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SUMMARY
Merkel cell carcinoma (MCC), a rare but aggressive skin cancer, remains a challenge in the era of precision
medicine. Immune checkpoint inhibitors (ICIs), the only approved therapy for advanced MCC, are impeded
by high primary and acquired resistance. Hence, we dissect transcriptomic heterogeneity at single-cell res-
olution in a panel of patient tumors, revealing phenotypic plasticity in a subset of treatment-naive MCC. The
tumor cells in a ‘‘mesenchymal-like’’ state are endowedwith an inflamed phenotype that portends a better ICI
response. This observation is also validated in the largest whole transcriptomic dataset available from MCC
patient tumors. In contrast, ICI-resistant tumors predominantly express neuroepithelial markers in a well-
differentiated state with ‘‘immune-cold’’ landscape. Importantly, a subtle shift to ‘‘mesenchymal-like’’ state
reverts copanlisib resistance in primary MCC cells, highlighting potential strategies in patient stratification
for therapeutics to harness tumor cell plasticity, augment treatment efficacy, and avert resistance.
INTRODUCTION

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine

cancer of the skin that has quadrupled in incidence during the

past 20 years.1 Its disease-associated mortality rate exceeds

that of melanoma, with a dismal 0%–18% 5-year survival rate

in advanced disease.2 The clinical success of immune check-

point inhibitors (ICIs) in MCC has been astounding yet still

encumbered by a high rate of primary and acquired resistance.3

Critically, there is still no curative therapy for patients who are

ineligible for ICIs due to comorbidities and for those failing out

of ICIs. Given its aggressive and immunosuppressive nature,

MCC remains poorly understood and difficult to treat. Vexing

challenges include limited experimental models, scarcity of

relapse, and treatment-resistant tissue samples due to its rarity,

and lack of in-depth understanding of tumor heterogeneity and

resistance mechanisms. In contrast to other human cancers

for which biomarker selection has dramatically improved treat-

ment response, advanced MCC is treated as a single entity.

Classically, MCC tumor heterogeneity has been attributed to

variant disease etiologies, mediated by either UV exposure or

Merkel cell polyomavirus (MCPyV) since its discovery in 2008.4

Compared toMCPyV-positiveMCCs, tumors without detectable

MCPyV harbor a high tumor mutation burden with UV signa-
This is an open access article under the CC BY-N
tures.5 However, over the years it has become clear that these

two groups are largely similar in clinical presentation, prognosis,

and treatment response to ICIs.5,6 Clinically, MCC is considered

as a neuroendocrine carcinoma of the skin expressing both

epithelial and neuroendocrine markers; however, its cell of origin

has been under constant debate, exerting another layer of

complexity to tumor heterogeneity.2 Moreover, clinical trials for

MCC patients who failed ICI therapy have largely focused on un-

selected patient populations and have yielded disappointing re-

sults,7 highlighting the need to better understand heterogeneous

biology and uncover novel approaches that complement and

extend current therapy.

Rapid advances in next-generation sequencing have provided

robust tools to elucidate tumor heterogeneity and complexity in

the tumor microenvironment (TME). Microarray and bulk RNA

sequencing (RNA-seq) have gleaned substantial information

from heterogeneous tissues but obscure transcription of individ-

ual cells and their interactions. In contrast, single-cell RNA-seq

(scRNA-seq) directlymeasures transcriptional outputs of individ-

ual cells and parses plasticity within a single tumor and its TME

with unprecedented granularity.8 Thereby, applications of this

innovative technique have revealed unanticipated levels of tumor

heterogeneity and exquisite cancer cell plasticity underlying not

only tumor development and progression but also resistance to
Cell Reports Medicine 4, 101101, July 18, 2023 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ling.gao@va.gov
https://doi.org/10.1016/j.xcrm.2023.101101
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101101&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
and relapse after therapy.8–11 Moreover, scRNA-seq has defined

immune cell composition and functional status and has identified

the T cell exhaustion program as a major mechanism of tumor

immune evasion.12,13 Furthermore, studies have demonstrated

that tumor cells in a ‘‘mesenchymal-like’’ state are associated

with an ‘‘inflamed phenotype’’ and benefit from ICI therapy in

small cell lung cancer (SCLC) and glioblastoma multiforme

(GBM).9,14 On the contrary, recent studies in melanoma and

prostate cancer have shown that a ‘‘mesenchymal-like’’ state

contributes to therapeutic resistance.15–18 Thus, it is imperative

to conduct comprehensive analysis of MCC patient tumors

and their TME to precisely characterize tumor cell plasticity

and reveal novel therapeutic vulnerabilities.

Here, we conducted a comprehensive analysis of single-cell

transcriptomic profiles of 11 MCC tumors from nine patients

and incisively dissected the heterogeneity of tumors and their

TME. Our studies have identified phenotypic plasticity and

have gained insights into MCC ICI resistance mechanisms as

well as potential strategies in manipulating the tumor cell state

to augment therapeutic response and avert resistance, under-

scoring patient stratification upon initial diagnosis to match ther-

apies and achieve long-lasting clinical benefits.

RESULTS

scRNA-seq charts transcriptomic heterogeneity and
unveils tumor cell plasticity in MCC
To comprehensively interrogate heterogeneity, we generated

single-cell transcriptomic profiles for 11 freshly procured human

MCC tumors from nine patients. The data compendium spanned

nine treatment-naive tumors (no prior systemic or radiation treat-

ment) from seven MCC patients. Treatment-naive samples

included one parotid gland tumor, two primary skin tumors,

two lymph node metastases, and two primary skin tumors with

matched lymph node metastases (Table S1). Additionally, two

ICI-resistant (ICI-R) tumors that progressed on the ICI pembroli-

zumab were included in the study (Table S1). MCC tumors from

four out of seven treatment-naive patients harbored detectable

MCPyV (57%). A total of 46,027 cells from nine treatment-naive

MCC tumors (Table S1 and Figure S1A) were integrated into one

dataset by application of Seurat’s ‘‘anchor-based’’ strategy and

corrected for batch effect.19,20 Unsupervised principal compo-

nent analysis (PCA) followed by graph-based clustering and

non-linear uniform manifold approximation and projection

(UMAP) delineated 15 distinct cell clusters (Figure 1A).

To identify cell types, we annotated each cluster based on

well-established markers and validated them using SingleR

(Figures 1B, S1B, and S1C).21 MCC tumors express specific

neuroendocrine markers such as neuron-specific enolase

(ENO2), neural cell adhesion molecule-1 (NCAM1, CD56), chro-

mogranin (CHGA), and synaptophysin (SYP).1,2,6 Utilizing these

canonical markers, we identified seven clusters as tumor cells

and the remaining eight clusters as immune and other cell types.

Clusters 2, 4, and 9 harbored CD3 T cells and clusters 3, 11, and

13 represented CD19+/PAX5+ B cells, whereas cluster 12 was

composed of CD14+/CD68+ monocytes/macrophages (MC)

(Figures 1A and 1B). As cancer-associated fibroblasts (CAFs)

have not been characterized in MCC, we curated a CAF signa-
2 Cell Reports Medicine 4, 101101, July 18, 2023
ture gene list from a previous study (Table S2).22 Upon scoring

our tumor subset, we identified cluster 14 with a high CAF score

(CAF1) and activation-associated marker genes (Figures 1B,

S1B, and S1D). A small number of natural killer (NK) cells and

dendritic cells (DCs) were dispersed among CD3 T cell and

CD19+/CD20+ B cell clusters (Figure S1B). MCC tumor cells dis-

played a distinct gene expression pattern compared to other cell

types (Figure 1C). Notably, therewas variability in the percentage

of tumor and immune cell composition among the nine treat-

ment-naive tumors; however, this could not be attributed to cap-

ture bias (Figures S1A, S1C, and S1E). We further subclustered

tumor cells into five clusters (Figures 1D and 1E). Expression of

top variable genes (n = 20) highlighted prominent intertumoral

heterogeneity (Figure S1F). To understand sample-to-sample

differences and assess transcriptomic heterogeneity, we gener-

ated a pseudo-bulk dataset for each tumor by aggregating the

raw count of genes across cell types.23 PCA followed by corre-

lation-based Euclidean distance measurements on the normal-

ized tumor cell pseudo-bulk data hierarchically grouped T99,

T101, and T102 under one clade, separated from the remaining

six samples (Figure 1F). The separation was further accentuated

by concordant expression of differentially expressed genes

(DEGs) between these two groups in scRNA-seq data (Figure 1G

and Table S3). Samples did not cluster together based on the

sites of biopsy (skin vs. lymph node) or MCPyV status, suggest-

ing that grouping was not constrained by tumor stages and was

virus independent. The primary tumors andmatched lymph node

tumors (T98 A and B, T112 A and B) were the nearest neighbors,

implying that tumors from distinct sites of the same patient

shared similar gene expression to a great extent (Figures 1F

and 1G).

To examineMCCmarkers, we found that classical neuroendo-

crine transcription factors and neuroendocrine markers, such as

ATOH1, SOX2, ENO2, SYP, and CHGA, were expressed at lower

levels in T99, T101, and T102 (Figure 1H). Interestingly, HES6

and INSM1 were highly expressed in all MCC samples. There-

fore, we broadly subtyped T99, T101, and T102 tumors as group

1 MCC (MCCT_G1) and the remaining tumors as group 2 MCC

(MCCT_G2) for further characterization. To gain further insights,

we performed differential gene expression analysis to determine

specific transcriptomic programs for these two groups. Pre-

ranked gene set enrichment analysis (GSEA) of top variable

genes revealed that MCCT_G1 tumors had significant enrich-

ment of genes involved in tumor necrosis factor a (TNF-a)

signaling via nuclear factor (NF)-kB pathways, epithelial-to-

mesenchymal transition (EMT), and cell-cycle progression (Fig-

ure 1I). In contrast, MCCT_G2 tumors were marked by enrich-

ment of genes participating in energy metabolism-related

pathways, including oxidative phosphorylation (OXPHOS),

tricarboxylic acid (TCA) or citric acid cycle, and fatty acid break-

down (Figure 1I and Table S4). Other notably enriched pathways

in MCCT_G1 included the p53 pathway, inflammation, KRAS

signaling, and transforming growth factor b (TGF-b) signaling.

Although EMT is the most commonly cited mechanism for

cancer metastasis and therapeutic resistance, recent studies

have identified partial mesenchymal phenotypes lying between

the fully epithelial and fully mesenchymal poles,22 and this

‘‘mesenchymal-like’’ state in tumor cells is linked to inflamed



Figure 1. scRNA-seq identifies phenotypic plasticity in treatment-naive MCC

(A) UMAP visualization of 15 distinct clusters (n = 46,027 [all cells]).

(B and C) Distribution of cell types and heatmap of top 20 variable genes. MC, macrophage/monocytes; CAF, cancer-associated fibroblasts.

(D and E) (D) UMAP visualization of five tumor cell clusters (n = 22,978 cells) and (E) heatmap of top 20 variable genes in each cluster.

(F) Pearson correlation heatmap of pseudo-bulk data from tumor cells with unsupervised hierarchical clustering.

(G) Heatmap of differentially expressed genes between these two groups (log2 fold change >0.25) with unsupervised clustering.

(H) Scaled dot plot of epithelial and neuroendocrine marker genes in MCC tumor cells.

(I) Hallmark Pathway by GSEA of MCCT_G1 and MCCT_G2 tumor cells.

(J) Scaled dot plot of EMT transcription factors (TFs) and mesenchymal marker genes in MCC tumor cells.

The vertical dotted line demarcates MCCT_G1 from MCCT_G2 in (H) and (J).
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phenotype, treatment response, and resistance in human can-

cers.9,14–18 Informed by the GSEA data that EMT was one of

the top pathways involved, we carefully examined core EMT

transcription factors (EMT_TFs) and markers, and found higher

expression of ZEB1, JUNB, VIM, S100A11, EMP3, and espe-

cially RHOB in MCCT_G1 tumors (Figure 1J). Congruent with

published reports,22 MES gene signals were strongest in CAFs,

with tumor cells expressing EMT markers typically at lower

levels, suggestive of a partially mesenchymal phenotype in

MCCT_G1 tumors (Figure S2A). By immunohistochemistry stain-

ing, we found that MCCT_G1 tumor cells were enriched in VIM

expression, implying a ‘‘mesenchymal-like’’ state in MCCT_G1

tumor cells (Figure S2B). Our analysis until now has hinted that

a subset of MCC tumors might inherit phenotypic plasticity in

the primary tumors and carry through metastasis; this was sup-

ported by the observation that ‘‘mesenchymal-like’’ MCCs were

composed of both primary skin tumors and lymph node metas-

tases (Table S1). Therefore, characterization of MCC tumor cell

states at the initial diagnosis may have significant implication

for treatment response and resistance.

‘‘Mesenchymal-like’’ state is likely determined by non-
genomic mechanisms
Next, we investigated whether this separation was indirectly re-

flected in genetic alterations of individual tumors. As whole-

genome sequencing data of these samples was not available,

we inferred copy-number variations (CNVs) using the scRNA-

seq dataset. Detection of genetic mutations within individual

cells from scRNA-seq data is limited by partial coverage of the

transcriptome. However, large-scale CNVs can be robustly de-

tected based on the average up- or downregulation of large

sets of genes within each chromosome region.8,24,25 Recent

studies have demonstrated that CNVs inferred from scRNA-

seq are highly concordant with DNA-based CNV results.26 In-

ferred aberrations in our tumor samples aligned withMCPyV sta-

tus; MCPyV-positive tumors carried fewer aberrations

compared to MCPyV-negative tumors (Figure S2C).5 Moreover,

MCCs in the ‘‘mesenchymal-like’’ state encompassed both

MCPyV-negative and MCPyV-positive tumors, implying that tu-

mor cell state was unlikely to be determined by genetic alter-

ations. Furthermore, chromosome 6p amplification has been

previously reported in MCC.27,28 However, our data indicated

that genes residing in the specific chromosome 6p region,

including human leukocyte antigen (HLA) loci, were prominently

under-represented and agreed with the expression levels of HLA

molecules in both MCCT_G1 (T99) and MCCT_G2 (T100, T112A,

T112B) tumors (Figures S2C and S2D), suggesting a common

deletion of the region in both groups.

Recent studies have suggested that cell state heterogeneity

arises largely independent of genetic variation.29,30 To decipher

the underlying MCC gene regulatory networks and mine the key

transcription factors (TFs) in treatment-naive MCC tumors, we

applied pySCENIC, a Python implementation of the SCENIC

(Single-Cell Regulatory Network Inference and Clustering) pipe-

line that reconstructs regulons (TFs and their target genes) from

scRNA-seq data (STAR Methods).31,32 Enrichment analysis was

based on the Z score and calculated by the mean regulon spec-

ificity score (RSS) of all single cells/standard deviation of RSS of
4 Cell Reports Medicine 4, 101101, July 18, 2023
all cells to identify regulons in MCCT_G1 tumors. We have iden-

tified ZEB1, ALX1, and MEF2C as top regulons in MCCT_G1 tu-

mors (Table S5). Similar to ZEB1, ALX1 and MEF2C have been

involved in EMT in a TGF-b-dependent manner.33,34

scRNA-seq discloses potential therapeutic
vulnerabilities to overcome ICI resistance
As acquired resistance is common in MCC, a better understand-

ing of the molecular underpinning of ICI resistance is of high clin-

ical relevance. scRNA-seq data from MCC remains scarce,

particularly data from ICI-R tumors, mainly due to tissue unavail-

ability, since surgery is usually not the next option for patients

who have developed ICI resistance.

For further characterization, two ICI-R MCCs were merged

with nine treatment-naive tumors in our scRNA-seq dataset

(Table S1). A total of �35,800 tumor cells were reanalyzed at

higher resolution forming six meta-clusters (Figure 2A and

Table S1), and we observed a distinct differential gene expres-

sion pattern between treatment-naive and ICI-R MCCs (Fig-

ure 2B). Pre-ranked GSEA analysis of ICI-R and MCCT_G1 tu-

mor cells using the Hallmark database revealed prominent

downregulation of type I and type II interferon response, as

well as TNF-a signaling by NF-kB, inflammation, EMT, and

TGF-b signaling in ICI-R tumor cells (Figure 2C and Table S4).

Recent studies in prostate cancer and melanoma suggest that

the ‘‘mesenchymal-like’’ state in tumor cells is associated with

metastasis and therapeutic resistance.15,18 To our surprise, tu-

mor cells from ICI-R samples displayed a well-differentiated

phenotype with higher expression of neuroepithelial markers

and significantly lower levels of mesenchymal marker genes,

similar to MCCT_G2 tumors (Figures 2D and 2E). To confirm

transcriptomic resemblance, we performed pseudo-bulk anal-

ysis on tumor cells from MCCT_G1, MCCT_G2, and ICI-R

groups. PCA followed by correlation-based Euclidean distance

measurement validated our observation, placing both

MCCT_G2 and ICI-R tumor cells in proximity under a single clade

(Figure 2F). In comparison to MCCT_G2, ICI-R tumor cells

display significant downregulation of major histocompatibility

complex class I molecule expression: HLA-A, HLA-B, HLA-C,

and HLA-E (Figure 2G).

scRNA-seq reveals that the ‘‘mesenchymal-like’’ state is
endowed with inflamed phenotype
To date, comprehensive single-cell analysis of immune profiling

in the MCC TME has not been elucidated. Next, we enquired

whether the ‘‘mesenchymal-like’’ state was also echoed by en-

riched tumor-associated immune cells, and we first focused on

the treatment-naive MCCs. A total of �12,800 CD45+ cells

from nine treatment-naive tumors were positively selected

from batch effect-corrected composite object, and unsuper-

vised clustering identified seven distinct immune cell popula-

tions (Figures 3A and 3B; Table S1). The number of immune cells

was markedly higher in MCCT_G1 tumors in the ‘‘mesenchymal-

like’’ state, which could not be ascribed to capture bias

(Figures S1A, S1C, and S1F). CD3 T cells constituted �70% of

total CD45+ cells, of which �21.7% and �17.6% were CD8

and CD4 T cells, respectively. While there was a high percentage

of CD19+ or CD20+ B cells (25%), the remaining cells were



Figure 2. scRNA-seq reveals a well-differentiated neuroepithelial state in ICI-R MCC associated with distinct pathways

(A) UMAP clusters of tumor cells from nine treatment-naive and two ICI-R tumors (n = 35,796 cells), split based on treatment status.

(B) Heatmap of top 100 variable genes in treatment-naive and ICI-R tumor cells (n = 35,796 cells).

(C) Hallmark Pathway by GSEA of ICI-R and MCCT_G1 tumor cells.

(D and E) Scaled dot plots of (D) epithelial and neuroendocrine markers, and (E) EMT transcription factors (TFs) and mesenchymal markers in MCCT_G1,

MCCT_G2, and ICI-R tumor cells, and the ICI-R dataset as reported by Paulson et al.35 (UW).

(F) Pearson correlation heatmap of pseudo-bulk data from MCCT_G1, MCCT_G2, and ICI-R tumor cells.

(G) Volcano plot of differentially expressed genes between ICI-R and MCCT_G2 tumor cells.
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NCAM1+/KLRC2+ NK cells (2.7%), CD14+/CD68+ MC (1.1%),

and DCs (1.0%). Interestingly, immune cell composition dis-

played a high degree of heterogeneity in treatment-naive

MCCs (Figure S3A).

To gain further insights, a total of�3,100 CD4 and CD8 T cells

were analyzed, resulting in identification of nine distinct subtypes

(Figures 3C, S3B, and S3C). Two major cell populations were

recognized: naive T cells (30%) and CD8 effector T cells

(�31%) (Figure 3C, vertical bar graph). Two additional CD4
T cell subtypes were also observed: exhausted (�12%) and reg-

ulatory T cells (Tregs) (�4%), both expressing CTLA4 and TIGIT

(Figure 3C, dot plot). CD8 effector exhausted T cells (�9%),

effector memory cells (<2%), resident (�10%), and CD83+

T cells (<1.0%) contributed to the remaining populations (Fig-

ure 3C, vertical bar graph). MCCT_G1 tumors in the ‘‘mesen-

chymal-like’’ state harbored more CD4/CD8 naive and resident

T cells, whereas both CD4 Tregs and CD8 exhausted T cells

were relatively higher in MCCT_G2 (Figure 3C), with comparable
Cell Reports Medicine 4, 101101, July 18, 2023 5



Figure 3. scRNA-seq charts heterogeneity of tumor-associated immune cells in MCC

(A) Left: UMAP visualization of CD45+ cells (n = 12,796 cells) with seven distinct cell populations, namely B cells, CD4 T cells, CD8 T cells, CD4 and CD8 double-

negative T cells (DNTC), natural killer cells (NK), dendritic cells (DC), and macrophage/monocytes (MC), and their percentages of distribution (color-matched

histogram). Right: split UMAPs depicting distribution of cell types in MCCT_G1 and MCCT_G2 tumors and color-matched histograms of relative abundance.

(B) Heatmap of top 20 variable genes across cell types identified in (A).

(C) Left: UMAP visualization of nine distinct T cell subtypes in CD4/CD8 T cell population (n = 3,169 cells) from the dataset in (A). Middle: split UMAPs depicting

groupwise distribution and color-matched histograms of relative abundance. Right: scaled dot plot of marker genes for the T cell subtypes.

(legend continued on next page)

6 Cell Reports Medicine 4, 101101, July 18, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
CD8 effector T cells in both groups. double-negative T cells

(DNTCs) are a rare population in the peripheral blood and lymph

organs36; however, to our surprise, �40% of CD3 T cells were

DNTCs with >80% residing in MCCT_G1 tumors (Figure 3D,

left column). Although T regulatory and T helper-like functions

of DNTCs have been reported to play a crucial role in graft-

versus-host and autoimmune diseases,36 their precise function

in tumors remains poorly understood. Marker gene expression

suggested that DNTCs existed in a naive-like inert state as sup-

ported by the expression of naive lymphocyte markers, such as

LEF1, SELL, and CCR7 (Figure 3D); however, both immune stim-

ulatory chemokine CCL-5 and suppressive cytokine TGF-bwere

expressed (Figure S3D). Unsupervised clustering of �2,300 B

cells uncovered three distinct subsets (Figure S3E). The IgDlow/

CD27+/CD99+memory B cells constituted the largest population

(�73%), followed by IgMhigh/IgDhigh/CD24+ naive B cells

(�25%). The remaining cells were CD27�/CD99+ atypical mem-

ory B cells (�4%). Thus, themajority of B cells were inmemory or

naive states in treatment-naive TME.

Consistently, ICI-R tumors mirrored MCCT_G2 tumors with an

‘‘immune-cold’’ landscape. Unsupervised clustering of �15,000

CD45+ cells from both treatment-naive and ICI-R tumors dis-

played a marked reduction in immune cell distribution and abun-

dance in ICI-R MCC (Figure 3E). Upon curating available public

databases, we were able to identify one ICI-R MCC with

scRNA-seq data published by Paulson et al. (labeled as UW in

Figures 2D and 2E)35 and observed that this case resembled

our ICI-R samples with its tumor cells displaying a well-differen-

tiated neuroepithelial state (Figures 2D and 2E). Notably, this tu-

mor sample had very few immune cells, which agreed with the

‘‘immune-cold’’ phenotype in ICI-R MCC. Interestingly, TIGIT

and CTLA4 were detected at markedly higher levels in ICI-R tu-

mors (Figure 3F), supporting the application of anti-TIGIT and

anti-CTLA4 antibodies in MCC patients who develop resistance

to anti-PD1 therapy. As inflammation is one of the top pathways

on the GSEA analysis of tumor cells, we then examined cyto-

kines, chemokines, receptors, and inflammatory genes. As

shown in Figures S4A and S4B, CXCR4, CCR7, CCL5, and

STAT1 were significantly upregulated in ‘‘mesenchymal-like’’

state MCCs. CXCR4 expression was further confirmed in patient

tumors by immunohistochemistry, while CCL5 expression was

confirmed in MCC cell lines by qPCR (Figures S4C and S4D).

To further evaluate tumor-immune crosstalk in MCC TME, we

analyzed the inferred ‘‘cell-cell’’ communication networks

among tumor cells, different types of immune cells, and fibro-

blasts from our scRNA-seq dataset. Utilizing the recently devel-

oped R package CellChat, which can quantitatively analyze

ligand-receptor pairs from its database containing >2,000

knownmolecular interactions to depict key incoming and outgo-

ing autocrine and paracrine signals among different cell types,37

we have established active ‘‘cell-cell’’ communication patterns

among seven cell types in the MCC TME, including tumor cells,
(D) Left (bar graph): relative abundance of DNTCs inMCCT_G1 andMCCT_G2 tum

memory markers in MCCT_G1 and MCCT_G2 tumors.

(E) Split UMAP visualization of seven CD45+ immune cell subtypes (n = 14,895 cell

MCCT_G1, MCCT_G2, and ICI-R tumors.

(F) Violin plots of exhaustion-associated immune checkpoint molecules and cyto
T cells, NK cells, macrophages, DCs, B cells, and fibroblasts

(Figure 4). As displayed in circle plots, the number and strength

of interactions between different cell types were greater in

MCCT_G1 tumors, reflected by the weight of chords connecting

two cell types (Figures 4A, S5A, and S5B). The chord diagrams

illustrated that the outgoing signals from tumor cells toward im-

mune cells were largely mediated by macrophage migration

inhibitory factor (MIF)-(CD74-CXCR4) and MIF-(CD74-CD44)

signaling axes in both MCCT_G1 and MCCT_G2 tumors (Fig-

ure 4B). Interactions between tumor cells and immune cells

(except T cells) were stronger in MCCT_G1 tumors, as high-

lighted by a longer arc in chord diagrams and shown in compar-

ative bubble plot analysis of communication probability

(Figures 4B and 4C). The outgoing interaction of tumors with im-

mune cells through the midkine (MDK)-nucleolin (NCL) pathway

wasmore prominent inMCCT_G1 tumors (Figures 4B and 4C). In

contrast, tumor cell-fibroblast communication was only

observed inMCCT_G2 tumors and was predominantly mediated

by theMDK/NCL pathway inMCCT_G2 tumors. Given the role of

MIF and MDK in the regulation of inflammation and T cells,38–40

these results were in line with our prior observation of the highly

inflamed TME in ‘‘mesenchymal-like’’ state MCCT_G1 tumors.

Additionally, the amyloid-b precursor protein (APP)/CD74

pathway is likely involved in tumor cell-B cell and tumor cell-

NK cell interactions in MCCT_G1 tumors (Figures 4B and 4C).

Taken together, these results highlighted that MCCT_G1 tu-

mors in the ‘‘mesenchymal-like’’ state possessed an inflamed

phenotype, which might be primed for ICI response and poten-

tially derive greater benefit from ICIs. It also augurs for potential

combinatorial strategies to induce a ‘‘mesenchymal-like’’ state in

MCCT_G2 tumors to amend favorable ICI response; both obser-

vations warrant further confirmatory studies with a larger cohort

of ICI-R tumors, ideally compared to ICI-responsive MCCs.

‘‘Mesenchymal-like’’ state correlates with a better ICI
response in MCC
To obtain an independent assessment, we utilized an 18-gene

interferon-g (IFN-g) signature (IFNG18S) that has been reported

to reliably predict clinical response to ICIs in multiple solid tu-

mors, independent of tumor mutation burden.9,41 Consistently,

IFNG18S scored higher in the ‘‘mesenchymal-like’’ MCCT_G1

tumors, positing a better response to ICI therapy (Figure 5A).

This observation was further confirmed in our ICI-R tumors

with the lowest score (Figure 5A). We next asked whether the

‘‘mesenchymal-like’’ cell state correlated with patient survival.

While there are limited whole transcriptomic studies utilizing

MCC patient tumors at the single-cell and bulk RNA-seq levels,

we identified a recent study with the largest published cohort of

MCC patient tumors to date.42 In the study, bulk RNA-seq was

performed on 102 archival MCC tumors, and gene expression

was correlated with clinical data, resulting in the identification

of key marker genes associated with patient survival and death.
ors. Right (violin plots): expression of canonical naive, effector, exhaustion, and

s) and color-matched histograms depicting their relative abundance (bottom) in

kines in CD3 T cells.
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Figure 4. CellChat analysis reveals stronger interactions of tumor cells with other cell types in MCCT_G1 tumor microenvironment
(A) Circle plots representing the number (left) and weight/strength (right) of interactions between the seven cell types in MCCT_G1 (top) and MCCT_G2 (bottom)

tumors. Outgoing signals from a cell type are represented by color-matched chords, with chord thickness proportional to the number/strength of the corre-

sponding signal.

(B) Chord diagrams of outgoing signals fromMCCT_G1 (left) andMCCT_G2 (right) tumor cells to other cell types in the tumormicroenvironment. Outgoing signals

are color matched to the origin (tumor cells), with each arc representing one pathway and arc length depicting the strength.

(C) Comparative bubble plot of communication probability for the top ligand-receptor pairs of outgoing signals from tumor cells to other cell types in the tumor

microenvironment.

The top three enriched pathways are highlighted in (B) and in the red boxes in (C).
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These signatures, referred to as survival-associated genes

(SAGs) and death-associated genes (DAGs), pointed toward an

enrichment of oncogenic and immune-response pathways in

conferring survival to MCC patients. Therefore we probed our
8 Cell Reports Medicine 4, 101101, July 18, 2023
scRNA-seq data using these signatures and queried whether

either group displayed a preferential disposition toward survival.

Since bulk RNA-seq in the aforementioned study entailed tumor

cells as well as other cell types in the TME, scRNA-seq data



Figure 5. MCCT_G1 tumors with an inflamed phenotype correlate with better ICI response and survival-associated genes

(A) Violin plots of the 18-gene IFN-g gene signature (IFNG18S), survival-associated gene signature (SAG), and death-associated gene signature (DAG) in

MCCT_G1, MCCT_G2, and ICI-R tumors.

(B) Signature score of IFNG18S, MESI-19 (generated from MCC tumor cells), and SIG-14 (generated from entire cell populations) in the glioblastoma multiforme

dataset with known ICI response (R, responder; NR, non-responder). Significance of enrichment between responder (R) and non-responder (NR) was calculated

using a non-parametric Mann-Whitney test. Solid black and dotted lines within each violin represent the median and quartiles, respectively.

(C) Classification of 102 MCC patient tumor RNA-seq samples based on enrichment of survival-associated gene signature (SAG) and cross-validated against

death-associated gene signature (DAG).

(D) Enrichment score for IFNG18S, MESI-19, and SIG-14 in SAGhigh and SAGlow patients identified in (C).

ns, not significant; **p < 0.005, ***p < 0.0005, ****p < 0.00005 as analyzed by one-way ANOVA for (A) and unpaired non-parametric Mann-Whitney test for (D).
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Figure 6. Patient-derived MCC cell lines retain ‘‘mesenchymal-like’’ state and transcriptomic plasticity

(A) Pearson correlation heatmap with unsupervised clustering based on sample distance among eight MCC cell lines.

(B) Hallmark Pathway enrichment by GSEA of MCC_G1 and MCC_G2 cell lines.

(C and D) Heatmaps with unsupervised hierarchical clustering depicting normalized expression across eight MCC cell lines of (C) selected epithelial and

neuroendocrine genes and (D) selected EMT transcription factors (TFs) and mesenchymal marker genes.
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encompassing all cell types was accordingly used to score for

these two signatures. Interestingly, tumors in the ‘‘mesen-

chymal-like’’ state displayed higher expression of SAGs and cor-

responding low expression of DAGs (Figure 5A). Conversely,

ICI-R tumors displayed high expression of DAGs and corre-

sponding low expression of SAGs (Figure 5A).

Next, we generated signature gene lists using our scRNA-seq

data from treatment-naive MCC patient tumors based on gene

expression only in MCC tumor cells. We carefully curated an

EMT signature gene (ESG) list including 456 genes from studies

across human cancers (Table S6).22,23,43 According to the gene
10 Cell Reports Medicine 4, 101101, July 18, 2023
expression levels in our dataset, we then extracted 293 mesen-

chymal candidate genes from this ESG list (Table S6). Genes

with higher expression in MCC tumor cells and CAFs (STAR

Methods), but not in any other cell types, were used to generate

a 19-gene mesenchymal-specific signature index (MESI-19,

Table S2). Next, we attempted to create a signature based on

gene expression from the entire cell population. GSEA was per-

formed onDEGs betweenMCCT_G1 andMCCT_G2 tumors, fol-

lowed by probing of Hallmark pathways. Significantly upregu-

lated pathways were retrieved, and genes with normalized

enrichment scores R1.5 were retained from each pathway to
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generate a 14-gene signature list (SIG-14) (Table S2). For further

validation, we probed for studies with publicly available data

where no further action was needed for data acquisition,

focusing on two neuroendocrine tumors that closely resemble

MCC: SCLC and GBM. We employed the search strategies pre-

viously published44 and identified an appropriate GBM dataset

with ICI treatment response information.45 All three gene lists

IFNG18S, MESI-19, and SIG-14 scored higher in the ICI re-

sponders in the glioblastoma dataset (Figure 5B). Although this

trend was notable, significance was not reached in the GBM da-

taset, probably due to the small sample size. To investigate

whether therewas a correlation between these gene lists and pa-

tient survival, we stratified the dataset of 102 MCC patients ac-

cording to relative expression of survival-associated gene signa-

ture (SAG); samples were grouped as SAGhigh, SAGmid, and

SAGlow (STAR Methods), and this grouping was further

confirmed against the death-associated gene signature

(DAG)—e.g., the SAGhigh group had the lowest DAG score (Fig-

ure 5C). Interestingly, all three gene lists IFNG18S, MESI-19, and

SIG-14 scored significantly higher in the SAGhigh group (Fig-

ure 5D). Taken together, our results have inferred potential

coherence between the ‘‘mesenchymal-like’’ tumor cell state

with better ICI response and high expression of SAGs, and

such observations will benefit from further clinical validation.

Patient-derived primary MCC cell lines retain
‘‘mesenchymal-like’’ features with therapeutic
vulnerability
Cell-based models are critical in examining and understanding

the underlying biology of cancer.46 To expand our observations,

we surveyed eight patient-derived primary MCC cell lines with

bulk RNA-seq (STAR Methods). Seven patient-derived primary

MCC cell lines were established and characterized in our labora-

tory as described previously, and MCPyV status was assessed

(STAR Methods)47,48; the originating tumors for these cell lines

were different from the tumors in the scRNA-seq dataset. Similar

to the classic MKL-1 cell line, our MCPyV-negative MCC-2, -3,

-5, -8, and -9 cell lines and MCPyV-positive cell lines MCC-16

and MCC-21 display classical MCC features, including the char-

acteristic suspension cell clusters.48 PCA followed by correla-

tion-based Euclidean distance measurement and hierarchical

clustering on the eight MCC cell lines placed MCC-3, -5, -9,

and -21 under one clade, whereas MCC-2, -8, -16, and MKL-1

formed the second node independent of MCPyV status (Fig-

ure 6A). To further classify whether these two nodes bore distinct

transcriptomes, top up- and downregulated genes (log2 fold

change >2) were subjected to pre-ranked GSEA analysis as

described earlier. Similar to findings in ‘‘mesenchymal-like’’ state

MCCT_G1 tumors, MCC-3, -5, -9, and -21 cell lines were en-

riched with genes in the IFN response, TNF-a signaling via NF-

kB, inflammation, and EMT (Figure 6B and Table S4). Consis-

tently, MCC-3, -5, -9, and -21 cell lines clustered under one

node in the ‘‘mesenchymal-like’’ state (Figures 6C and 6D). In

contrast to a previous study suggesting that EMT was observed

only in atypical adherent MCC cell lines that have been ques-

tioned in several studies as representative MCC models,49 we

found that ‘‘mesenchymal-like’’ cell state prevailed in the treat-

ment-naive patient tumors as well as in our primary MCC cell
lines with characteristic suspension cell clusters (Figure S6).

Despite relatively lower expression of ATOH1, SYP, and

CHGA, the ‘‘mesenchymal-like’’ state retained strong ENO2

expression (Figure 6C). Thus, we observed that recurrent tran-

scriptomic programs dictate the ‘‘mesenchymal-like’’ state

both in vivo and in vitro, lending further support to the notion

that MCC cell lines mirrored transcriptomic heterogeneity in-

herited in patient tumors and are thus fit for purpose to address

outstanding questions in the field.

It is well known that EMT-TFs canbe regulated epigenetically50;

therefore, we examined whether epigenetic regulation would

affect cellular states in MCC. To test this hypothesis, we utilized

domatinostat, a class I histone deacetylase (HDAC) inhibitor,

which also demonstrated anti-MCC activity in a prior study.51

Similarly, we have shown thatMKL-1 cells treated with domatino-

stat displayed dose-dependent HDAC inhibition and simulta-

neousacetylationof lysine27 (K27) in histone 3protein (Figure 7A).

Moreover, GSEA on DEGs identified by bulk RNA-seq revealed

that EMT is one of the top upregulated pathways in MKL-1 cells

upon domatinostat treatment (Figure 7B and Table S4), which

was further confirmed by qPCR (Figure 7C). Currently there is a

lack of syngeneic MCC animal models with intact immune sys-

tems, preventing examination ofwhether a subtle shift of cell state

could revert primary ICI resistance. Nonetheless, we examined

whether a cell state shift would revert resistance to phosphatidy-

linositide-3-kinase (PI3K) inhibition in primary MCC cells

described previously.47 Aberrant activation of the PI3K pathway

is detected in many cancers and in up to 80% of MCCs, making

it a potential therapeutic target.52,53 Importantly, we previously

achieved clinical success of treating a stage IV MCC patient

with idelalisib, the first Food and Drug Administration (FDA)-

approved PI3K-d inhibitor.54 More recently, we reported that co-

panlisib, the second FDA-approved PI3K-a/d inhibitor, exhibited

potent anti-MCC effects in pre-clinical studies.47 In contrast to

‘‘mesenchymal-like’’ MCC cell lines (MCC-3, -5, -9, and -21)

which demonstrated sensitivity to copanlisib (MCC-5 shown in

Figure S9), we observed primary resistance in MKL-1 cells with

half-maximal growth inhibitory concentration (GI50) >10 mM.47

Here, we tested whether the cell state shift upon domatinostat

treatment would revert resistance to copanlisib in MKL-1 cells.

To this end, we sensitized MKL-1 cells with domatinostat (GI50
dose, �500 nM) and simultaneously measured copanlisib anti-

tumor activities by colorimetric cell proliferation assay (CCK-8,

Millipore Sigma). Remarkably, we found that domatinostat signif-

icantly reverted MKL-1 resistance to copanlisib and observed

nearly 200-fold reduction of GI50 (47 nM), affirming our hypothesis

that pre-emptively manipulating the intrinsic cell state can impart

greater therapeutic susceptibility in MCC. To further confirm our

findings inMKL-1 cells, we used theMCC-16 cell line with growth

characteristics as well as gene expression patterns mimicking

those in the G2 MCC cell lines (Figure S6). Similar findings were

also observed inMCC-16 cells treated with domatinostat and co-

panlisib (Figures 7C and 7D). We also observed dose-dependent

acetylation of lysine 27 (K27) in histone 3 protein in domatinostat-

treatedMCC-16 cells, indicatingHDAC inhibition upon domatino-

stat treatment (Figure 7A). Additionally, we demonstrated that

EMT-TFs can be regulated by TGF-b in both MKL-1 and MCC-

16 cells (Figure S10).
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Figure 7. HDAC inhibition in MKL-1 and MCC-16 cells shifts intrinsic cell state and reverts PI3K therapeutic resistance

(A) Immunoblots showing dose-dependent HDAC inhibition in MKL-1 (left) and MCC-16 (right) cells upon domatinostat treatment. Ratios of H3K27-Ac to total H3

are presented as mean ± SD for each dose (n = 3).

(B) Hallmark Pathway by GSEA in MKL-1 cells treated with domatinostat by bulk RNA-seq.

(C) Relative mRNA expression of EMT transcription factors in MKL-1 and MCC-16 cells receiving either DMSO (vehicle control) or 10 mM domatinostat for 24 h.

Data are presented as mean ± SD, and all samples were run in triplicate. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001 as analyzed by unpaired Student’s t

test.

(D) Comparison of dose-dependent drug response in MKL-1 and MCC-16 cells treated with domatinostat or copanlisib alone (dose range 30 nM to 30 mM), or a

combination of copanlisib (dose range 30 nM to 30 mM) with fixed dose of 500 nM domatinostat. Data are presented as mean ± SD for each dose, n = 6 per dose,

with half-maximal growth inhibitory concentration as analyzed by non-linear regression model using GraphPad Prism.
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DISCUSSION

Intratumor heterogeneity (ITH) and the composition/functional

status of tumor-associated immune cells in the TME play a

pivotal role in cancer progression, metastasis, treatment

response/resistance, and relapse. Owing to its capacity to

create transcriptomic profiles of single cells in multicellular

TME, scRNA-seq together with advanced computational pipe-

lines has been intensively used to dissect the dynamics of ITH

and immune landscapes in a variety of human can-

cers.8–10,26,55,56 Moreover, scRNA-seq has discovered unantic-

ipated cellular plasticity associated with distinct functions

without concomitant underlying changes in the genome.9,29,30

As a highly aggressive neuroendocrine cancer, MCC has

proven a challenge in the era of personalized medicine, partly

due to limited understanding of tumor heterogeneity. Over-

coming the limitation of tumor sample availability, we apply

this innovative technique and comprehensively dissect the tran-

scriptomic heterogeneity of tumors and the TME. We have

observed transcriptomic plasticity converging on an inflamed

‘‘mesenchymal-like’’ tumor cell state that portends favorable

ICI response. In particular, we have demonstrated that shifting

to a ‘‘mesenchymal-like’’ state by HDAC inhibition reverts ther-

apeutic resistance to PI3K inhibition in MCC cells. Our data re-

veals a non-genomic resistance mechanism and opens thera-

peutic avenues to overcome ICI resistance, and proposes

therapeutic strategies in manipulating cell state to augment ef-

ficacy and avert resistance.

Upon stringently excluding any confounding effect, single-

cell transcriptomic profiling of tumor cells in treatment-naive

patient tumors discloses phenotypic plasticity in a subset of

MCC tumors, independent of MCPyV and likely mediated by

non-genomicmechanisms. Consistent with previously reported

association between EMT plasticity and immune-related gene

expression in human cancers, MCC in the ‘‘mesenchymal-

like’’ state is endowed with inflamed phenotype and captures

several features that are predictive of ICI response.9,14 In the

TME, interactions between tumor cells and immune cells are

stronger in MCCT_G1 tumors, which is largely mediated by

MIF-(CD74-CD44) and MIF-(CD74-CXCR4) signaling axes.

The observation is further substantiated by findings in ICI-R tu-

mors demonstrating a well-differentiated state with higher

expression of neuroepithelial markers and ‘‘immune-cold’’

TME. While the ‘‘mesenchymal-like’’ state is linked to its inflam-

matory features in patient tumors, it is also retained in several

primary MCC cell lines devoid of TME, suggesting that tumor

intrinsic factors dictate transcriptomic plasticity. While ICIs

are now the standard of care for advancedMCC, predictive bio-

markers for this therapeutic class have remained elusive,

without definitive evidence supporting MCPyV status, tumor

mutation burden, and PD-L1 expression. Although similar cor-

relation of the ‘‘mesenchymal-like’’ state with favorable ICI

response has been described in two neuroendocrine tumors,

SCLC and GBM, our observation will benefit from clinical vali-

dation in MCC patients.

Analyses of CD45+ cells in treatment-naive MCCs have

shown that over 40% of CD3 T cells are DNTCs, in sharp

contrast to other human cancers in which DNTCs account for
less than 5% of CD3 T cells.36 Although most DNTCs are in

naive and resident memory states, their precise role needs to

be defined in MCC. When analyzed as an independent subset,

�50% of CD4 and CD8 T cells are naive and resident T cells,

with more abundant association with ‘‘mesenchymal-like’’

MCC. A recent study combining nanostring and immunohisto-

chemistry in patient tumors suggests that increased CD27+

central memory CD8 T cells is predictive of favorable ICI

response in MCC57; however, we found more abundant

CD27+ CD8 T cells in ICI-R tumors (Figure S3F). In addition to

an ‘‘immune-cold’’ landscape, TIGIT is a shared targetable im-

mune checkpoint molecule in both MCCT_G2 and ICI-R MCC,

providing the rationale for future clinical trial(s) of anti-TIGIT

antibody alone or in combination with other ICIs as the first-

line therapy or as the second line for patients who develop resis-

tance to anti-PD1/PD-L1 therapies. Recently, tumor-associ-

ated B cells have been shown to induce melanoma cells with

cancer stem cell-like activities.58 Moreover, a recent paper

has demonstrated enrichment of cytotoxic T cells in TCGA

(The Cancer Genome Atlas) mesenchymal tumors and activa-

tion of cytotoxic T cells by ‘‘mesenchymal-like’’ tumor cells in

GBM and SCLC.9,14 Furthermore, tumor-associated macro-

phages induce the ‘‘mesenchymal-like’’ state in tumor cells,

but it is not absolutely required, suggesting that cell-intrinsic

factors are the main determinants of tumor cell states.14 The

‘‘mesenchymal-like’’ phenotype is also observed in patient-

derived MCC cell lines, and we have shown that a subtle shift

to ‘‘mesenchymal-like’’ state by epigenetic inhibition reverts

resistance to PI3K inhibition in MKL-1 cells, warranting future

studies to uncover potential therapeutic opportunities in

MCC. The current study would also benefit from patient survival

and treatment data to further confirm our results, which is

hampered by the limited single-cell information in publicly avail-

able datasets. Additionally, a paucity of ICI-R MCC tumor sam-

ples bars definitive conclusion.

In summary, comprehensive scRNA-seq analysis of patient

MCC tumors has revealed phenotypic plasticity at the tran-

scriptomic level with distinct immune landscapes and thera-

peutic vulnerabilities. Experimentally, phenotypic plasticity is

asserted in patient-derived MCC cell lines and regulated

epigenetically. Clinically, phenotypic plasticity is indicative of

favorable ICI response and prognosis. More broadly, recent

studies in rare cancers (which in aggregate represent one-

fourth of all cancer deaths)59 have yielded unique insights

that can be generalized across human cancers. In a similar

vein, MCC exemplifies cancers with great treatment chal-

lenges in the era of precision medicine, e.g., no targeted

therapy and no treatment option after developing ICI resis-

tance. Our data suggest clinical patient stratification to match

baseline tumors to therapy and that manipulating tumor cell

states can augment treatment efficacy and avert resistance

in MCC. Finally, we present a non-genomic mechanism of

ICI resistance to open therapeutic avenues for further

exploitation.

Limitations of the study
We acknowledge that there are several limitations in the cur-

rent study. First, a definitive conclusion cannot be drawn, as
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our observations that the ‘‘mesenchymal-like’’ state correlates

with potentially favorable ICI treatment response are based on

data from other cancer types. Our validation studies rely on

scRNA-seq data from an appropriate GBM dataset that is

available. Thus, our findings will benefit from clinical validation

in MCC patients. Moreover, we have encountered one of the

common challenges in rare cancer research: paucity of fresh

tumor samples suitable for scRNA-seq. Our findings will be

strengthened by ample patient tumor samples, especially

well-defined primary or acquired ICI-resistant MCC. Recent

technological breakthroughs with validated scRNA-seq as-

says in fixed tissues will greatly expand patient sample avail-

ability. Furthermore, definitive identification of TFs dictating

cell states requires comprehensive functional characterization,

which will be carried out in the future. Our observations may

serve as a platform to invite future studies to characterize

cellular plasticity in MCC, specific to therapeutic response

and resistance.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti

human CXCR4

R&D Systems Cat# MAB172;

Clone: 44716;

RRID: AB_2089399

Mouse monoclonal anti

neuron-specific enolase

(NSE/ENO2)

Ventana Medical Systems Cat#760-4786;

Clone: MRQ-55;

RRID: n/a

Mouse monoclonal anti vimentin Ventana Medical Systems Cat#790-2917;

Clone: V9;

RRID: n/a

Rabbit monoclonal anti histone H3 Cell Signaling Technology Cat#4499;

Clone: D1H2;

RRID: AB_10544537

Rabbit monoclonal anti

acetyl-histone H3

Cell Signaling Technology Cat#8173;

Clone: D5E4;

RRID: AB_10949503

Mouse monoclonal anti

a-tubulin

Millipore Sigma Cat#T9026;

Clone: DM1A;

RRID: AB_477593

Biological samples

Merkel cell carcinoma

patient tumors

This paper (collected under

relevant IRB protocols);

Cooperative Human

Tissue Network

https://www.chtn.org/

Chemicals, peptides, and recombinant proteins

SYTOX Green Invitrogen Cat#S7020

Domatinostat Selleck Chemicals Cat#S7555

Copanlisib Selleck Chemicals Cat#S2802

Critical commercial assays

DNeasy Blood & Tissue Kit Qiagen Cat#69506

RNeasy Plus Kit Qiagen Cat#74134

Chromium Single Cell Gene

Expression Kits (v.3.1)

10x Genomics Cat#1000121

Chromium Chip G kit 10x Genomics Cat#1000120

RNA Nano Kit Agilent Cat#5067-1511

High Sensitivity DNA Kit Agilent Cat#5067-4626

Tumor Dissociation Kit, human Miltenyi Biotec Cat#130-095-929

High-Capacity cDNA Reverse

Transcription Kit

Applied Biosystems Cat#4368814

Cell Counting Kit - 8 Millipore Sigma Cat#96992

Deposited data

Single-cell and bulk RNA-seq data This paper GEO: GSE226438, GSE223275, and GSE233454

Human reference genome

NCBI build 38, GRCh38

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/

grc/human

Glioblastoma RNA-seq dataset Zhao et al.45 BioProject PRJNA482620

Merkel cell carcinoma RNA-seq

dataset

Sundqvist et al.42 BioProject PRJNA775071

ICI-resistant MCC, scRNA dataset Paulson et al.35 GEO: GSE117988

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

cisTarget (v10nr_clust) Herrmann et al.60 https://resources.aertslab.org/

cistarget/

gene order file, gencode_v21_gen_pos.

complete.txt

Broad Institute repository https://data.broadinstitute.org/

Trinity/CTAT/cnv/

Western blot images This paper;

Mendeley Data

Figure 7; https://doi.org/

10.17632/hb3gvgs4rr.1

Experimental models: Cell lines

Patient derived MCC cell lines (MCC-2,

MCC-3, MCC-5, MCC-8, MCC-9,

MCC-16, MCC-21)

Generated in our lab N/A

MKL-1 cell line Gifted by Dr. Jurgen Becker

(University Hospital Essen,

Germany)

RRID: CVCL_2600

Oligonucleotides

Primer for LT3 (MCPyV detection)

Forward 5’-TTGTCTCGCCAGCATTGTAG-3’

Reverse 5’-ATATAGGGGCCTCGTCAACC-3’

Feng et al.4 N/A

Primer for LT1 (MCPyV detection)

Forward 5’-TACAAGCACTCCACCAAAGC-3’

Reverse 5’-TCCAATTACAGCTGGCCTCT-3’

Feng et al.4 N/A

qPCR primer and probe, LT3 (MCPyV detection)

Forward 5’-TCGCCAGCATTGTAGTCTAAAAAC-3’

Reverse 5’-CCAAACCAAAGAATAAAGCACTGA-3’

Probe FAM-AGCAAAAACACTCTCCCCACGT

CAGACAG-BHQ

Rodig et al.61 N/A

qPCR primer and probe, Set9 (MCPyV detection)

Forward 5’-TTAGCTGTAAGTTGTCTCGCC-3’

Reverse 5’-CACCAGTCAAAACTTTCCCAAG-3’

Probe FAM-AAACACTCTCCCCACGTCAGA

CAG-BHQ

Rodig et al.61 N/A

qPCR primer and probe, SmallT (MCPyV detection)

Forward 5’-GCAAAAAAACTGTCTGACGTGG-3’

Reverse 5’-CCACCAGTCAAAACTTTCCCA-3’

Probe FAM-TATCAGTGCTTTATTCTTTGGTT

TGGATTTCCTCCT-BHQ

Bhatia et al.62 N/A

See Table S7 for full list of Taqman qPCR primers Life Technologies #4331182

Software and algorithms

Graph Pad Prism v9 Graphpad www.graphpad.com

CellRanger software v6.1.2 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/what-is-cell-ranger

FACSDiva v8.0.1 BD Biosciences https://www.bdbiosciences.com/en-us/

products/software/instrument-software/

bd-facsdiva-software

R v4.1.1 R-project https://www.r-project.org/

Seurat v.4.2 – v4.3 Satija et al.20 https://satijalab.org/seurat/articles/

install.html

Rsubread v2.8.2 Liao et al.63 https://bioconductor.org/packages/

release/bioc/html/Rsubread.html

DESseq2 v1.34.0 Love et al.64 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

SingleR v1.8.1 Aran et al.21 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

CellChat v1.5.0 Jin et al.37 https://github.com/sqjin/CellChat

(Continued on next page)
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SCENIC Aibar et al.32 https://scenic.aertslab.org/

Gene set variation analysis (GSVA) 1.42.0 Hänzelmann et al.65 https://bioconductor.org/packages/

devel/bioc/vignettes/GSVA/inst/

doc/GSVA.html
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RESOURCE AVAILABILITY

Lead contact
Further information and resource requests should be directed to and will be fulfilled by the lead contact, Dr Ling Gao (ling.gao@

va.gov).

Materials availability
This study did not generate unique materials.

Data and code availability
d Single-cell RNA-seq and bulk RNA-seq data have been deposited at GEO and are publicly available under accession numbers

GEO: GSE226438, GEO: GSE223275, and GEO: GSE233454. Original western blot images have been deposited at Mendeley

Data (https://doi.org/10.17632/hb3gvgs4rr.1) and are publicly available as of the date of publication.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in the paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient tumor derived MCC cell lines
Patient tumor derivedMCC cell lines (coded asMCC-2, MCC-3,MCC-5,MCC-8, MCC-9, MCC-16 andMCC-21) were established in

our lab under a study protocol (#131586) first approved by the Institutional Review Board (IRB) at the University of Arkansas for Med-

ical Sciences (UAMS) and currently maintained under an IRB-approved protocol (#1619070) at the Veterans Affairs Long Beach

Healthcare System (VALBHS). MCC-2, -3, -8, and -9 originated from male patients and MCC-5, -16, and -21 originated from female

patients; tumor tissues were collected after appropriate consent was obtained by the study teams at UAMS and the Cooperative

Human Tissue Network (CHTN, a prospective collection service supported by the National Cancer Institute, which provides de-iden-

tified human biospecimens collected from routine procedures under protocols that are approved by local IRBs). MKL-1, a MCPyV-

positive cell line from amale patient, was a kind gift fromDr. Jurgen Becker (University Hospital Essen, Germany). MCC cell lines were

authenticated by STR-profiling performed by Genetica (Laboratory Corporation of America; Burlington, NC). Each MCC cell line was

compared against its respective primary MCC tumor; MKL-1 cell line was compared against initial passage and confirmed in the

associated STR profile in Cellosaurus (accession number CVCL_2600). Suspension cultures of primary human MCC cell lines

used in this study were maintained in RPMI-1640 medium (#30-2001, American Type Culture Collection) supplemented with 10%

fetal bovine serum, penicillin-streptomycin (100U/mL) and L-glutamine (4mM) at 37
�
C in a humidified atmosphere with 5%CO2. Cells

were fed with fresh complete media every 48h and split to maintain logarithmic growth.

Human tumor tissues
The eleven MCC patient tumors were obtained through CHTN and under study protocols approved by the VALBHS IRB (protocol

#1619070 and #1654375), in accordance with local and federal regulations for human subject research. Tissues were collected after

informed consent was obtained by CHTN and our study teams, respectively; basic information is included in Table S1.

METHOD DETAILS

DNA extraction
Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (#69506, Qiagen) per manufacturer’s instructions. The MCPyV

status of each cell line was examined by PCR and qRT-PCR as described in other studies,4,61,62 using primers listed in the key re-

sources table. PCR was carried out using iCycler Thermal Cycler (Bio-Rad) under the following conditions for LT3 and LT1: 94�C for

5min, followed by 35 cycles of 94�C for 30s, 53.5�C for 30s, 68�C for 30s, then final 68�C for 10min, followed by electrophoresis on

1.5% agarose gel and visualized under ultraviolet light. Quantitative PCR was carried out using CFX96 Touch Real-Time PCR Detec-

tion System (Bio-Rad) with an initial denaturation at 95�C for 10min, followed by 40 cycles of 95�C for 15s and 60�C for 1min.
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scRNA library preparation and sequencing
Resected patient tumors were dissociated using a Human Tumor Dissociation kit (#130-095-929, Miltenyi Biotec) with the modified

protocol reported by Sade-Feldman et al.,66 followed by red blood cell lysis, then washed and passed through 70mm sterile cell

strainer to obtain single-cell suspensions. Dead cells were excluded by SYTOX staining (#S7020, Invitrogen) and live cells were

collected by the FACSAria Fusion flow cytometer (BD Biosciences) and BD FACSDiva v8.0.1 software at the UCI Institute for Immu-

nology flow cytometry core facility. Sorted cells were washed with PBS containing 0.04% BSA and resuspended at a final density of

�1,000 cells/mL. Libraries were created targeting �10,000 cells/sample for capture using Chromium Single Cell 3’ Reagent Kits and

Chromium Chip G kits (#1000121 and #1000120, 10X Genomics) following the CG00052 Rev B. user guide. Each library was sub-

sequently sequenced on the Illumina NovaSeq 6000 platform, targeting an average of �50,000 reads/cell.

scRNA-seq data processing
FASTQ files were aligned to GRCh38 human reference genome using 10x Genomics Cell Ranger Count v6.1.2. Cell Ranger Aggr

function was used to normalize the number of average mapped reads per cell across the libraries. Cell Ranger output files were

read into R version 4.1.1 and processed using Seurat.20 Data was filtered for cells containing a minimum of 1,000 and no more

than 10,000 unique genes and containing less than 20% mitochondrial genome. Additionally, genes detected in fewer than 4 cells

were also removed from further analysis. For the ‘treatment-naive’ dataset, the 9 sample libraries were anchored and integrated using

the top 2,000 variable features identified using the vstmethod. The integrated object was scaled, and principal component analysis

(PCA) was performed. Thereafter, the first 15 PCs were used for Unifold Manifold Approximation and Projection (UMAP) non-linear

dimensionality reduction followed by calculating the k-nearest neighbor graph and Louvain clustering at varying resolution (0.1-1.0).

The marker genes per cluster were identified using the FindAllMarkers() function based on theWilcoxon Rank Sum test. TheDoHeat-

map() function was used to generate heatmaps for the top variable genes based on scaled expression values. Marker gene expres-

sion and SingleR analysis21 were used to annotate cell-type specific clusters, and clusters with concurrent annotations were iden-

tified and merged to generate the cell-type annotated object. The ‘treatment-naive and ICI-R’ dataset was prepared in a similar

manner integrating 11 samples (9 treatment-naive and 2 ICI-R tumors), followed by dimensionality reduction and cluster annotation

using the first 19 PCs. Malignant cells were extracted to create a separate tumor object and clustered further on its ‘integrated’ assay

with 15 PCs and resolution = 0.1. FeaturePlot() and Vlnplot() functions were used for visualizing feature expression in low-dimensional

space. CD45+ immune cells, CD3+ T cells, CD4+/CD8+ T cells, CD19+/CD20+ B cells were identified based on marker gene expres-

sion and SingleR annotation in their corresponding parent objects and analyzed separately in a similar manner. Pseudo-bulk tran-

scriptome for each sample was generated by summing the UMI (unique molecular identifier) counts across cells as recommended

for DESeq2 (https://hbctraining.github.io/scRNA-seq_online/lessons/pseudobulk_DESeq2_scrnaseq.html). Finally, scRNAseq data

from an MCC patient with MCPyV associated Merkel cell carcinoma, reported by Paulson et al.,35 was downloaded from GEO

(GSE117988). After initial data processing and cell type annotation, the resulting Seurat object was merged with our MCC patient

tumor dataset and integrated to remove batch effect. The combined dataset was scaled followed by PCA and clustering, and expres-

sion of marker genes were then retrieved and visualized.

mRNA-seq of MCC cell lines and validation datasets
Total RNA from eight MCC cell lines, viz. MCC-2, MCC-3, MCC-5, MCC-8, MCC-9, MCC-16, MCC-21 and MKL-1 was extracted

using Qiagen RNeasy kit (#74106). RNA quality was evaluated (Agilent Bioanalyzer Nano RNA chip) and libraries were constructed

based on Illumina TruSeq stranded mRNA protocol. Libraries were normalized, multiplexed, and sequenced using paired-end

100-cycle chemistry for the Illumina HiSeq 4000. Library construction was performed according to the Illumina TruSeq mRNA

stranded protocol. mRNA was enriched using oligo dT magnetic beads with the recommended amount of total RNA, and later frag-

mented chemically. First strand complementary DNA (cDNA) synthesis was performed using random primers and reverse transcrip-

tase. Post second strand synthesis, the double-stranded cDNA was cleaned using AMPure XP beads, subjected to end repair, and

finally 3’ adenylated. Illumina barcoded adapters were ligated on to the ends, and the adapter ligated fragments were enriched by

nine cycles of PCR. The resulting libraries were validated by qPCR on the QuantStudio7 Flex system (Applied Biosystems) and sized

by Agilent Bioanalyzer DNA high sensitivity chip on the Agilent 2100 Bioanalyzer system. The concentrations for the libraries were

normalized and then multiplexed together and sequenced using paired-end 100 cycles chemistry for the HiSeq 4000. The resulting

reads from each cell line were then aligned and annotated to the human genome (GRCh38) using the align function inRsubread pack-

age.63 The count-matrices from the corresponding bam files were retrieved using the featureCounts function.63 Paired-end

sequencing for untreatedMCC-2 and untreatedMCC-8 cells, as well asMKL-1 cells treated with either DMSO or 10mMdomatinostat

(24h), was performed using Zymo Research sequencing services (Irvine, CA), and count-matrices were generated from the provided

bam files as described earlier. DESeq2 package,64 which uses a negative binomial distribution model to test differential expression,

was then used to carry out further analyses. Differential gene expression (DGE) analysis was performed on raw counts, using the

DESeq function, setting appropriate reference groups. Log2FoldChange (LFC) shrinkage was carried out using the apeglm method

in the lfcShrink() function.67 Distance measurements were computed on log normalized (log2(n+1)) counts using the dist() function

and later plotted as a heatmap using pheatmap(). The calculated sample distances were used to perform hierarchical clustering

across rows and columns.
Cell Reports Medicine 4, 101101, July 18, 2023 e4

https://hbctraining.github.io/scRNA-seq_online/lessons/pseudobulk_DESeq2_scrnaseq.html


Article
ll

OPEN ACCESS
For data validation, bulk RNAseq datasets of 102 MCC tumors42 and 17 glioblastoma multiforme45 were downloaded from

Sequence Read Archive (SRA), NIH. Raw FASTQ files were processed to generate count matrices as described above. ICI response

information for each GBM sample was retrieved from the SRA metadata file and added as coldata prior to analysis. In absence of

individual survival and death information for the 102 MCC patient tumor dataset, patients were stratified based on the enrichment

score of survival-associated gene signature (SAG) reported by Sundqvist et al.,42 as SAGhigh (third quartile), SAGlow (first quartile)

and SAGmid (interquartile). The classification information was then added as coldata prior to analysis.

Differential gene expression (DGE) and GSEA
DGE analysis was calculated on the integrated object using Seurat’s FindMarkers() function on the ‘RNA’ assay with Wilcoxon Rank

Sum test. The pheatmap() or EnhancedVolcano() functions were used for visualization. DGE list with log2 transformed scores were

retrieved from Seurat using the FindMarker() function or the DESeq() from the mRNA-seq datasets and filtered with p<0.05, and

ranked based on log2Fc score. GSEA was performed on a ‘pre-ranked’ list using web-based gene set analysis toolkit,

WebGestalt (http://webgestalt.org/), selecting the appropriate database.

Generating gene signatures
We first curated an EMT signature gene list including 456 genes based on studies across human cancers (Table S6),22,23 which was

then narrowed down to a candidate gene list of 293 mesenchymal genes (Table S6). Genes were trimmed with avg.exp > 0 and

count > 0, distributed across Q3 and Q4 quartile of average expression, and were expressed across all cell types without compro-

mising the retention of established lineage markers and pct.exp R 50%. The resulting 45 genes were further trimmed down to 19,

based on high expression in MCC tumor cells only (Table S2).

To generate an MCC specific gene signature that could distinguish inflamed and ‘immune-cold’ MCC tumors, and is predictive of

ICI response, we performed pre-ranked GSEA analysis on differentially expressed genes between MCCT_G1 and MCCT_G2 tumor

samples. To ensure signature applicability to both single and bulk RNA-seq datasets, the entire tumor microenvironment (containing

tumor cells as well as other cell types) was used to generate the differential gene list. Genes involved in the top positively enriched

pathways were tabulated and then trimmed based on the assigned normalized enrichment score (NESR 1.5). A non-redundant gene

list of 14 genes (SIG-14, Table S2) was thereafter obtained upon merging.

‘Cell-cell’ communication analyses
‘Cell-cell’ communicationnetworkswere inferredbasedon transcript abundanceof ligand-receptorpairswithCellChat (version1.5.0).37

Tomodel these networks, an expressionmatrix containing SingleR annotated to normalizedMCC tumor samples with the selected cell

typeswere inputted intoCellChat using the humandatabase for ligand-receptor pairs.Over-expressed genes and ligand-receptor pairs

were identified by running identifyOverExpressedGenes() and identifyOverExpressedInteractions() with default settings. The communi-

cation probabilities at pair and pathway levels were calculated by running computeCommunProb() and computeCommunProbPath-

way() functions under default parameters (threshold = 0.05). ‘Cell-cell’ communications with a minimum of 10 cells/group were filtered

out and later aggregated using the aggregateNet() function with default parameters. netVisual_bubble(), netVisual_circle() and netVi-

sual_chord() functions were thereafter used for visualization, setting the sources.use or targets.use parameters to the desired cell type.

Gene signature scoring
For scRNA-seq datasets, each signature score was calculated by generating the total gene expression for each gene and separating

them into 25 bins of similar expression. For every gene from a signature, 100 ‘control’ genes were selected from its corresponding bin

and added as a ‘control’ signature. The expression of the genes in the ‘target’ and ‘control’ was averaged across each cell to

generate a ‘target’ and ‘control’ score. A cell’s score for the ‘target’ signature was then calculated as the difference between the

‘target’ and ‘control’ score. An unpaired Wilcox test at 95% confidence interval was used to determine statistical significance.

Gene signature enrichment in bulk RNA-seq samples was calculated using GSVA package,65 which employs a non-parametric

method for single-sample gene set enrichment. Normalized count matrices from the validation datasets were used alongside the

desired gene signature to calculate the GSVA enrichment score.

Master regulator analysis
To generate anMCC specific gene regulatory network, the SCENIC pipeline was implemented in Python.32 A gene expression matrix

containing the raw counts of MCC tumor cells was used in conjunction with a complete list of human TFs and motif annotation in-

formation (downloaded from https://resources.aertslab.org/cistarget/) to infer the gene regulatory network and co-expression mod-

ules. Cellular enrichment analysis was performed using AUCell to identify cells with active gene-networks in our scRNA-seq dataset.

Cell metadata, defining each MCC subtype, was thereafter used to probe for subtype-specific regulon enrichment.

Inferred copy number variation (CNV) analysis
The count matrix for inferred CNV analysis was generated by extracting the ‘count’ slot of Seurat object using the GetAssayData()

function. Cells were annotated as tumor or CD3+ T cells as reference cells. Gene order file ‘gencode_v21_gen_pos.complete.txt’

was downloaded from Broad Institute repository (https://data.broadinstitute.org/Trinity/CTAT/cnv/). CNV was estimated using
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inferCNV by aligning genes to their chromosomal location and applying a moving average to the relative expression, with a sliding

window of 100 genes as previously described and analysis mode kept to default.24 Heatmaps for the inferred CNVs were generated

using the plot_cnv() with hclust set to agglomerative hierarchical clustering method ‘ward.D’.

Immunohistochemistry
Consecutive five-micrometer-thick tissue slides were prepared from formalin-fixed paraffin-embedded (FFPE) MCC patient samples

for immunohistochemistry (IHC). IHC staining for CXCR4 started with deparaffinization followed by antigen retrieval in heated 1X cit-

rate buffer (#H3300, Vector Laboratories) for 20min, blocking in normal goat serum (#S1012, Vector Laboratories), and overnight in-

cubation with mouse monoclonal anti-human CXCR4 primary antibody (1:100, Clone 44716, #MAB172, R&D Systems). Slides were

incubated with goat anti-mouse secondary antibody (#ab6789, Abcam) for 1 hour at room temperature and detected using a horse-

radish peroxidase detection system with DAB as chromogen (#SK4105, Vector Laboratories). IHC staining for ENO2 and vimentin

was performed with the BenchMark ULTRA IHC/ISH system (Roche Diagnostics) using standard automated protocols. The primary

antibodies ENO2 (pre-diluted, Clone MRQ-55, #760-4786, Ventana Medical Systems) and vimentin (pre-diluted, V9, 790-2917, Ven-

tana Medical Systems) were incubated for 24minand 16min, respectively, and detected using a horseradish peroxidase detection

(HRP) system with DAB as chromogen. Slides were then visualized, and images were captured using a stereomicroscope with a dig-

ital camera (Discovery V12 and AxioCam; Carl Zeiss, Inc).

Quantitative real-time PCR
Total RNAs were purified using RNeasy Plus kit (#74134, Qiagen) according to the manufacturer’s protocol. The cDNAs were syn-

thesized from 0.5 to 1mg of total RNA using the Applied Biosystems High Capacity cDNA Reverse Transcription Kit (#4368814,

Applied Biosystems) according to manufacturer’s instructions. Gene expression was examined using TaqMan Gene Expression

Assay primers (referred in key resources and listed in Table S7) and Taqman Gene Expression MasterMix (#4369510, Applied Bio-

systems) on the CFX96 Touch Real-Time PCRDetection System (Bio-Rad), with an initial denaturation at 95�C for 10min, followed by

40 cycles of 95�C for 15s and 60�C for 1min. Samples were run in triplicate and relative mRNA expression was calculated by normal-

izing samples against the mitochondrial gene MRPS2 using the DCt method.

Western blot analysis
One million MCC-16 or MKL-1 cells were plated in 3ml of medium/well in 6-well culture plates, respectively. After incubation at 37�C
and 5%CO2 for 2 hours, cells were treated with DMSO (#2650,Millipore Sigma) or domatinostat (#S7555, Selleck Chemicals) in dose

range 0.3-30mM for 24 hours. Cells were washed twice with ice-cold PBS and lysed in 13 radioimmunoprecipitation assay (RIPA)

buffer (#R-0278, Millipore Sigma) containing cOmplete Mini EDTA-free protease inhibitor cocktail (#04693159001, Roche, obtained

from Millipore Sigma). After incubation on ice for 30min, cell lysates were clarified by centrifugation at 14,000 rpm for 15min at 4�C.
25 mg of total proteins were resolved by 12%SDS-PAGE gels and transferred electrophoretically onto polyvinylidene difluoridemem-

brane (#IPVH00010, Millipore Sigma) using a semi-dry blotting system (Bio-Rad). Membranes were blocked in 5% fat-free milk/Tris-

buffered saline containing 0.1% Tween 20 (TBS-T) for 1 hour and incubated with primary antibodies (histone H3: Clone D1H2, #4499,

Cell Signaling Technology; acetyl-histone H3: Clone D5E4, #8173, Cell Signaling Technology; a-tubulin: Clone DM1A, #T9026, Milli-

pore Sigma) at 4�Covernight. Membranes were then washed three timeswith TBS-T and incubated with HRP-conjugated secondary

antibodies (Cell Signaling Technology) for 1 hour at room temperature. After rinsing three times with TBS-T, membranes were incu-

bated with enhanced chemiluminescent detection reagents (#WBKLS0100, Millipore Sigma) for 5min. The proteins were visualized

by exposing membrane to X-Ray film (#BX57, Midwest Scientific).

Cell viability assay
Cell viabilities were measured by Cell Counting Kit-8 (CCK-8) (#96992, Millipore Sigma) following manufacturer’s protocol. In brief,

cells were plated at 13105 cells/well in 96-well plates and incubated at 37�C and 5% CO2 for 4 hours before treatment with serial

concentrations of copanlisib (#S2802, Selleck Chemicals), domatinostat (#S7555, Selleck Chemicals), or in combination for 72 hours.

CCK-8 reagent (10% of well volume) was added to each well and incubated for 2-4hours at 37�C before measuring optical density

(OD) at 450nm using a spectrophotometer. Half-maximal growth inhibitory dose (GI 50) was calculated by plotting dose-response

curve, normalized against vehicle-treated cells, using GraphPad Prism.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as the mean ± standard error of the means (SEM) or standard deviation. In addition to the analytical packages

described above, GraphPad Prism 9.0 was used for statistical analysis. The significance threshold was set to FDR = 0.05 unless

otherwise stated.
Cell Reports Medicine 4, 101101, July 18, 2023 e6
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Figure S1. scRNA-seq of treatment-naïve MCC tumors. Related to Figure 1 and Table 1. (A) 

Total cells captured per sample. (B) Feature plots depicting distribution of select cell-type specific 

marker genes in UMAP clusters. MC: macrophages/monocytes; CAF: cancer-associated fibroblasts. 

(C) Percent composition of cell types across samples. (D) Violin plot of activation-associated marker 

gene expression in CAFs. (E) Split UMAP clusters of different cell types for lymph node and primary 

skin tumor samples. (F) Heatmap of top 20 variable genes across 500 randomly sampled tumor cells 

from each sample. 



 

Figure S2. Partial EMT, inferred CNV and HLA expression profile of MCC treatment-naïve 

tumors. Related to Figure 1. (A) Scaled expression of selected mesenchymal markers across MCC 

tumor cells and CAFs depicting partial EMT in MCCT_G1 tumors. (B) Representative brightfield 

images of H&E (left panels) and immunohistochemistry staining of ENO2 (middle panels) and VIM 

(right panels) on consecutive sections of MCCT_G1 tumors (top row) and MCCT_G2 tumors (bottom 

row), at magnification 200x, scale bar = 35 µm. (C) Heatmap of inferred copy number variations 

(CNVs) normalized to the variations in CD3 T cell population demonstrating CNV by chromosome 

(columns) of individual cells (rows). (D) Violin plot depicting expression of MHC molecules in tumor 

cells across MCCT_G1 and MCCT_G2 tumors. 



 

Figure S3. Immune landscape of treatment-naïve MCC tumors. Related to Figure 3. (A) 

Percentage distribution of CD45+ immune cells in each tumor sample. (B) Heatmap of top 20 

variable genes in CD4/CD8 T cell subtypes. (C) Feature plots depicting distribution of subtypes 

and marker genes of functional status in CD4/CD8 T cells. (D) Violin plots of select cytokines in 

DNTCs. (E) UMAP clusters for CD19+/CD20+ B cells (n = 2,331 cells) with color-matched 

histogram and heatmap of top 20 variable genes across the three B cell subtypes. (F) Expression 

of CD27 in MCC tumor samples. 



 

Figure S4. The ‘mesenchymal-like’ state in MCC is endowed with inflamed phenotype. Related 

to Figure 3. (A) Scaled expression of selected cytokines, chemokines, and chemokine receptors in 

MCCT_G1 and MCCT_G2 tumors. (B) Violin plots of classical inflammatory marker genes. (C) 

Representative brightfield images of H&E and CXCR4 immunohistochemistry staining in MCCT_G1 

and MCCT_G2 tumors at 100x magnification, scale bar = 70 µm. (D) CCL5 expression in five MCC 

patient-derived cell lines, as detected by qPCR and normalized to MRPS2 (triplicate runs, mean ± 

SD). 

 

  



 

Figure S5. Individual chord diagrams of signals arising from each cell type. Related to 

Figure 4. Outgoing signals from different cell types in (A) MCCT_G1 and (B) MCCT_G2 tumors 

with chord thickness/weight representing signal strength. 

 

  



 

Figure S6. Characterization of patient-derived MCC cell lines established in our laboratory. 

Related to Figure 6. mRNA expression of selected epithelial and mesenchymal markers in 

MCC_G1 (MCC-3, MCC-5, MCC-9, MCC-21) and MCC_G2 (MCC-16, MKL-1) cell lines, 

normalized to MRPS2. Data presented as mean ± SD, n = 3. 

  



 

Figure S7. Distribution of KRT14+ epithelial cells in MCC patient tumors. Related to STAR 

Methods. Utilizing unintegrated tumor dataset, KRT14+ cells (highlighted as red dots) were 

identified by SingleR. 

 

  



 

 

Figure S8. A heatmap of sample-to-sample distance with hierarchical clustering between 

MCC patient tumors and MCC primary cell lines. Related to STAR Methods. There is a lack of 

well-established algorithms for integrating bulk RNA-seq and pseudobulk on scRNA-seq datasets. 

A technically limited analysis depicting sample similarities was performed by coarsely combining 

the count matrix from of 8 MCC cell lines (bulk RNA-seq) and 11 patient tumors (pseudobulk on 

scRNA-seq) followed by normalization and distance calculation.   

 

  



 

Figure S9. Copanlisib sensitivity in MCC-5 cell line with ‘mesenchymal-like’ state. Related to 

STAR Methods and Figure 7. MCC-5 cells were treated with serial concentrations of copanlisib 

for 72h, then assessed by CCK-8 colorimetric cell proliferation assay. Data presented as mean ± 

SD for each dose, n = 6 per dose, with half maximal growth inhibitory concentration (GI50) as 

analyzed by nonlinear regression model using GraphPad Prism. 

  



 

Figure S10. Expression of EMT-TFs upon TGFβ treatment in MKL-1 and MCC-16 cells. 

Related to Figure 7. MKL-1 and MCC-16 cells were treated with vehicle (DMSO) or 2ng/ml TGFβ 

for 24 hours, followed by qPCR. Data presented as mean ±SD, n=3. *p < 0.05 ***p < 0.0005 as 

analyzed by unpaired Student’s t-test. 

 

  



Supplementary Tables 1, 2, 5 and 7 

Table S1. Summary of patient tumor samples and single cell RNA-seq analysis performed in 

this study. Related to STAR Methods, Figure 1, 2, and 3. (A) Patient demographics and tumor 

characteristics. (B) Summary of Library alignment to human (GRCh38) 2020-A. (C) Summary of 

each object analyzed in this study.  

(A) 

Sample Tumor ID 
Resected Tumor 

Location 
Gender Age Race 

MCPyV 
status 

Prior therapy 

1 T96 Lymph node female 70 white positive pembrolizumab 

2 T111 Skin male 72 white negative pembrolizumab 

3 T98A Skin male 80 white negative none 

 T98B Lymph node male 80 white negative none 

4 T99 Lymph node male 51 white positive none 

5 T100 Skin female 56 unknown positive none 

6 T101 Skin male 80 white positive none 

7 T102 Lymph node male 74 white negative none 

8 T104 Parotid gland female 77 white negative none 

9 T112A Skin female 57 white positive none 

 T112B Lymph node female 57 white positive none 

 

(B) 

Sample Estimated number of cells Mean Reads per cell Median Genes per cell 

T96 6978 91728 3484 

T98A 7573 81745 4436 

T98B 5589 88191 4335 

T99 5272 98381 1545 

T100 4157 135101 3352 

T101 2636 218000 1930 

T102 8161 61443 1805 

T104 8287 67708 3340 

T111 7318 73905 4102 

T112A 6036 73022 3942 

T112B 3537 160895 2529 

 

 



(C) 

Object Description 
Number of 

cells 
Mean Reads 

per cell 
Mean Genes  

per cell 

Treatment-naïve object 
Contains all cell types 

from 9 samples 
46027 11015 3181 

Treatment-naïve Tumor Contains only tumor cells 22978 13498 3910 

Treatment-naïve Immune Contains CD45+ cells 12796 5808 1850 

Treatment-naïve 
CD4CD8 

Contains CD4+/CD8+ 
cells 

3169 5398 1806 

Treatment-naïve B cells 
Contains CD19+/CD20+ 

cells 
2331 5987 1762 

Naïve-ICI-R object 
Contains all cell types 

from 11 samples 
58936 11555 3304 

Naïve-ICI-R Tumor Contains only tumor cells 35796 14290 4038 

Naïve-ICI-R Immune Contains CD45+ cells 14895 5751 1825 

 

  



Table S2. Cancer-associated fibroblast (CAF), MESI-19 and SIG-14 gene list used in this study. 

Related to STAR Methods and Figure 1 and 5. 

 

# CAF gene list  # MESI-19 gene list  # SIG-14 gene list 

1 COL1A1  1 CLEC2B  1 ISG15 

2 COL3A1  2 CXCR4  2 CD74 

3 FAP  3 EMP3  3 ISG20 

4 SPARC  4 FLNA  4 IFI44L 

5 THY1  5 IFITM2  5 B2M 

6 DCN  6 IL32  6 BTG1 

7 PDGFRB  7 JUNB  7 HLA-DRA 

8 FBLN1  8 MYH9  8 LTB 

9 S100A4  9 NR3C1  9 RPL39 

10 ITGA5  10 PTPRC  10 IL7R 

11 ACTA2  11 S100A11  11 CCR7 

12 COL5A2  12 SAMSN1  12 EMP3 

13 ADAM12  13 SRGN  13 CXCR4 

14 COL6A3  14 TIMP1  14 VIM 

15 LRRC15  15 TRIM56    

16 COL5A1  16 VIM    

17 COL1A2  17 WIPF1    

18 VCAN  18 ZEB2    

19 POSTN  19 ZYX    

20 COL11A1       

21 THBS2       

22 LUM       

23 NTM       

24 AEBP1       

25 COL6A2       

26 PCOLCE       

27 GLT8D2       

28 ASPN       

29 BGN       

30 ISLR       

31 RARRES2       

32 TAGLN       

33 CTHRC1       

34 P4HA3       

35 GREM1       

36 MFAP5       

37 GAS1       

38 COMP       

39 EFEMP2       



40 LOXL1       

41 MYL9       

42 COL8A2       

43 SGCD       

44 SCARF2       

45 TPM2       

46 SPOCK1       

47 HTRA1       

48 LGALS1       

49 ZEB1       

50 ZEB2       

51 COL6A1       

52 COL5A3       

53 INHBA       

54 COL12A1       

 

  



Table S5. MCC transcription factors identified by pySCENIC analysis. Related to STAR Methods. 

MCCT_G1 MCCT_G2 

regulon Z-score regulon Z-score 

ALX1(+) 2.395458542 TAF7(+) 0.312711282 

MEF2C(+) 2.150993916 BARHL1(+) 0.265176081 

ATOH8(+) 1.684436403 HBP1(+) 0.256969399 

FOXO1(+) 1.419356562 ZNF148(+) 0.24670525 

ELF1(+) 1.335634403 STAT1(+) 0.245591583 

IKZF1(+) 1.289873586 MYC(+) 0.239314246 

RUNX3(+) 1.285482879 TLX3(+) 0.236735923 

SPIB(+) 1.220197775 IRF9(+) 0.235645606 

NEUROD1(+) 1.217931933 PSMD12(+) 0.22530856 

STAT5A(+) 1.212667568 YY1(+) 0.221973089 

ZEB1(+) 1.205305108 MXI1(+) 0.213696911 

STAT6(+) 1.204616792 HOXB4(+) 0.20653584 

IRF5(+) 1.1876485 NFE2L2(+) 0.20108852 

ELK3(+) 1.147263571 LBX1(+) 0.195877766 

FLI1(+) 1.115508028 MAX(+) 0.190698815 

MYOG(+) 1.107531862 PRRX2(+) 0.184847361 

SPI1(+) 1.103700598 RAX(+) 0.184618116 

SP5(+) 1.096817056 FOXK1(+) 0.178893525 

IRF4(+) 1.091762814 ARNTL(+) 0.171713951 

IRF2(+) 1.068457884 FOXP2(+) 0.171684335 

IRF8(+) 1.037399378 ZFX(+) 0.169753284 

HOXB2(+) 1.032348847 THAP1(+) 0.169202894 

SP1(+) 1.019352929 ATF2(+) 0.168495567 

CREM(+) 1.015311736 IRF1(+) 0.16821169 

 

  



Table S7. TaqMan gene expression primers used for quantitative PCR analyses. Related to STAR 

Methods. 

Gene Symbol / Source Assay ID Cat # 

MRPS2 Life Technologies Hs00211334_m1 4331182 

EMP3 Life Technologies Hs00171319_m1 4331182 

S100A11 Life Technologies Hs01055944_g1 4331182 

VIM Life Technologies Hs00185584_m1 4331182 

KRT18 Life Technologies Hs02827483_g1 4331182 

KRT19 Life Technologies Hs00761767_s1 4331182 

KRT20 Life Technologies Hs00300643_m1 4331182 

CCL5 Life Technologies Hs00982282_m1 4331182 

EPCAM Life Technologies Hs00158980_m1 4331182 

SPINT2 Life Technologies Hs01070442_m1 4331182 

TWIST1 Life Technologies Hs04989912_s1 4331182 

TWIST2 Life Technologies Hs02379973_s1 4331182 

SNAI1 Life Technologies Hs00195591_m1 4331182 

SNAI2 Life Technologies Hs00161904_m1 4331182 

ZEB1 Life Technologies Hs01566408_m1 4331182 

ZEB2 Life Technologies Hs00207691_m1 4331182 
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