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SUMMARY
Direct diagnosis and accurate assessment of metabolic syndrome (MetS) allow for prompt clinical interven-
tions. However, traditional diagnostic strategies overlook the complex heterogeneity of MetS. Here, we
perform metabolomic analysis in 13,554 participants from the natural cohort and identify 26 hub plasma
metabolic fingerprints (PMFs) associated with MetS and its early identification (pre-MetS). By leveragingma-
chine-learning algorithms, we develop robust diagnostic models for pre-MetS andMetS with convincing per-
formance through independent validation. We utilize these PMFs to assess the relative contributions of the
four major MetS risk factors in the general population, ranked as follows: hyperglycemia, hypertension, dys-
lipidemia, and obesity. Furthermore, we devise a personalized three-dimensional plasma metabolic risk
(PMR) stratification, revealing three distinct risk patterns. In summary, our study offers effective screening
tools for identifying pre-MetS andMetS patients in the general community, while defining the heterogeneous
risk stratification of metabolic phenotypes in real-world settings.
INTRODUCTION

The Centers for Disease Control and Prevention estimates that

the prevalence of metabolic syndrome (MetS) is 34.7% in the

United States1 and 33.9% in China,2 with increasing severity in

recent decades and an annual growth rate of >8% among sub-

jects >60 years old due to increasing rates of diabetes and

obesity.1,3 MetS is recognized as a progressive chronic patho-

physiological state that significantly increases the risks of car-

diovascular (odds ratio [OR], 1.80) and cerebrovascular events

(OR, 2.05),4 as well as liver (relative risk [RR], 1.43)5 and colo-

rectal cancers (RR, 1.25).6 MetS is diagnosed primarily by the

coincident identification of three or more of the following known

risk factors, including obesity, hypertension, hyperglycemia, and

dyslipidemia.7–9 As an early sign of MetS, one or two risk factors

for MetS are required for it to qualify as a pre-MetS (pre-MS).

Although there are at least five different international MetS guide-

lines,10–14 none of these definitions have a decisive advantage in

predicting cardiovascular events,15 and the different guidelines
Cell R
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showed a discordance of 20%–41% in the same population.16,17

Thus, there is a need to develop an effective and useful screening

platform to promote individualized strategies for the manage-

ment of MetS.18,19

A blood test serves as a common diagnostic method for de-

tecting molecules inside the body. Notably, the comprehensive

profiling of small-molecule metabolites, termed the plasma me-

tabolome,20 provides predictive biomarkers for MetS and a valu-

able source for understanding the underlying pathophysiologic

mechanisms.21,22 Given the increasing concern about the

burden of MetS and the healthcare costs in an aging population,

the development of rapid and portable community-based diag-

nostic screening will provide a powerful window for therapeutic

intervention.

Recent studies have promoted the role of metabolomics

research in the revolutionary progress of discovering biomarkers

for MetS prediction.23 For example, a study of 58 donors

confirmed that 36 metabolites were closely associated with

MetS using traditional 1H nuclear magnetic resonance
eports Medicine 4, 101109, July 18, 2023 ª 2023 The Author(s). 1
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(NMR).24 Another study of 311 subjects found that plasma

5-hydroxyindole-3-acetic acid concentrations were higher in

MetS donors than in those without MetS using liquid chromatog-

raphy-mass spectrometry (LC-MS).25 In addition, a study of 163

participants found that 2-hydroxybutyric acid, inositol, and

D-glucose served as potential biomarkers for MetS using gas

chromatography-mass spectrometry (GC-MS).26 However,

these traditional spectrometry methods require strict pretreat-

ment procedures to separate and enrich themetabolites, limiting

their use for large-scale screening (over 10,000 samples) in gen-

eral population-based cohorts.27 Despite the importance of

these findings, these methods may not precisely reflect the

real-world state of MetS, with several potentially important

signaling molecules being missed. Recent technological ad-

vances have introduced the use of nanoparticle-assisted laser

desorption/ionization mass spectrometry (LDI-MS) as a high-

throughput screening (z300 samples/h) tool for accurate meta-

bolic analysis (mass error <50 ppm) with easier sample prepara-

tion, thus allowing the identification of specific biomarkers of

MetS to reflect the status of the patients. This approach detects

MetS metabolites in ultralow volumes without enrichment or pu-

rification and produces results after a short processing time.

Figure 1 illustrates how the overall experiment was conducted.

We obtained plasma metabolic fingerprints (PMFs), including

low-molecular-weight metabolites (100–300 Da), from 13,554

participants, including healthy volunteers, pre-MetS patients

(having one or two MetS risk factors), and MetS patients (having

at least three MetS risk factors). Through combined LDI-MS

detection, we filtered out 26 hub PMFs to develop precise and

efficient machine-learning (ML)-based diagnostic platforms for

large-scale screening of pre-MetS and MetS, with areas under

curves (AUCs) of 0.867 (95% confidence interval [CI], 0.854–

0.881) and 0.864 (95% CI, 0.843–0.885) for healthy control

(HC) vs. pre-MetS, 0.849 (95% CI, 0.838–0.860) and 0.835

(95% CI, 0.817–0.853) for pre-MetS vs. MetS, and 0.891 (95%

CI, 0.880–0.902) and 0.886 (95% CI, 0.868–0.903) for HC vs.

MetS in the discovery and validation sets, respectively. We re-

classified the 16 subclusters (RF0000–RF1111) into four meta-

bolic phenotypes (MPs) with 26 hub PMFs. By evaluating the

contribution of each risk factor to MetS, we highlighted the

importance of glycemic control for prevention and intervention

of MetS. Finally, we constructed a three-dimensional plasma

metabolic risk (PMR) stratification adjusted for age and gender

to classify metabolic heterogeneity into three risk patterns.

Consistent with the change in conventional clinical parameters

and the cumulative all-cause death events by 4-year follow-up

adjusted by gender and age (for medium risk, hazard ratio [HR]

1.54, 95% CI 1.05–2.28, p for log-rank test = 0.029. For high

risk, HR 1.85, 95% CI 1.22–2.79, p for log-rank test = 0.004),
Figure 1. Overall schematics for evaluating MetS among the general a

(A) Schematic workflow for the extraction of PMFs using ferric particle-assisted la

of native plasma was used for direct analysis without pretreatment procedures.

coexistence of high concentrations of peptides and proteins.

(B) Feature filtering for hub PMFs was carried out according to difference compa

(C) PMF-based diagnostic models were constructed for HC vs. pre-MetS, pre-

unsupervised clustering of various subtypes of MetS. Finally, PMF-based metabo

metabolic risk (LMR), moderate metabolic risk (MMR), and high metabolic risk (H
this PMR assessment provided an alternative approach to reflect

individual actual metabolic status.

RESULTS

Comprehensive clinical and metabolic characterization
of MetS
There were 17,841 participants enrolled in the prospective

Shanghai Community Cohort Establishment and Follow-up

(NCT04517513) fromJanuary toMarch2019.After filteringoutpar-

ticipants (n= 4,287) according to the flowchart (Figure2 andSTAR

Methods), a total of 13,554 (76%) participants (mean age ± stan-

dard deviation 67.84 ± 5.90 years; 53.0% females) were finally

eligible for inclusion in the cohort study. In the study, we also

adopted the statement of the Chinese Diabetes Society 2004

(Table S1)28,29 to better reflect the Chinese population. To identify

potential biomarkers for MetS and enable more granular analysis

of the relationship between cardiovascular risk factors and the

severityof thesyndrome, thecurrent studydivided theparticipants

into three groups: a MetS group (with at least three MetS risk fac-

tors), a pre-MetS group (with one or twoMetS risk factors), and an

HC group, including 3,504 (25.9%; age 68.29 ± 5.66 years; 52.9%

females), 7,776 (57.4%; age 67.88 ± 5.99 years; 53.0% females),

and 2,274 participants (16.8%; age 67.01 ± 5.85 years; 53.2% fe-

males), respectively (Figure 2). By this classification,we could bet-

ter understand thenuanceddifferencesamongHC,pre-MetS, and

MetS. Table 1 summarizes the demographic and clinical char-

acteristics of the participants. The gender distribution was not

significantly different among the three groups. Demographically,

therewasastepwise increaseacross thegroups in theproportions

of obesity, hypertension, hyperglycemia, and dyslipidemia

(p < 0.001) (Table 1). Based on the number of MetS risk factors,

we further investigated the heterogeneity of MetS development

by dividing the participants into five subgroups (RFN0–RFN4),

including RFN0 (no risk factors), RFN1(one risk factor), RFN2

(two risk factors), RFN3 (three risk factors), and RFN4 (four risk

factors) (Figure 2). Moreover, we classified the cohort into 16 sub-

clusters (RF0000–RF1111) according to the permutations and

combinations of the four MetS risk factors, each binary coded by

"l" or "0" to indicate their presence or absence in the conditions

(Figure 2 and Table 2).

We applied a recently developed ferric particle-assisted LDI-

MS technique, followed by an in-house computational pipeline

(STAR Methods).30 This procedure provided an effective detec-

tion platformwith superior-quality and large-scale biospecimens

for subsequent analysis. First, we prepared tailored ferric parti-

cles and observed rough-surfaced nanoparticles of uniform size

300 ± 20 nm in diameter (polydispersity index [PDI] of 0.358) by

transmission electron microscopy (TEM) (Figure S1A) and
ging population based on the combination of PMFs and ML

ser desorption/ionization mass spectrometry (LDI-MS). One hundred nanoliters

Only Na+- and K+-adducted metabolites can be selectively detected with the

risons among the healthy control (HC), pre-MetS, and MetS groups.

MetS vs. MetS, and HC vs. MetS. Traditional risk factors were assessed by

lic risk stratification was computed to define three metabolic risk patterns: low

MR).
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dynamic light scattering (DLS) (Figure S1Bi). The ferric particles

with elements (including Fe and O) were uniformly distributed in

the elemental mapping and scanning electron microscopy

(SEM) images shown in Figure S1A. The zeta potential of

�15.13± 0.15mV indicated that these ferric particles hada nega-

tive charge (Figure S1Bii). Accordingly, ferric particles had a

unique extinction spectrum at 350–450 nm (Figure S1Biii)

compatible with the LDI-MS laser. Subsequently, we tested

different contents of standards, including lysine, D-glucose,

and sucrose, and showed reliable results, affording R2 values of

0.98, 0.92, and 0.92, respectively (Figure S1C). To further confirm

the detection performance, we also compared the results of six

standards using ferric particles and organic matrices by LDI-

MS, including 2,5-dihydroxybenzoic acid (DHB) and a-cyano-4-

hydroxycinnamic acid (CHCA). The results showed that the

detection limit of standard metabolites for standards obtained

by ferric particles was significantly lower than those obtained

byDHBandCHCA (FiguresS2 andS3 andTable 2). Furthermore,

we compared the LDI-MS results of the plasma sample before

and after preprocessing among the ferric particles, DHB, and

CHCA. The results showed that ferric particle-assisted LDI-MS,

with or without pretreatment, could detect more peaks of plasma

samples than DHB and CHCA (Figure S4). Regarding detection

speed, we achieved rapid LDI-MS detection of 13,554 samples

at a speed of �2 s per sample (2,000 shots at a laser frequency

of 1,000Hz) using an automatic scanningmodel with a 1 s interval

between samples. Overall, the LDI-MS of detection achieved a

leap in performance with ferric nanoparticles’ help in analytical

reproducibility, speed, and throughput.

Top discriminating PMFs associated with pre-MetS and
MetS
Exploiting the high-throughputmetabolic profiling provided by LDI-

MS,we developed ametabolic screening platform for the one-step

diagnosis of MetS using small plasma samples. This study re-

corded the typical mass spectra results for 100 nL of plasma from

participants in the HC, pre-MetS, and MetS groups (Figure 3A).

For further analysis,weextracted303m/zsignals asPMFswithsta-

ble uniformity from the raw mass spectrum (Figure S5).

To balance the sample categories, we randomly selected

4,548, 4,548, and 7,008 participants with 1:1 case-control

matching from the general population to build diagnostic models

for HC vs. MetS, HC vs. pre-MetS, and pre-MetS vs. MetS,

respectively. We randomly split this cohort at a ratio of 0.7 to

0.3 into the discovery (for HC vs. pre-MetS n = 3,184; for pre-

MetS vs. MetS n = 4,906; for HC vs. MetS n = 3,184) and valida-

tion (for HC vs. pre-MetS n = 1,364; for pre-MetS vs. MetS n =
Figure 2. Overview flow chart of the study design and enrollment

Thecomplete studydesign consistedof five steps, including enrollment, screening

2,101 individuals were initially recruited in the HeQing, JinQiao, and JinYang comm

andFollow-up (NCT04517513). For screening, 2,238 participantswere excludeda

participantswith incomplete informationwere excluded. Finally, 13,554 participan

no use of lipid-lowering, antidiabetic, or antihypertensive drugs), pre-MetS (n = 7

dyslipidemia, and dyslipidemia), andMetS (n = 3,504; clustering ofR3 traditional

2004. Participants were also classified into five subgroups (RFN1–5) according to

RF111) considering acombinationof risk factors (0/1=absence/presence of each r

MetS risk factors.
2,102; for HC vs. MetS n = 1,364) sets, respectively. There

were no statistical differences between the gender of controls

and cases (Table S3).

Ninety-eight PMFs significantly differed between the HC and

MetS groups in the discovery set (two-sided Kruskal-Wallis

rank-sum test, p < 0.05; Figure 3B). Similarly, 76 differential

PMFs were screened between the HC and pre-MetS groups in

the discovery set, and 54 differential PMFs were screened be-

tween the MetS and pre-MetS groups in the discovery set

(two-sided Kruskal-Wallis rank-sum test, p < 0.05; Figure 3B).

Following Bonferroni correction and Dunnett’s test for multiple

comparisons among these three groups, 26 differential PMFs

were further identified as the top discriminating metabolic pat-

terns (adjusted p < 0.05; Figure 3B) and might be potential

plasma metabolic biomarkers for diagnosing pre-MetS

and MetS.

Hub PMFs optimizing the metabolic classification of
MetS through ML
The current large sample sizes (for HC vs. MetS n = 4,548; for HC

vs. pre-MetS n = 4,548; for pre-MetS vs. MetS n = 7,008)

achieved 99.99% diagnostic power to detect statistical signifi-

cance and thus produce reliable, valid, and generalizable results

(Figure 3C).

We compared the model performance for HC vs. MetS

through 5-fold cross-validation among five ML algorithms,

including generalized linear models via least absolute shrinkage

and selection operator and elastic-net regularization (GLMNET)

(mean AUC 0.72), support vector machine (SVM) (mean AUC

0.71), multivariate adaptive regression splines (MARS) (mean

AUC 0.71), random forest (RF) (mean AUC 0.69), and adaptive

boosting (ADABOOST) (mean AUC 0.67) (Figure 3D). Although

the SVM and MARS models showed a high sensitivity (0.70

and 0.64), the SVM model had the lowest specificity (0.60)

compared to theMARS and glmnetmodels (both 0.69) (Figure S6

and Table S4). Due to its combined AUC, sensitivity, and speci-

ficity performance, the glmnet algorithm was identified as an

appropriate ML algorithm to build diagnostic models for pre-

MetS and MetS. Then, we sequentially optimized parameters

for HC vs. pre-MetS, pre-MetS vs. MetS, and HC vs. MetS using

all 26 hub PMFs adjusted for age and gender under 5-fold

cross-validation. The AUCs for HC vs. pre-MetS were 0.867

(95% CI, 0.854–0.881) and 0.864 (95% CI, 0.843–0.885) (one-

sided DeLong test; p = 0.813) in the discovery (n = 3,184) and

validation sets (n = 1,364), respectively (Figures 3E and S7A).

The AUCs for pre-MetS vs. MetS were 0.849 (95% CI, 0.838–

0.860) and 0.835 (95% CI, 0.817–0.853) (one-sided DeLong
, preprocessing, inclusion, andclassification. For enrollment, 11,814, 3,926, and

unities based on the prospective Shanghai Community Cohort Establishment

ccording to the exclusion criteria (seeSTARMethods). For preprocessing, 2,049

tswere included in this study. Participantswere classified into theHC (n = 2,274;

,776; clustering of <3 traditional risk factors, including obesity, hypertension,

risk factors) groups according to the statement of the Chinese Diabetes Society

the present number of four MetS risk factors or into 16 subclusters (RF0000–

isk factor). Formoredetails, seeTable 2.RFN indicates the number of traditional

Cell Reports Medicine 4, 101109, July 18, 2023 5



Table 1. Baseline characteristics of the analyzed participants in

the general population

HC pre-MetS MetS Overall

p

valuea

Number (%) 2,274

(16.8)

7,776

(57.4)

3,504

(25.9)

13,554

(100.0)

<0.001

Obesity (%) 0 (0.0) 2,754

(35.4)

2,976

(84.9)

5,730

(42.3)

<0.001

Hypertension

(%)

0 (0.0) 4,714

(60.6)

3,292

(93.9)

8,006

(59.1)

<0.001

Hyperglycemia

(%)

0 (0.0) 1,816

(23.4)

2,434

(69.5)

4,250

(31.4)

<0.001

Dyslipidemia

(%)

0 (0.0) 2,411

(31.0)

2,732

(78.0)

5,143

(37.9)

<0.001

Male (%) 1,064

(46.8)

3,651

(47.0)

1,649

(47.1)

6,364

(47.0)

0.98

Age, mean

(SD)

67.01

(5.85)

67.88

(5.99)

68.29

(5.66)

67.84

(5.90)

<0.001

BMI, mean

(SD)

21.69

(2.11)

24.26

(2.98)

27.15

(2.86)

24.58

(3.34)

<0.001

TC, mean

(SD)

4.77

(0.72)

4.92

(0.95)

4.96

(1.05)

4.91

(0.94)

<0.001

GLU, mean

(SD)

5.10

(0.52)

5.78

(1.59)

7.16

(2.28)

6.02

(1.83)

<0.001

HDLC, mean

(SD)

1.56

(0.38)

1.40

(0.36)

1.27

(0.38)

1.39

(0.38)

<0.001

LDLC, mean

(SD)

2.75

(0.63)

2.93

(0.82)

2.97

(0.87)

2.91

(0.81)

<0.001

TGs, mean

(SD)

1.02

(0.31)

1.58

(1.04)

2.44

(1.62)

1.71

(1.24)

<0.001

UA, mean

(SD)

302.44

(70.21)

333.46

(83.11)

362.62

(86.86)

335.80

(84.35)

<0.001

HC, healthy control; pre-MetS, pre-metabolic syndrome; MetS, meta-

bolic syndrome; SD, standard deviation; BMI, body mass index; TC,

serum total cholesterol; GLU, glucose; HDLC, high-density lipoprotein

cholesterol; LDLC, low-density lipoprotein cholesterol; TGs, triglycer-

ides; UA, uric acid.
ap values calculated by c2 tests for categorical data and one-way analysis

of variance for parametric data.
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test; p = 0.195) in the discovery (n = 4,906) and validation sets

(n = 2,012), respectively (Figures 3E and S7C). Other evaluation

metrics, including accuracy, F1 score, negative predictive rate,

positive predictive rate, specificity, and sensitivity, are shown

in Figures S7B and S7D. The specificity of the HC vs. pre-

MetS model was 0.99 in both the discovery and validation

sets, and the F1 score was 0.88 in the discovery set and 0.87

in the validation set. The specificity of the pre-MetS vs. MetS

model was 0.76 and 0.75 in the discovery and validation sets,

while its F1 score was 0.78 and 0.77, respectively.

The model for HC vs. MetS (Figures S8A and S8B) showed

good diagnostic performance in both the discovery (n = 3,184)

and validation (n = 1,364) sets, with AUCs of 0.891 (95% CI,

0.880–0.902) and 0.886 (95% CI, 0.868–0.903) (one-sided De-

Long test; p = 0.280), respectively (Figure 3F). In the HC vs.

MetS model, the specificity was 0.79 in both the discovery and

validation sets, while the F1 scores were 0.79 and 0.80, respec-
6 Cell Reports Medicine 4, 101109, July 18, 2023
tively (Figure S8C). The confusion matrix for the validation set is

shown in Figure S8D. Furthermore, we compared the role of 26

hub PMFs with 303 features for HC vs. MetS to verify the repre-

sentativeness of these hub features. The results showed that the

AUCs were 0.885 (95% CI, 0.867–0.903) and 0.886 (95% CI,

0.868–0.903) (one-sided DeLong test; p = 0.967) in the validation

sets of the model with 303 hub PMFs and 26 features, respec-

tively (Figure S8E). Comparisons of other model evaluation

metrics are shown in Figure S8F. The p values did not differ

significantly between the two groups, demonstrating that hub

PMFs were representative.

To effectively utilize the entire dataset to evaluate the perfor-

mance of the PMFs-based diagnostic model, we conducted

100 independent and randomized 1:1 case-control matching

sample selections for model evaluation. In the 100 repeated tri-

als, each sample from the MetS group was selected at least 47

times (Figure S9A); 95% of the discovery set had AUC values

in the range of [0.842, 0.869], and 95% of the validation set

had AUC values in the range of [0.828, 0.867] (Figure S9B). More-

over, we randomly and independently split the discovery and

validation sets 100 times using the same dataset as in Figure 3F.

The results showed that 95% of the discovery set had AUC

values in the range of [0.884, 0.896], and 95% of the validation

set had AUC values in the range of [0.871, 0.899] (Figure S9C).

These results indicate that the PMFs-based MetS diagnostic

model is robust through the evaluation using the entire dataset.

Moreover, we compared the performance of GLMNET and

categorical boosting (CatBoost) models in distinguishing be-

tween HC and MetS. The CatBoost model showed a significant

difference between discovery and validation AUC (p < 0.001)

(Figure S9D), suggesting overfitting. However, the advantage of

CatBoost models is their ability to analyze multi-class labels.

We also compared the AUC of the GLMNET model and the

CatBoost model on the discovery set and found no statistically

significant difference between the twomodels (p = 0.756) in diag-

nosing MetS (Figure S9E). Furthermore, we separately analyzed

the importance of each feature using the coefficients of the

GLMNET model and the Shapley Additive Explanation (SHAP)

values of the CatBoost model (Figures S10A and S10B). We

also compared the coefficients and SHAP values, finding that

five variables showed positive effects in both evaluation

methods, while four showed negative effects (Figure S10C).

Given the confounding effects of drugs, we conducted a

sensitivity analysis to eliminate the potential impact of medica-

tion on our results. We collected medication information on par-

ticipants in both the discovery and validation sets. In the discov-

ery set, medication information was available for 58.4%, and it

was available for 56.4% in the validation set (Figure S11A). Con-

ventional principal-component analysis (PCA) was unable to

differentiate between MetS patients who were using medication

and those who were not (Figure S11B). We also evaluated the

performance of our diagnostic model separately for the medica-

tion and non-medication groups. The AUC for distinguishing

MetS from HC in the medication group was 0.920 (95% CI,

0.903–0.936) in the discovery set and 0.922 (95% CI, 0.898–

0.946) in the validation set, with a p value of 0.890 (Figure S11C).

The AUC for the non-medication group was 0.861 (95% CI,

0.843–0.879) in the discovery set and 0.863 (95% CI,



Table 2. Distribution and prevalence of 16 subcluster conditions in this study

Obesity Hypertension Hyperglycemia Dyslipidemia Number (%)a

RF0000 0 0 0 0 2,274 (16.78)

RF0001 0 0 0 1 777 (5.73)

RF0010 0 0 1 0 544 (4.01)

RF0100 0 1 0 0 1,761 (12.99)

RF1000 1 0 0 0 775 (5.72)

RF0011 0 0 1 1 268 (1.97)

RF0101 0 1 0 1 902 (6.65)

RF1001 1 0 0 1 464 (3.42)

RF0110 0 1 1 0 770 (5.68)

RF1010 1 0 1 0 234 (1.73)

RF1100 1 1 0 0 1,281 (9.45)

RF0111 0 1 1 1 528 (3.90)

RF1011 1 0 1 1 212 (1.56)

RF1101 1 1 0 1 1,070 (7.89)

RF1110 1 1 1 0 772 (5.69)

RF1111 1 1 1 1 922 (6.80)

0/1 = absence/presence of each risk factor; RF0000–RF1111, different combinations of four risk factors.
aData are presented as the number/total number (percentage) of subjects unless otherwise indicated.
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0.836–0.890) in the validation set, with a p value of 0.923 (Fig-

ure S11C). Other model evaluation indicators also show good

performance (Figure S11D). Previous literature has suggested

that patients adhering to medication regimens exhibit alterations

inmetabolic profiles.31–33 In this study, we observed a significant

difference in the AUC within the validation set between the non-

medication and medication groups, yielding a p value of 0.002,

which implies a potential influence of medication onmetabolism.

Nevertheless, this effect does not facilitate a distinct PCA-based

separation between MetS patients in the medication and non-

medication groups (Figure S11B). These results underscore the

robustness of the PMF-based diagnostic model for MetS, ac-

counting for diverse real-world scenarios and including both

medication and non-medication groups, thereby facilitating clin-

ical diagnosis in practical healthcare settings.

Next, we examined whether the diagnostic model based on

PMFs could serve as a clinical tool to define MetS. To that

end, we introduced calibration curves to summarize model cali-

bration over the observed range of predicted probabilities and

assess the accuracy of the predictions.34,35 MetS cases pre-

dicted by this PMF-based model were in high agreement with

the actual observations in the calibration plot (Figure 3G). Addi-

tionally, this model increased the net benefit rate through deci-

sion-curve analysis (DCA) (Figure 3H). Overall, by comparing

the plasma profiles of donors with distinct risk factors, we con-

structed reliable ML-based classifiers for pre-MetS and MetS

using 26 hub PMFs. These PMF-based diagnostic models ex-

hibited excellent discrimination, calibration, and clinical utility in-

dependent of traditional biochemical examinations.

Re-clustering MetS subtypes optimized the assessment
of different MetS risk factors
To investigate the heterogeneity of four risk factors and their

combinations in MetS, we calculated the average intensity of
26 hub PMFs in five subgroups (RFN0–RFN4) sorted by the num-

ber of risk factors (Figure 4A). However, using only the mean in-

tensity did not distinguish the heterogeneity of the subgroups

well. Therefore, we divided five subgroups into 16 subclusters

(RF0000–RF1111) according to the composition of MetS risk

factors. The population numbers for each subcluster are sum-

marized in Figure 4B. We used two unsupervised ML strategies,

K-means and hierarchical clustering, to reclassify the metabolic

heterogeneity of 16 subclusters after dimensionality reduction by

PCA. The first two principal components (PC1 and 2) explained

over 96.4% of the total variation in the entire cohort (Figure 4C).

The results showed that both analytical strategies classified

these 16 subclusters into the same four MPs (Figures 4C and

4D). The optimal number of clusters was calculated according

to the gap statistic (Figure S12 and Table S5). The subclusters

of unitary dyslipidemia (RF0001) and dyslipidemia combined

with hypertension (RF0101) clustered together (MP1 in

Figures 4C and 4D). All subclusters containing obesity, except

those with the complication of hyperglycemia (RF1000,

RF1001, RF1101, RF1100), were highly consistent with the HC

subcluster (RF0000) and the subcluster of unitary hypertension

(RF0100) (MP2 in Figures 4C and 4D). MP3 contained the sub-

clusters of obesity combined with hyperglycemia (RF1010),

obesity combined with hypertension and hyperglycemia

(RF1110), and hyperglycemia combined with dyslipidemia

(RF0011) (MP3 in Figures 4C and 4D). The remaining five sub-

clusters, including unitary hyperglycemia (RF0010), hypergly-

cemia combined with hypertension (RF0110), hyperglycemia

combined with obesity and dyslipidemia (RF1011), and a combi-

nation of all four risk factors (RF111), were classified as MP4

(MP4 in Figures 4C and 4D). Based on these results validated

with two different algorithms, our PMF-based metabolic reclas-

sification provided the first real-world evidence of the metabolic

phenotypic diversity of the traditional composition of four MetS
Cell Reports Medicine 4, 101109, July 18, 2023 7
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risk factors based on a large community cohort study of over

10,000 people.

Moreover, to precisely interpret the proportion of each risk fac-

tor involved in MetS, we re-clustered the five MetS subtypes

(RF1110, RF1011, RF1101, RF0111, and RF1111) as well as

the HC group (RF0000) using the K-means algorithm to clarify

the contributions of the different risk factors to the pathogenesis

of MetS. The MetS subtype with risk factors for obesity, hyper-

tension, and dyslipidemia (RF1101) showed the highest similarity

to the HC group (RF0000), suggesting that the missing risk fac-

tor, hyperglycemia, had the greatest impact on chronic meta-

bolic disorders in the general population (Figure 4E). Similarly,

hypertension had a greater effect on MetS than dyslipidemia

(RF1011 vs. RF1110) or obesity (RF1011 vs. RF0111), as demon-

strated by comparing groups in turn according to the degree of

clustering similarity (Figure 4E). The contribution of dyslipidemia

to MetS was similar to that of obesity (RF1110 vs. RF0111) (Fig-

ure 4E). The clustering results also divided the 26 hub PMFs into

four intensity-specific metabolic modules (modules 1–4), which

contained 2, 2, 16, and 6 hub PMFs, respectively (Figure 4E).

The relative intensity of thesemodules among the fiveMetS sub-

types and the HC group is depicted in Figure S13. Based on

these results, the contributions of all the MetS risk factors could

be sorted in descending order: hyperglycemia, hypertension,

dyslipidemia, and obesity.

Individualized PMR stratification mirroring actual
metabolic dysfunction
Compared to clinical parameters, plasmametabolites could bet-

ter reflect an individual’s disease progression and metabolic

dysfunction.36,37 This study constructed a personalized three-

dimensional PMR stratification using 26 hub PMFs and

CatBoost (an algorithm for gradient boosting on decision trees)

in the general population (Figure 5). The composite PMR scores

comprised three-dimensional indexes (indexes 1–3). To calcu-

late indexes 1–3, we first determined each participant’s mean

predicted probability scores for HC, pre-MetS, and MetS.

Then, we used these mean probability scores as cutoff values

to categorize each participant into one of the three metabolic

patterns.
Figure 3. Diagnostic models for pre-MetS and MetS by 26 hub PMFs a

(A) Typical mass spectrometry spectra within anm/z range of 100–300 obtained by

MetS groups.

(B) The final 26 hub PMFs were filtered out by comparison of differential PMFs

Kruskal-Wallis rank-sum test and Bonferroni/Dunnett correction in the discovery

(C) Power analysis of the diagnosis of pre-MetS and MetS using a two-sided Z t

(ROC) curves (AUCs) for the null and alternative hypotheses, respectively. N+ andN

stars indicate the numbers in our datasets (n = 4,548, 4,548, and 7,008) for cl

respectively.

(D) Distribution of the AUC using generalized linear models via least absolute shrin

vector machine (SVM), multivariate adaptive regression splines (MARS), random f

MetS groups in the validation cohort (n = 1,364).

(E) Distribution of the AUCs of HC vs. pre-MetS and pre-MetS vs. MetS in both the

in purple).

(F) ROC curves for the PMF-based MetS diagnostic model using the GLMNET a

validation sets (n = 1,364).

(G) Calibration curves for our model showed good correlation between predicted

calibrated line.

(H) DCA plot depicting the standardized net benefit of our model.
The score of index 1 was closely related to the subgroup with

no risk factors (RFN0) (Figure 5A) and the HC group (Figure 5B).

The score of index 2was extremely high in the subgroupwith one

or two risk factors (RFN1 and 2) (Figure 5A) and the pre-MetS

group (Figure 5B), while, in other groups, it was close to zero.

The score of index 3 was only sensitive to the subgroup with

three or four risk factors (RFN3 and 4) (Figure 5A) and the

MetS group (Figure 5B). These results suggested that the three

indexes characterized different aspects of MetS. By calculating

the priority of the three index scores, we reclassified the cohort

(n = 13,554) into three metabolic risk patterns: low (LMR), me-

dium (MMR), and high metabolic risk (HMR) patterns (Figure 5C).

The LMR (n = 2,371), MMR (n = 7,674), and HMR (n = 3,509) pat-

terns had the highest index 1, index 2, and index 3 scores,

respectively.

Compared to individuals with the MMR pattern, those with the

HMR pattern showed greater relative increases in serum creati-

nine (SCr), serum total cholesterol (TC), low-density lipoprotein

cholesterol (LDLC), uric acid (UA), body mass index (BMI),

glucose (GLU), and triglycerides (TGs) when the expression in

the LMR pattern was taken as the baseline (Figure 5D and

Table S6), which is consistent with clinical practice. Additionally,

the HMR group exhibited a more pronounced relative decrease

in high-density lipoprotein cholesterol (HDLC) (Figure 5D and

Table S6), suggesting that HDLC is a protective factor for meta-

bolic disorders. We also calculated scores for index 1, which re-

flects health status, and index 3, which reflects disease status, in

the five MetS subtypes (RF1110, RF1011, RF1101, RF0111, and

RF1111) as well as in the HC group (RF0000) to reassess the

metabolic heterogeneity of MetS. The results showed that index

1 scores increased sequentially in the RF0000, RF1101, RF1011,

RF1110, RF0111, and RF1111 subtypes (Figures 4C and 5E),

while index 3 scores decreased sequentially in the same sub-

types (Figure 5E). This ordering ofMetS subtypes was consistent

with the results of the K-means cluster analysis described above

(Figure 5E), which further supports reliability and robustness of

our PMR-based stratification model.

To investigate the clinical relevance of PMR-based stratifica-

tion, we collected all-cause death events in the entire cohort

within 4 years, including 291 (2.1%) all-cause death events as
djusted for age and gender using ML

ferric particle-assisted LDI-MS of plasma samples from the HC, pre-MetS, and

among HC vs. pre-MetS, pre-MetS vs. MetS, and HC vs. MetS groups using

cohorts.

est. AUC0 and AUC1 are the areas under the receiver operating characteristic

� are the numbers of items sampled from cases and controls, respectively. The

assification among HC vs. pre-MetS, HC vs. MetS, and pre-MetS vs. MetS,

kage and selection operator and elastic-net regularization (GLMNET), support

orest (RF), and adaptive boosting (ADABOOST) to distinguish between HC and

discovery and validation sets (HC vs. pre-MetS in pink and pre-MetS vs. MetS

lgorithm to distinguish between MetS and HC in the discovery (n = 3,184) and

and observed outcomes. The calibration curve was close to the 45� perfectly
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major points and 28 (0.2%) accidental death events as censors.

Based on the traditional disease classification, the status was

found to be significantly associated with a higher incidence of

adverse events without adjusting for gender and age (for pre-

MetS, HR 1.58, 95% CI 1.08–2.30, p for log-rank test = 0.018;

for MetS, HR 1.78, 95% CI 1.18–2.66, p for log-rank test =

0.006) (Figure S14B). However, statistical significance disap-

peared for pre-MetS (adjust p = 0.063) (Figure 5F) after excluding

age and gender as confounders. This finding implies that our

conventional disease staging, which heavily relies on age and

gender, may not adequately reflect the metabolic status of the

patient. Notably, PMR-based stratification was also significantly

related to worse event accumulation without gender and age

correction (for medium risk, HR 1.76, 95% CI 1.19–2.59, p for

log-rank test = 0.004; for high risk, HR 2.06, 95% CI 1.36–3.11,

p for log-rank test = 0.001) (Figure S14A). Using the above

PMR-based stratification model, we also revealed that patients

with medium risk had a significantly worse event accumulation

than those with low risk adjusted for gender and age (HR 1.54,

95% CI 1.05–2.28, p for log-rank test = 0.029). The patients

with high risk had a significantly worse event accumulation

than those with low risk adjusted for gender and age (HR 1.85,

95% CI 1.22–2.79, p for log-rank test = 0.004) (Figure 5F), sug-

gesting the independent relationship between this PMR-based

stratification and all-cause death events.

We further investigated the association between the traditional

risk grouping and PMR-based metabolic patterns using variant

analysis to illustrate the changes (Table S7). The RFN0 subgroup

(n = 2,274) could be reclassified into LMR (n = 2,188, 96.2%),

MMR (n = 74 3.3%), and HMR (n = 12 0.5%) patterns

(Table S7). Similarly, the variant analysis of novel risk patterns

and existing traditional classifications based on disease states

is summarized in Table S7. The PMF-based metabolic risk

patterns were at least 95.58% consistent with the traditional

classification following the number of risk factors. These results

indicated that the conventional determination of MetS status

was too ambiguous to precisely reflect an individual’s metabolic

dysfunction, especially in the general population. Even a homo-

geneous subgroup of MetS patients (concerning traditional risk

factors) had heterogeneous risk patterns of metabolic dysfunc-

tion. Therefore, individualized risk stratification and preventive

measures are necessary for MetS patients. Our PMR stratifica-

tion with personalized metabolic patterns and three-dimensional

PMR scores provides a robust and feasible solution for accurate

metabolic risk stratification.

To identify the specific metabolic pathways driving these risk

factors in MetS, wematched 26 hub PMFs to the HumanMetabo-

lomeDatabase (HMDB) and classified them into organic acids (n =
Figure 4. PMF-based unsupervised ML revealed the heterogeneity of M

(A) The standardized intensity of all hub PMFs among five subgroups (RFN0–RF

(B) The distribution of five subgroups (RFN0–RFN4) and 16 subclusters (RF0000–R

(C) K-means clustering analysis scatter diagram regrouping 16 subclusters into

represents a subcluster condition containing (or not) the risk factor according to

(D) Circular hierarchical cluster analysis dendrogram grouping 16 subclusters into

based on the MPs.

(E) Relative risk assessment among the five MetS subgroups (RF0111, RF1011, R

based on the relative intensity of all 26 hub PMFs. These PMFs were divided into
12), organoheterocyclic compounds (n = 4), benzenoids (n = 3),

fatty acyls (n = 2), carbohydrates (n = 2), and nucleic acids (n = 1)

(Figure S15A and Table S8). Recent studies have highlighted the

role of lipid metabolites with large molecular weights in the patho-

logical process of MetS.38,39 However, our advanced LDI-MS re-

vealed the importance of small-molecule metabolites in the diag-

nosis and risk stratification of MetS, thereby promoting the

potential clinical application in the early identification of pre-MetS.

Using pathway topology analysis, we further computed the

metabolic pathway enrichment of the 26 hub PMFs to regulate

the process of MetS. Four differential metabolic pathways

(enrichment ratio >5 and p < 0.05), including taurine and hypo-

taurine metabolism, phenylacetate metabolism, homocysteine

degradation, and phosphatidylethanolamine biosynthesis,

were identified to be involved in the development of MetS (Fig-

ure S15B and Table S9). These findings suggest that small-mole-

cule metabolites play potential roles in MetS development and

could serve as new targets for attenuating MetS risk.

DISCUSSION

Metabolic risk factors present significant global challenges,

necessitating effective early intervention strategies.40 In this

study, we employed ferric particle-assisted LDI-MS to identify

potential biomarkers for pre-MetS and MetS in a community-

based setting. While prior research primarily focused on discov-

ering new metabolites associated with MetS, our approach

emphasized theheterogeneity ofmetabolic dysfunctions through

ML-based integrated PMRs scoring rather than relying solely on

traditional risk factors. Using unsupervised clustering, we suc-

cessfully characterized MetS subtypes based on four distinct

metabolic modules, revealing the varying contributions of hyper-

glycemia, hypertension, dyslipidemia, andobesity (Figure 4). This

finding was further supported by the correlation between clinical

parameters and the reclassifiedmetabolic riskpatterns (Figure5).

These results provide a novel and scalable screening approach

for identifying MetS patients, mainly targeting elderly individuals

at risk of metabolic dysfunction and facilitating interventions that

effectively address modifiable risk factors.

Metabolomics is a powerful tool for precision medicine in bio-

markers. However, metabolomics-based biomarkers for MetS

are still in their infancy. Previous studies have primarily focused

on analyzing MetS patients in bulk using small sample sizes23,41

and employing univariate analysis methods.42 These studies

aimed to identify distinct population-level risk factors rather

than investigating the phenotypic consequences from the

perspective of integrated PMFs. Our study represents the largest

investigation of PMFs in MetS patients, utilizing a general
etS

N4) according to the number of risk factors.

F1111) classified according to traditional risk factors in the general population.

four metabolic phenotypes (MPs) based on the results of PCA. Each point

Table 2. MPs are indicated by colored shading.

the same four MPs based on phenotypic similarity. Colors of subcluster names

F1101, RF1110, RF1111) and HC group through K-means clustering analysis

four metabolic feature modules (modules 1–4).
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Figure 5. Construction of the three-dimen-

sional PMR stratification for evaluating indi-

vidual metabolic heterogeneity

(A) Distribution of the three PMR indexes (index 1–

3) among the five subgroups (RFN0–RFN4) clas-

sified according to the present number of tradi-

tional risk factors.

(B) Mean scores of these three indexes (index 1–3)

in the HC, pre-MetS, and MetS groups.

(C) Specific PMR patterns for all participants in the

general population cohort. Gray, blue, and purple

dots indicate individual status ranked by LMR,

MMR, and HMR patterns, respectively.

(D) The relative changes in high-density lipoprotein

cholesterol (HDLC), serum creatinine (SCr), serum

total cholesterol (TC), low-density lipoprotein

cholesterol (LDLC), uric acid (UA), body mass in-

dex (BMI), glucose (GLU), and triglycerides (TGs) in

theMMR and HMR groups compared with those in

the LMR group.

(E) Mean scores for index 1 (in gray) and index 3 (in

purple) in the five MetS subtypes (RF1110,

RF1011, RF1101, RF0111, and RF1111) and the

HC group (RF0000).

(F) Cumulative curves and forest plots of the 4-year

mortality events for 13,554 patients with three

PMR statuses stratified by gender and age. The p

value for multivariate Cox regression analysis

models was calculated by the likelihood test. The p

value for variables was obtained by a log-rank test

and hazard ratio (HR).
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community cohort of 13,554 individuals and achieving a remark-

able diagnostic power of 99.99% (Table 1 and Figure 3C). A pre-

vious cross-sectional serummetabolomic study onMetS in 2021

included only 1,800 participants.43 To ensure generalizability, we

employed independent discovery and validation sets (Table S3).

Most MetS analyses have utilized NMR,24 LC‒MS,25 or GC-

MS18 methods. However, conventional spectrometric tech-

niques have been reported27 to be challenging to achieve the

required diagnostic performance using high-throughput quanti-

tative metabolomic analysis of ultralow-volume samples when

using these individual platforms separately to detect large

numbers of samples (Table S10). NMR requires a pretreatment

step and large sample volume (�microliters) to enhance sensi-

tivity (�picomoles) by expanding nuclear-level rotation. On

the other hand, GC-MS/LC-MS methods necessitate longer

sophisticated sample handling (�hours) to reduce sample

complexity.44–46 In contrast, LDI-MS, as an alternativemetabolite

recognition method, offers a high-performance technique that

enables large-scale MetS screening.

The traditional multi-process diagnosis of MetS is challenging

to promote in community screening due to its need for cumber-

some physical examination and clinical indicators. In addition,

complex examinations of four risk factors using different instru-

ments can result in significant measurement errors and low effi-

ciency, particularly in large-scale screening programs.16 Plasma

metabolites provide a fundamental view into the dynamics of

MetS.47 Recent studies41,48,49 focused on comparing MetS

and non-MetS and therefore did not reveal the heterogeneity

of metabolic disorders. Unlike the traditional classification, the

current study divided the participants into three groups, a

MetS group (n = 3,504), a pre-MetS group (n = 7,776), and an

HC group (n = 2,274), to achieve widespread screening of

MetS in the community. We systematically validated PMF-based

classifiers for pre-MetS and MetS with high performance. The

AUC for pre-MetS vs. HC was 0.867 (95% CI, 0.854–0.881)

and 0.864 (95% CI, 0.843–0.885) in the discovery (n = 3,184)

and validation (n = 1,364) set (Figures 3E and S7A). The AUC

for MetS vs. HC was 0.891 (95% CI, 0.880–0.902) and 0.886

(95% CI, 0.868–0.903) in the discovery (n = 3,184) and validation

(n = 1,364) set, respectively (Figure 3F). The AUC for pre-MetS

vs. MetS was 0.849 (95% CI, 0.838–0.860) and 0.835 (95% CI,

0.817–0.853) in the discovery (n = 4,906) and validation (n =

2,012) sets (Figures 3E and S7C). These results were superior

to prior research of 1,800 participants in 2021 (AUC 0.750,

95% CI 0.698–0.802).43 Moreover, we further confirmed the

favorable consistency through the calibration plot (Figure 3G),

and the DCA suggested that our model had a reasonable clinical

net benefit (Figure 3H). Therefore, these advanced classifiers

based on PMFs demonstrated excellent discrimination, calibra-

tion, and clinical utility, which can pave the way for a future com-

munity screening of pre-MetS and MetS.

Obesity, hypertension, hyperglycemia, and dyslipidemia

represent dominant risk factors forMetSdevelopment.50 Howev-

er, the specific contributions of each risk factor to metabolic

impairment progression remain largely unknown.51 Here,we pro-

posedametabolomics-basedapproach to evaluate thecontribu-

tion of various risk factors using different unsupervised clustering

methods. Through unsupervised analysis, we found that hyper-
glycemia emerged as the dominant risk factor inMetS.Metabolic

disturbance phenotypes observed in MetS patients with hyper-

glycemia were similar to those with four risk factors (Figure 4E).

Weselected the26PMFs toexplainmore than96.4%of total vari-

ation (Figure 4C). These selected PMFs effectively captured the

underlying patterns and aligned with the theory of MetS develop-

ment, where hyperglycemia plays a crucial role as a direct indica-

tor of insulin resistance.52 Additionally, the result shows obesity

with smaller contributions to MetS (Figure 4E), suggesting that

obesity is not synonymous, and metabolically benign obesity in

MetS may be induced by insulin resistance.53,54 These results

provide systematic evidence from a metabolomics perspective

and offer a solid theoretical foundation for optimizing cost-effec-

tive interventions tailored to patients with different risk factors.

The lack of consistent cutoff points among different diagnostic

criteria55 and the significant heterogeneity in coronary heart dis-

ease (CHD) risk among individuals with MetS56,57 indicate that

current diagnostic criteria do not correlate with an individual’s

metabolic status. Here, we aimed to focus on individual-level

metabolic diversity and identify personalized metabolic hetero-

geneity. We established an integrated three-dimensional PMR

stratification that considered age and gender (Figure 5). Thus,

significant increases in SCr, TC, LDLC, UA, BMI, GLU, and

TGs were observed in the HMR pattern compared to the MMR

pattern (Figure 5D and Table S6), which aligned with clinical

practices. Additionally, HDLC alteration declined in the HMR

pattern (Figure 5D and Table S6), indicating that HDLC play a

protective role to some extent against metabolic disorders.

To verify PMR stratification, we conducted a 4-year death

event follow-up in large prospective cohort. Compared with the

traditional disease classification, PMR stratification was inde-

pendently related to all-cause death events in this large retro-

spective cohort of 13,554 participants (for medium risk, HR

1.54, 95% CI 1.05–2.28, p for log-rank test = 0.029; for high

risk, HR 1.85, 95% CI 1.22–2.79, p for log-rank test = 0.004).

Thus, our study highlights that risk stratification and preventive

measures are person specific in the development of MetS.

We conducted a comparative analysis between PMF-based

molecular typing and traditional typing of MetS using flow anal-

ysis (Table S7). The results indicated that the conventional deter-

mination of MetS status based on different risk factors was too

ambiguous to reflect an individual’s metabolic dysfunction.

Even a homogeneous subgroup of MetS patients (concerning

traditional risk factors) had heterogeneous risk patterns of meta-

bolic dysfunction. The integrated PMR stratification with person-

alized metabolic patterns and three-dimensional PMR scores

provides a robust and feasible solution for accurate metabolic

risk stratification, which could not only mirror the actual individ-

ual MPs but also replace the traditional classification method

based on the number of risks.

Limitations of the study
Several limitations should also be considered in our study. First,

potential bias might limit the results of our study from being repli-

cated in other settings. Therefore, we involved a relatively large

number of participants among four communities controlling for

sampling error to minimize drawbacks. Moreover, the data

were randomly partitioned into discovery and validation sets in
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a 7:3 ratio. Another limitation is that the study lacks potential

experimental validation, which is important in establishing the

reliability and robustness of the findings. Future efforts will focus

on validating the models in different centers and conducting

experimental verification through animal experiments.

Conclusions
Using PMF of MetS with LDI-MS, we established portable and

efficient diagnostic models for pre-MetS and MetS with

improved performance for clinical promotion in the general

population. Furthermore, we assessed the contributions of

different MetS risk factors based on specific metabolic mod-

ules using unsupervised clustering. We demonstrated the

importance of glycemic control for the prevention and treat-

ment of MetS. Finally, we devised a personalized three-dimen-

sional PMR stratification to decode the individual metabolic

heterogeneity into three metabolic patterns related to all-cause

death in our large prospective cohort. Overall, our results intro-

duce novel paradigms and interventional directions to accel-

erate the application of precision medicine for pre-MetS

and MetS.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jun Pu

(pujun310@hotmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The standardized metabolomics data have been deposited to the NIH Common Fund’s National Metabolomics Data Repository

(NMDR) Website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org58 where it has been assigned Study

ID: ST002733 (as listed in the key resources table). This paper does not report original code. Any additional information required

to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants and ethics
The Shanghai Community Cohort Establishment and Follow-up (NCT04517513) is registeredwith ClinicalTrials.gov as a large general

population cohort in Pudong New District, Shanghai, China. As a part of the series of studies on this cohort, all subjects (n = 17,841)

with different degrees of metabolic syndrome (MetS) were enrolled from three different communities including HeQing, JinQiao, and

JinYang communities between January 2019 and March 2019, with approval by the Ethics Committee of Renji Hospital (KY2019-

136), School of Medicine, Shanghai Jiao Tong University. To avoid potential interference from other confounding factors, 2,238 par-

ticipants were excluded using the following exclusion criteria. After excluding subjects with missing clinical information, 13,554 vol-

unteers were included in the current study. To better reflect the Chinese population, pre-MetS and MetS were diagnosed by the
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following standard criteria according to the statement of the Chinese Diabetes Society 200428 (Table S1). According to the guidelines

of the Declaration of Helsinki (2013),59 written informed consent was obtained from all participants and their information was anony-

mized to protect their privacy.

Exclusion criteria
Patients with any acute and infectious clinical symptoms, including but not limited to fever, headache, cough, malaise, sore throat,

loss of smell, runny nose, abdominal pain, and diarrhea, within 3 weeks before sampling. Patients with chronic inflammatory dis-

eases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease.

Definition of metabolic syndrome (MetS)
MetS is defined as the presence of three or more of the four risk factors established by the Chinese Diabetes Society 200428: 1)

obesity (BMIR25 kg/m2); 2) hypertension (blood pressureR140/90mmHg and/or have been confirmed and treated as hypertension);

3) hyperglycemia (fasting plasma glucoseR6.1 mmol/L [110 mg/dl] and/or 2-h postprandial blood glucoseR7.8 mmol/L [140 mg/dl],

and/or have been diagnosed and treated as diabetes); 4) dyslipidemia (high triglycerideR1.7 mmol/L [150 mg/dl], and/or low high-

density lipoprotein cholesterol< 0.9 mmol/L [35 mg/dl] in men or <1.0 mmol/L [39 mg/dl] in women) (Table S1).

Definition of pre-metabolic syndrome (pre-MS)
pre-MS is defined as having one or two risk factors of MetS but does not meet the criteria for the diagnosis of MetS.60–62

Baseline examination
All community subjects underwent physical examinations and biochemical tests after overnight fasting without medication. Current

regular medication, previous medical history, sleep quality, mental condition, and smoking habits were recorded based on question-

naires. Waist/hip circumference, height, and weight were measured by tape, calibrated stadiometer, and scale, respectively. Body

mass index (BMI) was calculated as weight (kg)/height (m2). The average of three systolic and diastolic blood pressure recordings

was noted by qualified staff to the nearest 1 mmHg using cuff-based blood pressure measurement after at least 15 min of rest in

the sitting position. Triglycerides, high-density lipoprotein cholesterol, and fasting blood glucose were detected using a standard

spectrophotometer.

Follow-up
The follow-up period is 4 years and its deadline was December 2022. Our predefined primary outcome measure is the full cause of

death within 4 years. For each participant, the death event would be verified through the official death-certificates by Shanghai Pu-

dong New Area Public Security Bureau on 9th December 2022. To ensure complete and accurate registration of death information,

highly trained clinicians coded the causes of death and each record was cross-checked by a local community physician and further

validated by the Center for Disease Control and Prevention (CDC) at themunicipal and district levels. If there were any discrepancies,

we would re-check medical records, family reports or official death-certificates. All the causes of death were coded and classified

according to the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) in 2010.

Sample collection, preparation, and storage
Samples were provided by Renji Hospital Biobank, Shanghai Jiaotong University School of Medicine. All human peripheral venous

blood samples were obtained following the protocols approved by the Shanghai Jiao Tong University Institutional Review Board. In

order to prevent any interference from dietary factors, peripheral vein blood samples were obtained from individuals following an

overnight fast of at least 8 h. The collected blood was gently mixed in EDTA anticoagulant tubes. The plasma was separated after

centrifugation for 10min (4000 rpm; 4�C) within 2 h of collection. All plasma samples were stored at �80�C for future assays.

METHOD DETAILS

Matrix synthesis
A modified solvo-thermal method was adopted to prepare the ferric particles (FPs), which provided a cost-effective approach for

large-scale production. Initially, ethylene glycol solution was used to dissolve ferric chloride. Then, we added trisodium citrate

(weights from 0 to 0.8g) to tune the surface charge of the mixture. After adding 1.8g of sodium acetate, we sonicated the products

at room temperature for 30min. To form the FPs, we held the products at 200�C for 10h after transferring them into a Teflon-lined

stainless-steel autoclave (capacity 50mL). After being washed with ethanol and deionized water, the final particles were dried at

60�C before use.

Material characterization methods
A JEM-2100F instrument (JEOL, Japan) was used to collect transmission electron microscopy (TEM) images by depositing 10mL of

material suspension onto a copper grid. An S-4800 instrument (Hitachi, Japan) was used to record scanning electron microscopy

(SEM) images by placing a drop of material suspension on aluminum foil. A UV1900 spectrophotometer (AuCy, China) was used
e3 Cell Reports Medicine 4, 101109, July 18, 2023
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to obtain the optical absorption spectrum of the matrixes at room temperature. An ASAP 2020M (Micromeritics, USA) was used to

test the nitrogen adsorption isotherm of the samples degassed in a vacuum. A Nano ZS90 instrument (Malvern, Worcestershire, UK)

was used to perform zeta potential and dynamic light scattering (DLS) size measurements in water at 25�C.

Nano-assisted laser desorption/ionization mass spectrometry (LDI MS) profiling
LDI MS experiments were conducted as reported previously.30 All MS measurements were performed on an Autoflex speed TOF/

TOFmass spectrometer (Bruker Daltonics, Bremen, Germany). In a typical LDI MS experiment, ferric particles were dispersed in de-

ionized water at a concentration of 1 mg mL�1 for use as a matrix. The CHCA and DHB organic matrices were dissolved in TA30

solution (acetonitrile/0.1% TFA in water, 7/3, v/v) at a concentration of 10mg/mL. For the detection of the standards, 100nL of analyte

solution (each standard listed in the part of chemicals and reagents) with different densities (100 ng mL�1, 1 mg mL�1, 10 mg mL�1,

100 mgmL�1, 1mgmL�1) wasmixed with 100nL of matrix slurry on the plate and dried for LDIMS analysis. For plasma sample detec-

tion, the sampleswere first prepared through protein precipitation, centrifugation, and supernatant filtration according to a commonly

applied procedure. Then, a volume of 100nL of plasma solution was spotted on the plate and dried in air at room temperature, fol-

lowed by adding 100nL of matrix slurry and drying for LDI MS analysis. Then, mass spectra were performed on a 5800 Proteomics

Analyzer (Applied Biosystems, Framingham, MA, USA) equipped with a Nd:YAG laser (2 kHz, 355 nm). The acquisitions were ex-

tracted in positive reflector ion mode employing delayed extraction with a repetition rate of 1,000Hz and an acceleration voltage

of 20 kV. The delay time for this experiment was optimized to 250 ns. The 2,000 laser shots per analysis were for all LDI MS exper-

iments. All the original mass spectra data were visualized in DataExplorer (Version 4.5). Only the m/z signals within 100–300Da and

with a signal-to-noise ratio over 3 were then acquired without smoothing processes. For pre-processing, we applied a ‘‘home-devel-

oped’’ program usingMATLAB (R2016a, TheMathworks, Natick, MA, USA) to normalize and standardize themass spectra data after

peak extraction and alignment.63 And standard molecules for the accurate mass measurement (±0.05Da) of both Na+-adducted and

K+-adducted signals were used to perform the mass calibration. The detection limit of standard metabolites (listed in chemicals and

reagents’ part) obtained by ferric particle, DHB, and CHCA-assisted LDI MS were calculated as previously reported.30

Hub differential plasma metabolic fingerprints (PMFs) screening
After testing for a normal distribution, significant differential PMFs among the three states of HC, pre-MetS, andMetS in the discovery

cohorts were assessed using the Kruskal-Wallis rank-sum test through the primary function in R. The significance level was set as

p < 0.05. For multiple comparisons, the final MetS-specific hub PMFs were filtered according to the Bonferroni correction and Dun-

nett’s test in R version 4.0.5.

Power analysis
Power analysis forMetS diagnosis was calculated using PASS 15.0.5 (NCSS, LLC. Kaysville, Utah, USA) to determine the appropriate

sample size required to detect an effect of a given size with a given degree of confidence.64 For HC vs. pre-MetS and HC vs. MetS,

samples of 2,274 from the positive group and 2,274 from the negative group achieved 99.99% power to detect a difference of 0.05

between the area under the receiver operating characteristic (ROC) curve (AUC) under the null hypothesis of 0.75 and an AUC under

the alternative hypothesis of 0.80 using a two-sided Z-test at a significance level of 0.05. For pre-MetS vs. MetS, samples of 3,504

from the positive group and 3,504 from the negative group achieved 99.99%power to detect a difference of 0.05 between AUC under

the null hypothesis of 0.75 and an AUC under the alternative hypothesis of 0.80 using a two-sided Z-test at a significance level of 0.05.

Data sets splitting
To improve the generalization of the diagnostic models, we randomly selected 4,548, 7,008, and 4,548 participants (1:1 case-control

matched) for HC vs. pre-MetS, pre-MetS vs. MetS and HC vs. MetS, respectively. And all these data sets were split at a ratio of 0.7 to

0.3 into the discovery (n = 3,184, 4,906, 3,184 70%) and validation (n = 1,364, 2,102, 1,364 30%) sets for HC vs. pre-MetS, pre-MetS

vs. MetS and HC vs. MetS, respectively.

Model selection
All 26 PMFs were included in the model construction as biomarker panels with age and gender adjustment. To choose the suitable

machine learning (ML) algorithm for model construction in this study, five machine-learning algorithms including generalized linear

models via least absolute shrinkage and selection operator and elastic-net regularization (GLMNET), support vector machine

(SVM), multivariate adaptive regression splines (MARS), random forest (RF), and adaptive boosting (ADABOOST) were adopted in

to build diagnostic model for HC vs. MetS by 5-fold cross-validation through the ‘‘caret’’ package and randomized searching through

the ‘‘mlbench’’ package in R version 4.0.5. After comprehensively comparing the sensitivity, specificity, and AUCs in the validation

cohort (n = 1,364), the GLMNET algorithm was used to construct the final classifiers for pre-MetS and MetS with powerful

performance.

PMFs-based diagnostic models
The final PMF-based diagnostic models were constructed using all 60 hub PMFs, with age and gender correction, by 5-fold cross

validation through the ‘‘glmnet’’ package. And the parameter optimization was performed by randomized searching and nested
Cell Reports Medicine 4, 101109, July 18, 2023 e4
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cross-validation through the ‘‘mlbench’’ package in R version 4.0.5. To further evaluate the classification performance of our models,

ROC curves and AUCs were generated using the ‘‘pROC’’ package in R version 4.0.5. We also compared the model performance of

26 hub features with all the features of 303 PMFs for HC vs. MetS. Similarly, calibration curves35 were drafted according to the

GLMNET regression results to assess themodel reliability using the ‘‘ModelGood’’ package in R version 4.0.5. The individual benefits

of our model were evaluated by decision curve analyses65 in R version 4.0.5.

Metabolomic clustering and assessment of MetS risk factors
Four were identified according to the gap-statistic calculated using the ‘‘cluster’’ packages in R version 4.0.5 to optimize the number

of clusters. Unsupervised learning of 16 sub-clusters (RF0000–RF1111) containing different MetS risk factors with standardized 26

hub PMFswas then conducted using the K-means algorithm and hierarchical clustering though the ‘‘cluster’’ and ‘‘circlize’’ packages

in R version 4.0.5 after dimensionality deduction with principal component (PC) analysis. The fiveMetS subgroups (RF0111, RF1011,

RF1101, RF1110, and RF1111) and the HC group (RF0000) were clustered and visualized with the K-means algorithm with the

‘‘pheatmap’’ packages in R version 4.0.5. And the 26 hub PMFs were clustered into four metabolic modules (MP).

Construction and validation of plasma metabolic risk (PMR) stratification
The average intensity of 26 hub PMFs among all the five subgroups (RFN0-RFN4) according to the numbers of MetS risk factors were

shown using the ‘‘ggplot2’’ package in R version 4.0.5. The variant analysis was performed using the ‘‘ggalluvial’’ package in R

version 4.0.5 to track differences between the five subgroups (RFN0-RFN4) and sixteen sub-clusters (RF0000-RF1111) on behalf

of the Sankey diagram. In order to ascertain the true metabolic status of individuals within a general population cohort, a PMRmodel

was constructed using candidate factors such as age, gender, and 26 hub PMFs. The model was developed using the categorical

boosting (CatBoost) algorithm, a widely usedmethod for gradient boosting on decision trees.66 Three indexes (Index1-3) were calcu-

lated for each participant. By comparing the three index scores of everyone, all participants in the general population cohort were re-

classified into three metabolic patterns: low-(LMR), medium-(MMR), and high (HMR) metabolic risk patterns, respectively. The rela-

tive change in different clinical parameters from the LMR pattern was calculated according to the following formula:

Change from LMR =
ðExpi � ExpLMRÞ

ExpLMR

3100% (Equation 1)

where Expi represented the mean expression of each clinical parameter in the MMR or HMR pattern. Variant analysis was performed

using the ‘‘ggalluvial’’ package in R version 4.0.5 to track differences between individual metabolic risk subgroups and traditional

MetS classifications on behalf of the Sankey diagram. To validate the predictive significance of this PMR stratification, the scores

of these three indexes were compared among the five subgroups (RFN0-RFN4) and three groups (HC, pre-MetS, and MetS) in

the general population cohort using the Kruskal-Wallis test in the ‘‘ggpubr’’ package in R version 4.0.5. For the survival analysis

of the 4-year mortality events, we conducted univariate Cox regression, multivariate Cox regression and Kaplan-Meier analysis using

the ‘‘survival’’ package in R version 4.0.5. The univariate and multivariate Cox proportional hazards models were used to determine

the Hazard Ratio (HR) of the variables. Models were tested statistically using the Likelihood test. Cumulative curves were calculated

using the Kaplan-Meier method and log-rank test was used to examine the intergroup differences. p < 0.05 was considered to indi-

cate a statistically significant difference.

Pathway analysis
The 26 hub PMFs were validated as a metabolite feature panel by accurate mass measurement through the human metabolome

database Version 5.0 (http://www.hmdb.ca).67 Pathway topology analysis was conducted to explore the respective biochemical

pathways among these differential metabolomic profiles using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca).68

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R version 4.0.5. Descriptive data were presented as mean and standard deviation. The

Shapiro-Wilk test was applied to test for a normal distribution and Levene’s test was used to test for homogeneity of variance. Dif-

ferences among groups were tested by one-way analysis of variance (ANOVA) for parametric data such as age, and the Kruskal-

Wallis rank-sum test was applied for non-parametric data, such as m/z signals. The Bonferroni test and Dunnett’s test were applied

for multiple comparisons. Categorical data, such as gender, were presented as numbers and percentages and analyzed by c2 tests.

AUC was compared using a one-sided DeLong test. All significance levels were set at 5%.

ADDITIONAL RESOURCES

This study is based the prospective Shanghai Community Cohort Establishment and Follow-up (NCT04517513): https://classic.

clinicaltrials.gov/ct2/show/NCT04517513.
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Figure S1. Material characterization of the ferric particles used in the LDI-MS process. Related to 

Figure 1. A) Electron micrograph images of the ferric particles. Scanning electron microscopy (SEM) 

images showed nanoscale surface roughness of ferric particles (n≥3 randomly selected). Transmission 

electron microscopy (TEM) images showed the polycrystalline structures of ferric particles (n≥3 

randomly selected). Elemental mapping images of the ferric particles with Fe, O, and Fe+O (Fe in yellow 

and O in red). Scale bars=50 nm. B) i) Size distribution of ferric particles at the room temperature (25°C) 

in water by dynamic light scattering (DLS). ii) Zeta potential of ferric particles. iii)Absorption spectrum 

of ferric particles. C) Linear correlation between standard concentration and LDI-MS intensity 

(M+[Na]+). Quantification results for samples consisted of different contents of lysine, D-glucose, and 

sucrose, affording R2 values of 0.92-0.98 (n=3 independent mixed samples tested 5 times each). 



Figure S2. Quantification results for standards including L-lysine, D-glucose, and sucrose at 

different concentrations obtained by ferric particle, CHCA, and DHB-assisted LDI-MS. Related 

to Figure 1. n=3 independent mixed samples tested 5 times each. FP, ferric particles; CHCA, α-cyano-

4-hydroxycinnamic acid; DHB, 2,5-dihydroxybenzoic acid.  



Figure S3. Quantification results for standards including glycine, L-tryptophan, and L-glutamine 

at different concentrations obtained by ferric particle, CHCA, and DHB-assisted LDI-MS. Related 

to Figure 1. n=3 independent mixed samples tested 5 times each. FP, ferric particles; CHCA, α-cyano-

4-hydroxycinnamic acid; DHB, 2,5-dihydroxybenzoic acid.  



Figure S4. Plasma samples with and without pretreatment in three different matrices for LDI-MS. 

Related to Figure 1. A) Dried drops of the mixture of plasma samples and three different matrices 

including FP, CHCA, and DHB, on the plate. B) Typical mass spectrometry spectra of plasma samples 



with and without pretreatment obtained by FP, CHCA, and DHB-assisted LDI-MS. FP, ferric particles; 

CHCA, α-cyano-4-hydroxycinnamic acid; DHB, 2,5-dihydroxybenzoic acid.  



 

 



Figure S5. Plasma metabolic fingerprints were extracted from raw mass spectra for all participants 

(n=13,554). Related to Figures 1 and 2. Three groups: healthy control (HC, n=2,274) (in pink); pre 

metabolic syndrome (pre-MetS, n=7,776) (in gray); metabolic syndrome (MetS, n=3,504) (in purple).  



Figure S6. Distribution of performances of different machine-learning (ML)-based models for HC 

vs. MetS in the validation cohort (n=1,364). Related to Figure 3. A) Specificity of different ML-based 

models in the validation cohort. B) Sensitivity of different ML-based models in the validation cohort. 

GLMNET, generalized linear models via least absolute shrinkage and selection operator and elastic-net 

regularization; SVM, support vector machine; MARS, multivariate adaptive regression splines; RF, 

random forest; Adaboost, adaptive boosting. Error bars represent a confidence level of 0.95. 

  



Figure S7. Construction of PMFs-based diagnostic model for HC vs. pre-MetS and pre-MetS vs. 

MetS. Related to Figure 3. A) Receiver operating characteristic (ROC) curves for HC vs. pre-MetS 

between the discovery (n=3,184) and validation (n=1,364) sets. B) Comparison of performances of the 

diagnostic model for HC vs. pre-MetS between the discovery and validation sets with different evaluation 

metrics. C) ROC curves for pre-MetS vs. MetS between the discovery (n=4,906) and validation (n=2,012) 

sets. B) Comparison of performances of the diagnostic model for pre-MetS vs. MetS between the 

discovery and the validation sets with different evaluation metrics. Acc, accuracy; F1, F1 score; NPV, 

negative predictive value; PPV, positive predictive value; Spe, specificity; Sen, sensitivity. 

  



Figure S8. Construction of PMF-based diagnostic model for HC vs. MetS. Related to Figure 3. A) 

Generalized linear models via least absolute shrinkage and selection operator and elastic-net 

regularization (GLMNET) regression analysis results. The tuning parameter (lambda) was calculated 

based on the misclassification error by fivefold cross validation. Dotted vertical lines drawn at optimal 

values of lambda by minimum criteria and 1-standard error criteria. B) GLMNET variable trace profiles 

of hub metabolic features by eight-fold cross validation. Each curve represents the dynamic variation of 

the independent variable. The y-axis shows the coefficient level, the lower x-axis represents log(lambda), 

and the upper x-axis is the number of selected PMFs under each lambda. C) Comparison of performances 

between discovery (n=3,184) and validation (n=1,364) sets in our model with different evaluation metrics. 

D) Confusion matrix of the validation set (n=1,364) in our model. E) ROC curves for the validation 



(n=1,364) set under the diagnostic models based on all 303 features (Model 1) and 26 hub features 

(Model 2) adjusted for age and gender. F) Comparison of performances between Model 1 and Model 2 

in the validation cohort (n=1,364) with different evaluation metrics. Acc, accuracy; F1, F1 score; NPV, 

negative predictive value; PPV, positive predictive value; Spe, specificity; Sen, sensitivity. 

  



Figure S9. Validation of PMF-based diagnostic model for HC vs. MetS using 100 independent trials 

and Catboost-based models. Related to Figure 3. A) 100 independent randomized trials were 

conducted to generate discovery and validation sets with 7:3 split ratios from HC and MetS groups. B) 

Density distribution of AUC values in the 100 randomized training and testing sets. The dashed lines 

represent the sampled dataset used in Figure 3F. C) Density distribution of AUC values in 100 

independent randomized splitting using the selected dataset shown by the dashed lines in B. D) ROC 

curve for the Catboost model trained on the dataset in Figure 4C. E) Comparison of ROC curves between 



Catboost and GLMNET models for the same validation dataset. HC, healthy controls, MetS, metabolic 

syndrome, AUC, area under the receiver operating characteristic curve, ROC, receiver operating 

characteristic curve, CatBoost, categorical boosting, Glmnet, generalized linear models via least absolute 

shrinkage and selection operator and elastic-net regularization. 

  



  



Figure S10. Feature importance of these 26 hub PMFs. Related to Figure 3. A) Feature coefficient 

of the generalized linear models via least absolute shrinkage and selection operator and elastic-net 

regularization regression analysis-based diagnostic model for HC vs. MetS with best lambda value 

0.0003402896. Features with positive and negative coefficients are colored red and blue, respectively. B) 

SHAP values based on the Catboost-based model for HC vs. MetS in Figure S9D. C) Comparative 

analysis of GLMNET-based coefficients and Catboost-based SHAP values. SHAP, SHapley Additive 

exPlanations. 

  



  



Figure S11. Sensitivity analysis to exclude the effect of medication on the PMF-based diagnostic 

model for MetS. Related to Figure 3. A) Medication status distribution in the discovery and validation 

cohorts. Medication group: subjects taking two or more medications for different MetS risk factors. Non-

medication group: subjects taking less than two medications for MetS risk factors. B) PCA analysis based 

on 26 hub PMFs. C) ROC curves for MetS diagnosis in the medication and non-medication groups. D) 

Other model performance evaluation metrics in the medication and non-medication groups for the 

discovery and validation cohorts. NPV, negative predictive value. 

  



Figure S12. Gap statistic curve for choosing the optimal number of clusters. Related to Figure 4. 

The dotted vertical line suggests an optimal parameter value of the number of clusters (k) = 4 in our 

dataset.  



Figure S13. The relative intensity of four metabolic feature modules clustered through K-means 

algorithm in the five MetS subgroups and HC group. Related to Figure 4. 

  



Figure S14. Plasma metabolic risk (PMR) stratification was related to 4-year mortality events in 

the longitudinal follow-up cohort of 13,554 patients among four communities without gender and 

age correction. Related to Figure 5. A) Cumulative curves and forest plots for 13,554 patients with 

three different plasma metabolic risk (PMR) statuses. B) Cumulative curves and forest plots for 13,554 

patients with three different MetS statuses. The p value for univariate Cox regression analysis models 

was calculated by the likelihood test. The p value for variables was obtained by the log rank test. HR, 

Hazard ratio.  



Figure S15. Potential biomarker identification and differential metabolic pathways in the 

pathological process of MetS. Related to Figure 5. A) Metabolite classification of the 26 hub PMFs 

by matching through the Human Metabolome Database (HMDB) and MetaboAnalyst 5.0. B) 

Potential metabolic pathways differentially regulating the pathological process of MetS. The color 

and size of each circle indicate the p value and pathway impact value. A total of four pathways 

(enrichment ratio>5 and p<0.05) were differentially regulated: (1) taurine and hypotaurine 



metabolism, (2) phenylacetate metabolism, (3) homocysteine degradation, and (4) 

phosphatidylethanolamine biosynthesis. 

  



Table S1. Four metabolic syndrome risk factors in a general population in this study. Related to Figure 

1. 

Risk factor (RF) Definition a, b) 

Obesity BMI ≥ 25 kg/m2 

Hypertension BP ≥ 140/90 mmHg and/or have been confirmed and treated as hypertension 

Hyperglycemia 
FPG ≥ 6.1mmol/L (110 mg/dl) and/or 2hPG ≥ 7.8 mmol/L (140 mg/dl), and/

or have been diagnosed and treated as diabetes 

Dyslipidemia 

high TG

≥  1.7mmol/L (150 mg/dl), and/or low HDLC< 0.9 mmol/L (35 mg/dl) in men

 or <1.0 mmol/L (39 mg/dl) in women 

BMI, body mass index; BP, blood pressure; FPG, fasting plasma glucose; 2hPG, 2-hour postprandial 

blood glucose; TG, triglycerides; TC, serum total cholesterol; HDLC, high-density lipoprotein 

cholesterol. 

a) Concentrating on racial differences, metabolic syndrome was determined by the presence of at least 

three of the above metabolic risk factors according to the statement of the Chinese Diabetes Society; b) 

pre metabolic syndrome (pre-MetS) was defined as the presence of one or two metabolic risk factors in 

this study. 

  



Table S2. Detection limit of standard metabolites for standards obtained by ferric particle, DHB, 

and CHCA-assisted LDI-MS. Related to Figure 1. 

Analytes 
Detection limit(pmol) 

FP DHB CHCA 

L-lysine 6.84 ＞6840.53 ＞6840.53 

D-glucose 5.55 ＞5550.75 5550.75 

Sucrose 0.29 29.21 ＞2921.44 

Glycine 133.22 ＞13321.61 ＞13321.61 

L-tryptophan 4.90 489.66 4896.56 

L-glutamine 6.84 684.25 68.42 

FP, ferric particles; DHB, 2,5-dihydroxybenzoic acid; CHCA, α-cyano-4-hydroxycinnamic acid. 

 

 

 

  



Table S3. Baseline characteristics of discovery and validation sets. Related to Figure 3. 

  Control Case P valuea) 

A) Diagnostic model for HC vs. MetS 

Train cohort HC MetS  

 Number (%) 1592 (50.0) 1592 (50.0) / 

 Male (%) 748 (47.0) 726 (45.6) 0.455 

 Age (mean (SD)) 67.09 (5.90) 68.46 (5.59) <0.001 

Validation cohort HC MetS  

 Number (%) 682 (50.0) 682 (50.0) / 

 Male (%) 316 (46.3) 330 (48.4) 0.481 

 Age (mean (SD)) 66.82 (5.72) 68.36 (5.88) <0.001 

B) Diagnostic model for HC vs. pre-MetS 

Train cohort HC pre-MetS  

 Number (%) 1592 (50.0) 1592 (50.0) / 

 Male (%) 734 (46.1) 773 (48.6) 0.177 

 Age (mean (SD)) 67.03 (5.87) 67.86 (6.00) <0.001 

Validation cohort HC pre-MetS  

 Number (%) 682 (50.0) 682 (50.0) / 

 Male (%) 330 (48.4) 337 (49.4) 0.745 

 Age (mean (SD)) 66.95 (5.80) 67.76 (5.86) 0.01 

C) Diagnostic model for pre-MetS vs. MetS 

Train cohort pre-MetS MetS  

 Number (%) 2453 (50.0) 2453 (50.0) / 

 Male (%) 1178 (48.0) 1169 (47.7) 0.819 

 Age (mean (SD)) 67.87 (6.07) 68.38 (5.71) 0.002 

Validation cohort pre-MetS MetS  

 Number (%) 1051 (50.0) 1051 (50.0) / 

 Male (%) 502 (47.8) 480 (45.7) 0.359 

 Age (mean (SD)) 67.95 (5.95) 68.08 (5.54) 0.616 

HC, healthy control; pre-MetS, pre metabolic syndrome; MetS, metabolic syndrome; SD, standard 

deviation.  

a) p value calculated by χ2 test for gender data and one-way analysis of variance for age data. 



Table S4. Distribution of performances of different machine-learning-based models for HC vs. MetS in 

the validation cohort (n=1,364) using different evaluation metrics. Related to Figure 3. 

  Min 1stQ Median Mean 3rdQ Max 

Area under the curve (AUC)  

 ADABOOST 0.63 0.66 0.69 0.67 0.7 0.7 

 RF 0.65 0.67 0.69 0.69 0.7 0.73 

 GLMNET 0.67 0.72 0.74 0.72 0.74 0.75 

 MARS 0.69 0.70 0.71 0.71 0.71 0.72 

 SVM 0.69 0.71 0.71 0.71 0.72 0.74 

Sensitivity (Sen) 

 ADABOOST 0.59 0.6 0.63 0.63 0.64 0.71 

 RF 0.65 0.67 0.68 0.69 0.69 0.75 

 GLMNET 0.65 0.66 0.69 0.69 0.71 0.74 

 MARS 0.64 0.66 0.69 0.68 0.7 0.7 

 SVM 0.64 0.66 0.70 0.72 0.78 0.79 

Specificity (Spe) 

 ADABOOST 0.59 0.62 0.63 0.62 0.64 0.65 

 RF 0.56 0.59 0.60 0.60 0.60 0.64 

 GLMNET 0.60 0.60 0.63 0.64 0.67 0.67 

 MARS 0.59 0.61 0.64 0.63 0.65 0.67 

 SVM 0.55 0.6 0.6 0.6 0.61 0.64 

1stQ, first quartile; 3rdQ, third quartile; GLMNET, generalized linear models via least absolute shrinkage 

and selection operator and elastic-net regularization; SVM, support vector machine; MARS, multivariate 

adaptive regression splines; RF, random forest; ADABOOST, adaptive boosting.  



Table S5. Gap statistic for different numbers of clusters (k). Related to Figure 4. 

Ka) logWb) E.logWc) gapd) SE.sime) 

1 0.91918374 0.77143744 -0.14774630 0.08255203 

2 0.21885086 0.25637335 0.03752249 0.08036719 

3 -0.06642547 0.00154248 0.06796795 0.08097058 

4 -0.31916315 -0.21126113 0.023563034 0.08061717 

5 -0.52894093 -0.40092645 0.12801448 0.08022803 

6 -0.72091521 -0.58165729 0.13925792 0.08249429 

7 -0.90809419 -0.75470368 0.15339051 0.08436209 

8 -1.07750200 -0.93779799 0.13970401 0.08662547 

a) K represents the number of clusters; b) W is the within-cluster sum of squared distances from the cluster 

means; c) E.logW represents the expected value of logW of an appropriate null reference; d) gap represents 

the gap statistic; e) SE.sim corresponds to the standard error of the gap statistic. 

  



Table S6. Relative changes in eight clinical parameters compared with the low-risk pattern (%). Related 

to Figure 5. 

 TC SCr GLU HDLC LDLC TG UA BMI 

Medium -risk 2.36 1.89 13.2 -10.11 5.68 45.01 9.82 10.81 

High -risk 3.35 3.34 40.19 -17.79 7.04 122.00 18.89 23.33 

TC, serum total cholesterol; GLU, glucose; TG, triglycerides; UA, uric acid; HDLC, high-density 

lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; BMI, body mass index. 

  



Table S7. Relative population flow analysis of the three PMR patterns. Related to Figure 5. 

 LMR (%) MMR (%) HMR (%) Sum 

A) Classification according to the present number of MetS risk factors 

RFN0 2188 (96.2) 74 (3.3) 12 (0.5) 2274 

RFN1 76 (2) 3731 (96.7) 50 (1.3) 3857 

RFN2 74 (1.9) 3766 (96.1) 79 (2) 3919 

RFN3 30 (1.2) 84 (3.3) 2468 (95.6) 2582 

RFN4 3 (0.3) 19 (2.1) 900 (97.6) 922 

Sum 2371 (17.5) 7674 (56.6) 3509 (25.9) 13554 

B) Classification according to disease status 

HC 2188 (96.2) 74 (3.3) 12 (0.5) 2274 

pre-MetS 150 (1.9) 7497 (96.4) 129 (1.7) 7776 

MetS 33 (0.9) 103 (2.9) 3368 (96.1) 3504 

Sum 2371 (17.5) 7674 (56.6) 3509 (25.9) 13554 

RFN, number of traditional MetS risk factors; HC, healthy control; pre-MetS, pre metabolic syndrome; 

MetS, metabolic syndrome. 

  



Table S8. m/z signals selected as hub metabolic features for pre-MetS and MetS screening and staging. 

Related to Figures 4 and 5. 

ID m/z Accessiona) Potential biomarkers Adduct Type 

1 102.9925 HMDB0003361 Pyrimidine [M+Na]+ 

2 103.9375 HMDB0002166 (S)-beta-Aminoisobutyric acid [M+H]+ 

3 104.9725 HMDB0000011 (R)-3-Hydroxybutyric acid [M+H]+ 

4 105.8725 HMDB0000187 L-Serine [M+H]+ 

5 118.0225 HMDB0000128 Guanidoacetic acid [M+H]+ 

6 119.0125 HMDB0000754 3-Hydroxyisovaleric acid [M+H]+ 

7 119.9575 HMDB0000719 L-Homoserine [M+H]+ 

8 121.9375 HMDB0000574 L-Cysteine [M+H]+ 

9 129.8575 HMDB0000070 Pipecolic acid [M+H]+ 

10 131.9725 HMDB0000965 Hypotaurine [M+Na]+ 

11 136.0225 HMDB0000562 Creatinine [M+Na]+ 

12 136.9675 HMDB0000209 Phenylacetic acid [M+H]+ 

13 143.9875 HMDB0000574 L-Cysteine [M+Na]+ 

14 144.9775 HMDB0002994 Erythritol [M+Na]+ 

15 145.9225 HMDB0002243 Picolinic acid [M+Na]+ 

16 147.8575 HMDB0000251 Taurine [M+Na]+ 

17 151.7725 HMDB0000267 Pyroglutamic acid [M+Na]+ 

18 152.6275 HMDB0000634 Citraconic acid [M+Na]+ 

19 157.9375 HMDB0000156 Malic acid [M+Na]+ 

20 159.9625 HMDB0000306 Tyramine [M+Na]+ 

21 161.9425 HMDB0060665 Isonicotinic acid [M+K]+ 

22 163.9675 HMDB0000224 O-Phosphoethanolamine [M+Na]+ 

23 185.5675 HMDB0000641 L-Glutamine [M+K]+ 

24 195.7825 HMDB0000840 Salicyluric acid [M+H]+ 

25 203.0725 HMDB0000122 D-Glucose [M+Na]+ 

26 218.9125 HMDB0000122 D-Glucose [M+K]+ 

a) Compound ID from the Human Metabolome Database (https://hmdb.ca/). 

  



Table S9. Differential metabolic pathways regulated among the HC, pre-MetS and MetS groups. Related 

to Figure 5. 

Pathway Hita) P valueb) -Log (p) Enrichment Ratioc) 

Taurine and Hypotaurine Metabolism 0.00217 2.664 10.676 

Phenylacetate Metabolism 0.0172 1.764 9.479 

Homocysteine Degradation 0.0172 1.764 9.479 

Phosphatidylethanolamine Biosynthesis 0.0301 1.521 7.117 

Sphingolipid Metabolism 0.0633 1.199 3.198 

Methionine Metabolism 0.0755 1.122 2.97 

Glutathione Metabolism 0.0843 1.074 4.065 

Transfer of Acetyl Groups into Mitochondria 0.0915 1.039 3.876 

Warburg Effect 0.15 0.824 2.206 

Glycine and Serine Metabolism 0.156 0.807 2.174 

Ammonia Recycling 0.171 0.767 2.667 

Lactose Degradation 0.193 0.714 4.739 

Ketone Body Metabolism 0.267 0.573 3.279 

Glucose-Alanine Cycle 0.267 0.573 3.279 

Phosphatidylcholine Biosynthesis 0.284 0.547 3.049 

Glutamate Metabolism 0.32 0.495 1.739 

Lactose Synthesis 0.38 0.42 2.132 

Pantothenate and CoA Biosynthesis 0.395 0.403 2.033 

Glycolysis 0.451 0.346 1.706 

Cysteine Metabolism 0.464 0.333 1.642 

Selenoamino Acid Metabolism 0.49 0.31 1.524 

Urea Cycle 0.502 0.299 1.471 

Citric Acid Cycle 0.537 0.27 1.333 

Amino Sugar Metabolism 0.549 0.26 1.294 

Aspartate Metabolism 0.57 0.244 1.22 

Gluconeogenesis 0.57 0.244 1.22 

Nicotinate and Nicotinamide Metabolism 0.591 0.228 1.153 

Galactose Metabolism 0.601 0.221 1.122 



Pyruvate Metabolism 0.688 0.162 0.893 

Arginine and Proline Metabolism 0.725 0.14 0.806 

Pyrimidine Metabolism 0.763 0.117 0.725 

Valine, Leucine and Isoleucine Degradation 0.769 0.114 0.709 

Bile Acid Biosynthesis 0.797 0.099 0.658 

Tyrosine Metabolism 0.83 0.081 0.592 

Purine Metabolism 0.838 0.077 0.578 

a) Differential metabolic pathway analysis performed using MetaboAnalyst (5.0) using the website 

analysis module; b) p value calculated from pathway enrichment analysis; c) enrichment ratio generated 

from pathway topology analysis.  



Table S10. Comparison between different NMR and mass spectrometry platforms. Related to Figure 1. 

Methods Sample volume Pre-treatment NMR/MS analysis 

NMR 20 - 500 μL 1 - 1.5 hour for 96 samples 12 ~ 30 min per sample 

LC-MS 10 - 60 μL 1 - 2 hour for 96 samples 12 ~ 24 min per sample 

GC-MS 30 - 400 μL 45 - 60 min per sample ~ 30 min per sample 

LDI MS 100 nL ~ 1 min per sample ~ 30 second per sample 

MS, mass spectrometry; NMR, nuclear magnetic resonance; LC-MS, liquid chromatography-mass 

spectrometry; GC-MS, gas chromatography-mass spectrometry; LDI-MS, laser desorption/ionization 

mass spectrometry. 
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