subset of 728 participants was selected for a study

that involved collecting sleep, cardiovascular and metabolic measures, between July 2001 and June 2005 (visit 5). Prepubertal chil-

dren were excluded from subsequent analyses by using 15 years old as the cut-off age (n = 73, 655 participants remaining). The pro-

tocol was approved by the institutional review boards of the local hospitals from where the participants were recruited. All partici-

pants provided informed written consent.

The latter Multi-Ethnic Study of Atherosclerosis (MESA21) data set is a multi-center, longitudinal investigation of factors associated

with the development of cardiovascular disease. There have been five follow-up visits to date, approximately once every two years.

All participants provided written informed consent and all MESA activities were approved by the institutional review boards of the

participating institutions. All subsequent analyses are based on the MESA Exam 5, which was collected from 2010 to 2013.
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METHOD DETAILS

Measurement of glycemic levels, insulin sensitivity and health covariates
CFS

Fasting glucose and insulin valueswere derived from all individuals (n = 728) using blood samples collected via venipuncture at 7 A.M.

on themorning after PSG.48 In non-diabetic participants (n = 596), this was followed by the administration of an oral glucose tolerance

test (OGTT). During the oral glucose tolerance test, participants orally consumed 75 grams of anhydrous glucose, and glucose levels

were measured 2 hour later via venipuncture. OGTT values were measured as 2 hour post glucose serum load (in mg/dl). Impaired

glucose tolerance criteria were defined by self-reported use of diabetes medication, as fasting glucose R110 mg/dL, or as 2 hour

post glucose serum load R140 mg/dL. A square root transformation was used to reduce skewness in fasting and postprandial

glucose levels and thus minimize the influence of outliers, consistent with prior assessment measures.37

Insulin resistance and pancreatic beta cell function were quantified using the standardized homeostasis assessment model

(HOMA-IR and HOMA-B respectively) scores. HOMA-IRwas calculated as fasting serum insulin multiplied by fasting plasma glucose

(in mg/dL), divided by 405, as described previously.22,23,49 HOMA-B was calculated as fasting serum insulin multiplied by 360,

divided by fasting plasma glucose (in mg/dL) minus 63.22,24 HOMA-IR and HOMA-B values were then log transformed to reduce

skewness, consistent with standard practices.50,51 High scores indicate low insulin sensitivity, or high insulin resistance.

Before coming in for their PSG session, all participants completed the Cleveland Health and Sleep Questionnaire, which is a stan-

dardized and validated questionnaire assessing sleep habits and symptoms, medical history, health habits, and medication use,

including diabetic and antihypertensivemedications. BMI wasmeasured as the ratio of weight to the square of height (kg/m2).Weight

was measured to the nearest 0.1 kg using a calibrated scale. Height was measured to the nearest centimeter using a wall-mounted

stadiometer.

MESA

Fasting glucose wasmeasured during the MESA Exam 5 clinic visit. Participants fasted for 12 hours and avoided smoking and heavy

physical activity for 2 hours before the examination. Fasting blood samples were drawn between 7:30 A.M. and 10:30 A.M.. Fasting

blood glucose (serum)wasmeasured by the glucose oxidasemethod on the Vitros analyzer (Johnson & JohnsonClinical Diagnostics,

Rochester, New York).52 As in CFS, fasting glucose values outside the range of 60–250 mg/dL were masked (n = 8). Then, a square

root transformation was used to further reduce skewness in fasting glucose levels and minimize the influence of outliers, consistent

with prior assessment measures.37 Age, gender, race/ethnicity, smoking status, education, and income were collected at MESA

Exam 5 via self-report questionnaires.

EEG analysis
Sleep recording and sleep staging

CFS. Fourteen-channel overnight PSG recordings were collected using Compumedics E Series System, at a dedicated clinical

research facility. Details about the montage and sampling rate can be found here. Sleep scoring was performed by trained research

technologists, using R&K rules.53 For subsequent analyses, NREM stages 3 and 4 were collated into a single stage (N3) to conform

with the most recent guidelines.54

MESA. Sleep studies were scheduled to occur after the MESA Exam 5 clinic visit. The average gap between the MESA sleep study

and MESA Exam 5 clinic visit was 341 days, with a standard deviation of 200 days. At-home full overnight PSG recordings were

collected in 2237 participants from the parent cohort (age range = 54–95 years) using the Compumedics Somte System (Compumed-

ics Ltd., Abbotsford, Australia). The recording montage consisted of three cortical EEG (central C4-M1, occipital Oz-Cz, and frontal

Fz-Cz leads), bilateral EOG, chin EMG, as well as several other sensors to measure heart rate, respiration and leg movements.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spectral analyses
EEG power in specific bands were calculated separately for NREM sleep (excluding N1) and REM sleep, using aWelch periodogram

with a 4-second hamming window. Spectral bands were defined as: slow delta (0.5–1.25 Hz), fast delta (1.25–4 Hz), total delta (i.e.

slow wave activity [SWA], 0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–16 Hz), beta (16–30 Hz). EEG powers were expressed

as a proportion of the total power summed across all bands. The correlation analyses also included the total summed power in NREM

and REM (expressed in microVolts-squared).

Slow oscillations event-locked phase-amplitude coupling
All EEG analyses for the CFS dataset were conducted on the C3-M2 channel, after downsampling to 100 Hz and inverting the polarity

(to fix a known issue, see here). All EEG analyses for the MESA dataset were conducted on the C4-M1 channel. PSG data were

sampled at 256 Hz and a hardware low-pass filter with a cutoff frequency of 100 Hz was applied during recording. Nocturnal record-

ings were transmitted to the centralized reading center at Brigham and Women’s Hospital and data were scored by trained techni-

cians using current guidelines.
e2 Cell Reports Medicine 4, 101100, July 18, 2023
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Slow oscillations (SO) detection was performed on NREM sleep (excluding N1 sleep) using the YASA Python library.45 The algo-

rithm uses amplitude and duration thresholds55,56 to detect SO on the bandpass-filtered signal (0.3–1.5 Hz), coupled with an outlier

removal step to remove invalid events. Based on previous findings showing that the standard amplitude threshold of 75 mV is not

adequate for older adults,57 a more liberal amplitude threshold of 60 mV for peak-to-peak amplitude and 32 mV for the negative

peak amplitude was chosen. For each PSG night, the average SO density (= number of SO per min of NREM), frequency (Hz) and

amplitude (mV) were calculated.

To calculate event-locked cross-frequency coupling,11 first, each detected SO was cut to 1 second before and after the negative

peak of the SO event. For each event-locked 2-second window, Hilbert transforms were used to extract the instantaneous phase of

the SO band (0.3–1.5 Hz) and the instantaneous amplitude of the sigma band (12–16 Hz), which is highly correlated with spindle

amplitude and density,58 and has been previously used to measure SO-spindle coupling.59 To avoid filter edge artifacts, the instan-

taneous phase and amplitude time-series were calculated on the entire signal before running the SO detection. The strength of the

coupling between the SO phase and the sigma amplitude was calculated, for each SO, using the normalized direct Phase Amplitude

Coupling (ndPAC) method.16 The ndPAC is conceptually similar to the traditional mean vector length method,60 with two exceptions.

First, the amplitude signal is z-scored to help eliminate distortions in the PAC estimate due to direct current components in data.

Second, ndPAC includes a statistical thresholding to reject false estimates arising fromdistortions of non-coupled oscillation powers.

As such, and unlike other PAC methods, the ndPAC does not require a permutation-based surrogate normalization. The ndPAC

coupling value ranges from 0 (no coupling) to 1 (perfect coupling). Formally, the ndPAC is defined as:

ndPAC =
1

N

�����
XN
n = 1

aðnÞei4ðnÞ
�����

Where aðnÞ is the normalized (mean removed and variance made unity) amplitude signal and 4ðnÞ is the phase from high- and low-

bandpass filtered signals with data length N, respectively. The closed-form statistical threshold is given by:

xth = 2 3 N3
�
erf� 1ð1 � pÞ�2

With p the confidence level, and erf� 1 the inverse error function.16 Every value of coupling exceeding the threshold xth is considered

reliable, at the given confidence level. Otherwise, coupling is considered unreliable and values are set to zero. The proportion of SOs

that are coupled with the spindle-related sigma band therefore represents a simple metric of the coupling quantity. Noteworthy,

another approach that has been used to estimate the quantity of SO events that are coupled is to apply an automatic spindle detec-

tion on the signal and then find spindles that occur within a certain range of the negative peak of the SO. However, the ndPAC

approach has the advantage of being data-driven and as such does not rely on arbitrary thresholds for the spindle detection and

events co-occurrence.

A single summary value of coupling strength per participant was obtained by averaging all the valid ndPAC values, that is, all the

SO-spindle coupling values that were not rejected by the statistical thresholding. In addition, the proportion of SO that had a valid

(= significant) SO-spindle coupling was calculated for each participant. A value of 1 therefore indicates that all the detected SOs

have a significant phase-amplitude coupling with the sigma band, whereas a value of zero indicates that none of the detected

SOs show a functional coupling with the sigma band. Lastly, the preferred phase (in radians) of the SO at the maximum sigma ampli-

tude within each 2-second windowwas extracted as ameasure of coupling directionality. To this end, the amplitude values were first

binned according to 18 phase slices (360 deg/18 bins = 20� each). The preferred phase was then defined as the phase bin for which

the distribution of amplitude is maximum.

An outlier removal step was applied which consisted of masking the coupling values with an absolute Z score above 4 for either the

coupling strength or the coupling quantity (n = 8 in CFS, n = 9 in MESA).

For illustrative purposes, a time-frequency representation of the SO-spindle coupling was calculated using the event-related

phase-amplitude coupling (ERPAC) method.15 ERPAC is based on a circular-linear correlation that evaluates, across all detected

SO for a given night/individual, the instantaneous amplitude at each specific frequency with the sine and cosine of the instantaneous

phase. As with a traditional Pearson correlation, values can range between �1 and 1, with higher positive values indicating a strong

coupling at that specific event-locked time between the amplitude and phase time series. All coupling analyses were performed in

Python using the Tensorpac package.46

Heart rate variability
Heart rate variability (HRV) across the night was calculated from the ECG channel using non-overlapping windows of 5 minutes. The

ECGwas first high-pass-filtered at 0.5 Hz using a 5th-order Butterworth filter and the R-peaks were detected and corrected for each

5-min window using the default parameters in the neurokit2 Python toolbox.61 Windows with less than 175 NN intervals were

excluded. Based on the experimental hypotheses, the analyses were focused on the root-mean-square of successive differences

between normal heartbeats (RMSSD) — a widely-used HRV metric that reflects vagally-mediated short-term variability in heart

rate.62 Of note, although HRV metrics are widely used as a marker of parasympathetic activity, heart rate variability is also impacted

by endocrine and reproductive factors, including but not limited to growth hormone,63 luteinizing hormone,64 and thyroid hor-

mones.65 Formally, given a time-series of beat-to-beat interval RR of length N, the RMSSD is defined as:
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The median RMSSD across all 5 minute epochs was calculated to get a single RMSSD value per participant. The resulting values

were then log-transformed to reduce skewness, consistent with standard practices.62

Statistical analyses
A strict inner merge was used to combine the health data (demographics and glucose) with the SO-spindle coupling variables. In

other words, only participants with non-missing glucose and coupling data were included in subsequent analyses (n = 647 partici-

pants). A more liberal left merge was then used to combine the EEG spectral power data with the main dataframe.

Correlations between dependent variables were calculated using the Pearson correlation coefficient. Partial correlations were per-

formed in Python using the Pingouin package.47 All regression analyses were performed using the ‘lmer‘ R function.66 Models were

adjusted for age, gender, race/ethnicity,67 BMI, hypertension status, apnea-hypopnea index (AHI), sleep period time (SPT) and sleep

efficiency (SE, calculated as total sleep time divided by sleep period time44). Since the CFS study includes participants from the same

family, multilevel models were used with family ID as a random effect. P-values for the regression models were obtained from two-

tailed Wald tests. Marginal effects were calculated using the ‘ggeffect’ R function.68

The preprocessing and analysis steps were identical between the CFS main cohort and the MESA replication cohort. One notable

exception is that MESA does not include participants from the same families and therefore a standard (non-multilevel) linear regres-

sion was used to test associations between predictors of interest and glucose outcomes. A total of 1996 unique MESA participants

were remaining after combining the health data and EEG coupling data. There was no participant under the age of 15 years in MESA.

Assessment of the ranking of the sleep predictors was performed by extracting, independently for each sleep predictor, the p value

of that predictor in amultilevel regressionmodel adjusted for age, gender, race/ethnicity, BMI, and hypertension status. AHI, SPT and

SE were not included as covariates in the model since all three were included, as predictors, in the ranking analysis. The unadjusted

p values from all sleep predictors were then log-transformed with base 10 and negated for illustrative purposes.
e4 Cell Reports Medicine 4, 101100, July 18, 2023
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Supplementary Tables

Table S1. Demographics of the Cleveland Family Study (CFS; visit 5). Related to STAR Methods.

Variables Statistics

No. unique participants 647

No. unique families 144

Age (yrs) 44.73 ± 17.39 (range = 15-89)

Sex 359 F / 288 M

BMI (kg/m2) 33.47 ± 9.17 (range = 17-85)

Race/ethnicity 350 African / 280 Caucasian / 17 Other

Smoking status 324 No / 169 Yes / 154 Missing

Hypertension status 428 No / 211 Yes

Diabetes status 530 No / 115 Yes

Fasting glucose (mg/dl) 100.56 ± 25.65 (range = 66-246)

log(HOMA-IR) 0.99 ± 0.77 (range = -1-4)

log(HOMA-B) 4.81 ± 0.63 (range = 3-8)

Apnea-hypopnea index (AHI) 13.78 ± 20.17 (range = 0-125)

% of participants with AHI >30 13.6%

Sleep efficiency (SE, %) 81.18 ± 12.74 (range = 27-99)

Sleep period time (SPT, min) 459.13 ± 82.01 (range = 52-660)

Total sleep time (TST, min) 369.83 ± 74.26 (range = 40-576)

N1 (% of TST) 5.32 ± 4.72 (range = 0-63)

N2 (% of TST) 58.55 ± 12.41 (range = 21-100)

N3 (% of TST) 17.71 ± 10.99 (range = 0-57)

REM (% of TST) 18.41 ± 7.61 (range = 0-44)

SO density (per min of NREM) 2.50 ± 1.98 (range = 0-11)

Spindles density (per min of NREM) 3.28 ± 1.37 (range = 0-7)

Proportion of SO with significant coupling 87.60 ± 3.35 (range = 72-100)

SO—spindle coupling strength 0.32 ± 0.02 (range = 0.25-0.39)

SO—spindle preferred phase (º) -12.15 ± 28.32

SO = slow oscillations.
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Table S2. Slow oscillation—spindle coupling quantity significantly predicts next-day fasting blood glucose in the
CFS dataset. Related to Figure 2.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-3.88 -0.12 -6.16 – -1.60 0.001

Age 0.01 0.15 0.00 – 0.01 <0.001

Male 0.41 0.19 0.26 – 0.57 <0.001

Race/ethnicity [Black] 0.15 0.14 -0.04 – 0.34 0.128

Race/ethnicity [Other] 0.18 0.16 -0.34 – 0.69 0.502

BMI 0.03 0.28 0.02 – 0.04 <0.001

Hypertension 0.44 0.19 0.25 – 0.62 <0.001

Apnea-hypopnea index (AHI) -0.00 -0.06 -0.01 – 0.00 0.158

Sleep efficiency -0.01 -0.07 -0.01 – 0.00 0.105

Sleep period time -0.01 -0.02 -0.07 – 0.05 0.686

The number of participants with complete data included in the multilevel regression analysis was 623. Family ID was
set as a random effect (n=144 unique groups). The dependent variable, fasting blood glucose, was transformed using a
square root transformation to reduce skewness. The reference category for race/ethnicity was White. Age, sex, BMI,
and hypertension were all significant predictors of fasting blood glucose levels. Being a male, older, having a higher
BMI, and having hypertension were all associated with higher levels of next-day fasting blood glucose. Race, sleep
duration, sleep efficiency, and AHI were not significant predictors of next-day fasting blood glucose.
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Table S3. Slow oscillation—spindle coupling strength significantly predicts next-day fasting blood glucose in the
CFS dataset. Related to Figure 2.

Predictors β Standardized β 95% CI p

SO—spindle coupling strength -4.90 -0.08 -9.04 – -0.77 0.020

Age 0.01 0.16 0.00 – 0.02 <0.001

Male 0.41 0.18 0.25 – 0.56 <0.001

Race/ethnicity [Black] 0.16 0.15 -0.03 – 0.35 0.102

Race/ethnicity [Other] 0.18 0.16 -0.34 – 0.69 0.502

BMI 0.03 0.29 0.03 – 0.04 <0.001

Hypertension 0.44 0.19 0.25 – 0.62 <0.001

Apnea-hypopnea index (AHI) -0.00 -0.05 -0.01 – 0.00 0.164

Sleep efficiency -0.00 -0.05 -0.01 – 0.00 0.198

Sleep period time -0.01 -0.01 -0.07 – 0.05 0.746

The number of participants with complete data included in the multilevel regression analysis was 623. Family ID was
set as a random effect (n=144 unique groups). The dependent variable, fasting blood glucose, was transformed using a
square root transformation to reduce skewness. The reference category for race/ethnicity was White. Age, sex, BMI,
and hypertension were all significant predictors of fasting glucose levels. Being a male, older, having a higher BMI, and
having hypertension were all associated with higher levels of next-day fasting blood glucose. Race, sleep duration,
sleep efficiency, and AHI were not significant predictors of next-day fasting blood glucose.
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Table S4. Demographics of the MESA sleep study. Related to STAR Methods.

Variables Statistics

No. unique participants 1996

Age (yrs) 68.43 ± 9.17 (range = 54-93)

Sex 359 F / 288 M

BMI (kg/m2) 28.64 ± 5.49 (range = 17-56)

Race/ethnicity 729 Caucasian / 550 African / 478 Hispanic / 239 Asian

Smoking status 930 Never / 912 Former / 142 Current

Gap between PSG and glucose
Measures (days)

341 ± 200 (range = 0-1024)

Hypertension status 1130 Yes / 866 No

Diabetes status 1197 Normal / 409 Impaired / 356 Treated / 34
Untreated

Fasting glucose (mg/dl) 100.46 ± 21.81 (range = 62-249)

log(HOMA-IR) 0.99 ± 0.77 (range = -1-4)

log(HOMA-B) 4.81 ± 0.63 (range = 3-8)

Apnea-hypopnea index (AHI) 19.73 ± 18.54 (range = 0-111)

% of participants with AHI >30 21.8%

Sleep efficiency (SE, %) 78.53 ± 13.44 (range = 10-99)

Sleep period time (SPT, min) 462.20 ± 91.48 (range = 94-1084)

Total sleep time (TST, min) 359.89 ± 82.15 (range = 32-601)

N1 (% of TST) 14.18 ± 9.16 (range = 0-79)

N2 (% of TST) 58.00 ± 11.05 (range = 19-100)

N3 (% of TST) 9.98 ± 9.05 (range = 0-51)

REM (% of TST) 17.84 ± 6.92 (range = 0-59)

SO density (per min of NREM) 1.48 ± 1.18 (range = 0-13)

Spindles density (per min of NREM) 2.68 ± 1.43 (range = 0-12)

Proportion of SO with significant coupling 86.34 ± 4.44 (range = 67-100)

SO—spindle coupling strength 0.32 ± 0.02 (range = 0.23-0.41)

SO—spindle preferred phase (º) -12.15 ± 28.32

SO = slow oscillations.
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Table S5. Slow oscillation—spindle coupling quantity significantly predicts next-day fasting blood glucose in the
MESA dataset. Related to Figure 3.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-1.04 -0.05 -2.00 – -0.08 0.034

Age 0.00 0.02 -0.00 – 0.01 0.390

Male 0.22 0.11 0.13 – 0.30 <0.001

Race/ethnicity [Black] 0.02 0.02 -0.09 – 0.13 0.688

Race/ethnicity [Asian] 0.37 0.38 0.23 – 0.51 <0.001

Race/ethnicity [Hispanic] 0.36 0.37 0.25 – 0.47 <0.001

BMI 0.04 0.20 0.03 – 0.04 <0.001

Hypertension 0.23 0.12 0.14 – 0.32 <0.001

Apnea-hypopnea index (AHI) 0.00 0.03 -0.00 – 0.00 0.201

Sleep efficiency 0.00 0.01 -0.00 – 0.00 0.698

Sleep period time -0.00 -0.02 -0.00 – 0.00 0.380

The number of participants with complete data included in the multilevel regression analysis was 1966. The dependent
variable, fasting blood glucose, was transformed using a square root transformation to reduce skewness. The reference
category for race/ethnicity was White. Sex, race BMI, and hypertension were all significant predictors of fasting blood
glucose levels. Being male, being Asian, being Hispanic, having a higher BMI, and having hypertension were all
associated with higher levels of next-day fasting blood glucose. Age, sleep duration, sleep efficiency, and AHI were not
significant predictors of fasting blood glucose.
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Table S6. Slow oscillation—spindle coupling strength significantly predicts next-day fasting blood glucose in the
MESA dataset. Related to Figure 3.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-2.57 -0.06 -4.56 – -0.59 0.011

Age 0.00 0.02 -0.00 – 0.01 0.464

Male 0.22 0.11 0.13 – 0.30 <0.001

Race/ethnicity [Black] 0.02 0.02 -0.09 – 0.13 0.710

Race/ethnicity [Asian] 0.37 0.38 0.23 – 0.51 <0.001

Race/ethnicity [Hispanic] 0.36 0.37 0.25 – 0.47 <0.001

BMI 0.03 0.19 0.03 – 0.04 <0.001

Hypertension 0.23 0.12 0.14 – 0.32 <0.001

Apnea-hypopnea index (AHI) 0.00 0.03 -0.00 – 0.00 0.210

Sleep efficiency 0.00 0.01 -0.00 – 0.00 0.691

Sleep period time -0.00 -0.02 -0.00 – 0.00 0.387

The number of participants with complete data included in the multilevel regression analysis was 1966. The dependent
variable, fasting blood glucose, was transformed using a square root transformation to reduce skewness. The reference
category for race/ethnicity was White. Sex, race BMI, and hypertension were all significant predictors of fasting blood
glucose levels. Being male, being Asian, being Hispanic, having a higher BMI, and having hypertension were all
associated with higher levels of next-day fasting blood glucose. Age, sleep duration, sleep efficiency, and AHI were not
significant predictors of fasting blood glucose.
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Table S7. Slow oscillation—spindle coupling quantity significantly predicts next-day HOMA-IR in the CFS
dataset. Related to Figure 4.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-2.20 -0.10 -3.73 – -0.68 0.005

Age -0.0 0.02 -0.00 – 0.00 0.660

Male 0.17 0.11 0.07 – 0.27 0.001

Race/ethnicity [Black] 0.14 0.19 0.02 – 0.27 0.025

Race/ethnicity [Other] 0.13 0.17 -0.21 – 0.47 0.458

BMI 0.04 0.44 0.03 – 0.04 <0.001

Hypertension 0.23 0.14 0.11 – 0.35 <0.001

Apnea-hypopnea index (AHI) 0.00 0.01 -0.00 – 0.00 0.826

Sleep efficiency -0.00 -0.01 -0.01 – 0.00 0.797

Sleep period time -0.03 -0.05 -0.07 – -0.01 0.141

The number of participants with complete data included in the multilevel regression analysis was 626. Family ID was
set as a random effect (n=144 unique groups). The dependent variable, HOMA-IR, was log-transformed to reduce
skewness. The reference category for race/ethnicity was White.

7



Table S8. Slow oscillation—spindle coupling strength significantly predicts next-day HOMA-IR in the CFS
dataset. Related to Figure 4.

Predictors β Standardized β 95% CI p

SO—spindle coupling strength -3.39 -0.08 -6.14 – -0.64 0.016

Age 0.00 0.02 -0.00 – 0.00 0.580

Male 0.17 0.11 0.06 – 0.27 0.002

Race/ethnicity [Black] 0.15 0.19 0.03 – 0.27 0.018

Race/ethnicity [Other] 0.14 0.18 -0.20 – 0.48 0.428The

BMI 0.04 0.44 0.03 – 0.04 <0.001

Hypertension 0.23 0.14 0.11 – 0.35 <0.001

Apnea-hypopnea index (AHI) 0.00 0.01 -0.00 – 0.00 0.829

Sleep efficiency 0.00 0.00 -0.00 – 0.00 0.973

Sleep period time -0.03 -0.05 -0.07 – -0.01 0.170

The number of participants with complete data included in the multilevel regression analysis was 626. Family ID was
set as a random effect (n=144 unique groups). The dependent variable, HOMA-IR, was log-transformed to reduce
skewness. The reference category for race/ethnicity was White.
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Table S9. Multilevel regression between sleep features and next-day fasting blood glucose in the CFS dataset.
Related to Figure 5.

Sleep predictors Std. beta n p

Proportion of coupled SO -0.109 639 0.002

REM alpha 0.097 626 0.01

NREM theta -0.088 647 0.013

SO–spindle coupling strength -0.079 639 0.026

REM delta -0.059 626 0.107

NREM delta (SWA) 0.058 647 0.1

N1 -0.057 647 0.11

REM sigma 0.056 626 0.161

NREM slow delta 0.056 647 0.11

TIB -0.055 647 0.112

SO density 0.055 647 0.23

Arousal index -0.049 640 0.197

REM theta 0.049 626 0.171

%N1 -0.047 647 0.2

SME -0.047 647 0.231

REM fast delta -0.046 626 0.233

N2 latency -0.044 647 0.214

NREM alpha -0.041 647 0.245

REM slow delta -0.039 626 0.266

SOL -0.039 647 0.274

WASO 0.037 647 0.333

NREM -0.034 647 0.354

Spindles frequency -0.033 647 0.346

N2 -0.033 647 0.349

N3 latency 0.032 617 0.37

TST -0.032 647 0.392

N3 0.029 647 0.483

N1 latency -0.028 640 0.438

%N3 0.027 647 0.502

AHI -0.027 647 0.491

SO frequency -0.021 647 0.601

NREM beta -0.02 647 0.56

SO amplitude -0.02 647 0.664

NREM power 0.019 647 0.58

%REM 0.017 647 0.614

%NREM -0.017 647 0.616

%N2 -0.015 647 0.696

Spindles power 0.013 647 0.736
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REM power -0.013 626 0.718

NREM fast delta -0.011 647 0.75

REM -0.008 647 0.823

REM beta -0.007 626 0.851

SE -0.007 647 0.86

REM latency 0.004 626 0.918

Spindles density -0.004 647 0.921

NREM sigma -0.003 647 0.927

SPT 0.001 647 0.988

All regressions were adjusted for age, sex, BMI, race/ethnicity, hypertension and family ID. Regressions are sorted in
descending order of significance. NREM refers to N2 + N3 sleep (N1 excluded). Sleep features that significantly
predict higher levels of fasting glucose = worse outcome) are highlighted in red. A total of 47 sleep parameters were
included in the correlation analysis. Two-sided p-values were not corrected for multiple comparisons. The spectral
frequency bands are: slow delta (0.5-1.25 Hz), fast delta (1.25-4 Hz), delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
sigma (12-16 Hz), beta (16-30 Hz), and total power (in microvolts-squared, 0.5-30 Hz). AHI = Apnea–hypopnea index,
SE = sleep efficiency, SO = slow oscillations, SME = sleep maintenance efficiency, SOL = sleep onset latency, SPT =
sleep period time, TST = total sleep time, WASO = wake after sleep onset.
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Table S10. Multilevel regression between sleep features and next-day insulin resistance (HOMA-IR) in the CFS
dataset. Related to Figure 5.

Sleep predictors Std. beta n p

SO density 0.11 647 0.012

Proportion of coupled SO -0.096 639 0.004

SO–spindle coupling strength -0.084 639 0.014

REM alpha 0.083 626 0.022

NREM fast delta -0.081 647 0.017

NREM slow delta 0.079 647 0.019

Spindles density -0.072 647 0.039

NREM theta -0.072 647 0.035

REM theta 0.068 626 0.047

SO amplitude 0.067 647 0.124

REM delta -0.059 626 0.099

%N1 -0.059 647 0.095

N1 -0.058 647 0.095

%N3 0.056 647 0.145

SPT -0.052 647 0.123

REM -0.05 647 0.147

REM fast delta -0.05 626 0.178

TST -0.049 647 0.182

SOL 0.047 647 0.175

N3 0.045 647 0.256

SO frequency -0.041 647 0.297

NREM delta (SWA) 0.039 647 0.252

NREM power 0.039 647 0.246

N3 latency 0.039 617 0.274

REM slow delta -0.037 626 0.285

N1 latency 0.036 640 0.297

N2 -0.036 647 0.292

REM latency 0.035 626 0.314

SE -0.033 647 0.356

NREM -0.028 647 0.436

N2 latency 0.027 647 0.427

NREM beta -0.022 647 0.511

AHI 0.022 647 0.561

Spindles frequency -0.022 647 0.526

SME 0.021 647 0.571

WASO -0.02 647 0.583

REM sigma 0.02 626 0.605

REM power 0.017 626 0.615
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TIB -0.017 647 0.616

NREM alpha -0.014 647 0.677

%NREM 0.013 647 0.703

%REM -0.013 647 0.706

Spindles power 0.012 647 0.738

%N2 -0.011 647 0.752

REM beta -0.008 626 0.812

NREM sigma 0.004 647 0.9

Arousal index -0.001 640 0.978

All regressions were adjusted for age, sex, BMI, race/ethnicity, hypertension and family ID. Regressions are sorted in
descending order of significance. NREM refers to N2 + N3 sleep (N1 excluded). Sleep features that significantly
predict higher HOMA-IR values (= worse outcome) are highlighted in red. A total of 47 sleep parameters were included
in the correlation analysis. Two-sided p-values were not corrected for multiple comparisons. The spectral frequency
bands are: slow delta (0.5-1.25 Hz), fast delta (1.25-4 Hz), delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma
(12-16 Hz), beta (16-30 Hz), and total power (in microvolts-squared, 0.5-30 Hz). AHI = Apnea–hypopnea index, SE =
sleep efficiency, SO = slow oscillations, SME = sleep maintenance efficiency, SOL = sleep onset latency, SPT = sleep
period time, TST = total sleep time, WASO = wake after sleep onset.
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Supplementary Figures

Figure S1. Assessment of insulin resistance (IR) and pancreatic beta cells function (B) using the standardized
homeostasis assessment model (HOMA). A) HOMA-IR is positively correlated with fasting glucose. B) HOMA-B is
negatively correlated with fasting glucose. Related to STAR Methods.
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Figure S2. Mediation analysis demonstrated that the link between SO-spindle coupling and improved next-day
fasting glucose is, in part, explained by increased heart rate variability, in the MESA dataset. A) A significant
association between the proportion of SO-spindle coupling and increased heart rate variability (HRV), which in turn
predicted lower (improved) fasting glucose values. B) A significant association between the strength of SO-spindle
coupling and increased HRV, which in turn predicted lower (improved) fasting glucose values. Related to Figure 3.
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Figure S3. Mediation analysis demonstrated that the link between SO-spindle coupling and improved next-day
fasting glucose is not, in part, explained by increased heart rate variability, in the CFS dataset. A) A significant
association between the proportion of SO-spindle coupling and lower (improved) fasting glucose values is not mediated
by HRV. B) A significant association between the strength of SO-spindle coupling and lower (improved) fasting glucose
values is not mediated by HRV. Related to Figure 2.
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Figure S4. Mediation analysis demonstrated that the link between SO-spindle coupling and next-day insulin
resistance is modestly explained by increased heart rate variability, in the CFS dataset. A) A trending significant
association between the proportion of SO-spindle coupling increased heart rate variability (HRV), which in turn
predicted lower (better) insulin resistance values. B) A significant association between the strength of SO-spindle
coupling and lower (better) insulin resistance values is not mediated by HRV. Related to Figure 2.
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